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Abstract: Switching magnetic properties have attracted a wide interest from inorganic chemist for
the objectives of information storage and quantum computing at the molecular level. This review
is focused on magnetic switches based on a mechanical motion, which is an innovative approach.
Three main strategies to control magnetic properties by a mechanical motion have been developed in
the literature and will be described. The first one (ligand-induced spin change) consists in modulating
the ligand field strength by a configuration change of the ligand in spin-crossover complexes.
The second one (coordination-induced spin-state switching) is based on a change in the coordination
number of a metallic center that is triggered by the motion of one ligand. The third one uses the
modulation of the exchange interaction between two spin-centers by a mechanical motion.

Keywords: molecular switch; magnetism; molecular machine; spin crossover; photoisomerization;
LD-LISC; LD-CISSS

1. Introduction

A current trend in physical, chemical, and biological sciences is the pursuit of miniaturized
machinery and devices. To achieve this goal, two complementary approaches have been developed.
The first one, called ‘top-down’, consists in the miniaturization of existing objects following lithographic
technologies, and has been widely used in microelectronics. This approach is currently reaching
some physical limits due to the incompatibility of such technologies with the nanometer scale.
The second one, known as the ‘bottom-up’, starts from atoms and molecules and follows a building
up strategy, consisting in the association of different modular functional units through the formation
of covalent bonds or supramolecular interactions. Nature already uses this strategy to build a large
variety of sophisticated machines, such adenosine triphosphate (ATP) synthase, kinesin, myosin,
DNA polymerase, or ribosome, which are designed to perform linear or rotary motion [1]. Inspired by
nature or their man-made macroscopic analogues a variety of artificial molecular machines have been
synthetized [1,2]. By analogy with a macroscopic machine, a molecular machine can be defined as
an assembly of molecular components designed to perform a mechanical motion (i.e., a controlled large
amplitude or directional movement of one component relative to another) in response to a stimulus.
Even if the manipulation of motion at the molecular level has been mastered in such molecular
machines, the reversible control of physical or chemical properties at the molecular level remains
a challenge in the field. In particular, switching magnetic properties has attracted a wide interest from
inorganic chemist for information storage or quantum computing at the molecular level.

Several stimuli have been used to trigger magnetic properties changes [3] in three main areas:
(i) changing the spin state of a transition metal in spin crossover (SCO) systems [4-11]; (ii) switching
the exchange interaction between different spin carriers [12,13]; and (iii) switching single-molecule
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magnet (SMM) properties [14,15]. Spin-crossover complexes [16-20] are particularly interesting for
such purpose, as they can exist in two stable spin states and have been largely studied. Even if
spin-crossover behavior is theoretically expected to occur in octahedral complexes with 3d* to
3d” electronic configurations, most spin-crossover complexes are based on Fe(III), Fe(II), and Co(II),
with only few reported examples of compounds of Mn(II), Mn(III), Cr(II), and Co(IlI). The study of
spin-crossover systems has originated from d® Fe(I) complexes that can be reversibly switched between
high spin (HS, S = 2) and low spin (LS, S = 0) states by using several stimuli [6,21]. The evolution
of the magnetization of some Fe(II) complexes has shown a thermally induced spin crossover that is
associated sometimes with a hysteresis loop (Figure 1b) [4]. The HS state, stable at high temperature,
is converted to LS upon cooling. This effect has an entropic origin due to a higher number of microstate
and vibrational entropy in the HS configuration [5]. Light can also be used at a low temperature
to trigger a spin transition from LS to HS by a light induced excited spin state trapping (LIESST)
effect (Figure 1a) [22,23]. In this case, an increase of the magnetization is observed upon irradiation
at low temperature, indicating the population of the metastable HS state. However, by increasing
the temperature, a drop in the magnetization is observed at temperatures where the thermal energy
is enough to allow for a relaxation to the stable LS state [24]. Apart from temperature and light,
chemical [25], electrical [26], or pressure [27] stimuli have also been used to induce a spin crossover.
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Figure 1. (a) Schematic energy diagram of high spin (HS) and low spin (LS) Fe(II) complex with light
induced excited spin state trapping (LIESST) mechanism; AH? correspond to the difference in energy
between HS and LS state; AH? the activation energy; drs and dyg correspond to the metal ligand
distance in the LS and HS state, respectively; (b) xT = {(T) curve for spin crossover complexes showing
an hysteresis loop (in black) and spin transition from LS to HS due to the LIESST effect (in blue).

Multi-metallic complexes such as Prussian-blue analogues have also attracted a wide interest
as switchable systems due to the ability to switch the exchange interaction between different spin
carriers connected by a bridging cyanide ligand. Light has been a choice stimulus for photo-induced
electron transfer in molecular polymetallic architectures [28-30], crystals [31], or valence tautomerism
complexes [32,33]. A noticeable magnetic property to switch is the Single Molecule Magnet (SMM)
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behavior. Nevertheless, to the best of our knowledge, only scarce examples have been reported
showing extinction of SMM property caused by electrochemical stimulus [34-37], or photo-induced
electron transfer [38].

The most common approach to switch the total spin of a molecule in spin crossover,
photomagnetic [39,40], or photochromic systems, is to use a stimulus directly modifying the electronic
state of the site responsible for the magnetic properties. This review is focused on magnetic switches
based on a mechanical motion enabling the stimulus to be targeted on a remote site. This approach is
interesting since the two processes of motion and magnetic properties change are distinguished, so that
a given mechanical switch can be combined with different functional units. Three main approaches
to control magnetic properties by a mechanical motion can be outlined (Figure 2): (i) modulating the
ligand-field strength by a change in configuration of the ligand; (ii) changing the coordination number;
and, (iii) modulating the coupling between two spin-centers. These strategies will be developed in the
following sections.

a) motion-driven ligand field change
b) motion-driven coordination number change

¢) motion-driven exchange coupling interaction change

Figure 2. Main approaches to switch magnetic properties by a mechanical motion. (a) ligand-field
change; (b) coordination number change; (c) exchange coupling interaction change. The spheres
represent a metal cation with a given magnetic property in red or green. The ribbon represents a ligand
in different configurations.

2. Spin State Change by Ligand Field Strength Modulation

The strategy to modulate the ligand field strength by a mechanical motion located on a ligand
has been successfully applied for spin crossover complexes with isomerizable ligands by using light
as a stimulus. This photomagnetic effect based on a photochemical reaction on the ligand has been
called “Ligand-driven light-induced spin change” (LD-LISC) [41]. In this approach, the electronic spin
state of the metal ion can be switched by means of light over a broad range of temperatures, including
room temperature.

The first exemple of the LD-LISC effect was described by Zarembovich et al. in 1994 [42],
with complex [Fe'(stpy);(NCS),] bearing photo-isomerizable styryl pyridine ligand (stpy)
(Figure 3). [FeH(tmns—stpy)4(NCS)2] presents a spin crossover centered around 108 K, whereas
[FeH(cis-stpy)4(NCS)2] remains HS on the whole temperature range (10-300 K). This difference in
behavior was attributed to a higher ligand field for trans vs. cis isomer. The system was further
improved [43] using bidendate ligand 4-methyl-4’-trans-styryl-2,2'-bipyridine to finally obtain
a LD-LISC effect at room temperature [44]. By using ligands incorporating an azobenzene unit
a reversible LD-LISC effect was obtained by Nishihara (Figure 4) [45]. When compared to styryl
derivatives, azo compounds present a larger difference in the absorption spectra between trans and
cis isomers, which enables a selective isomerization depending on the wavelength of the irradiation.
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The LS state is stabilized by trans isomer, while HS state by cis isomer and a modest 5% change in the
spin-state conversion was observed in solution in acetone at room temperature.
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Figure 3. (a) Molecular structures for the all-E and all-Z photoisomers of the mononuclear
iron(II) complex [FeH(stpy)4(NCS)2] and (b) the corresponding magnetic properties showing the
thermal-induced SCO in the former case. Reprinted with permission from [42]. Copyright American
Chemical Society, 1994.
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Figure 4. Fe(II) complex with azobenzene-attached ligands showing reversible magnetization change
at room temperature by irradiation at two different wavelengths [45].

This approach is interesting for information storage applications, but requires a switching in the
solid state, which is quite challenging due to the large reorganization that is necessary for the ligand
isomerization. Incorporation of [Fel(4-styrylpyridine),(NCSe),] in a polymer thin film was achieved
by Boillot et al. [46], leading to bi-directional LD-LISC, but only at 130 K. Nishihara reported in 2011
a room temperature switch in the solid state with bis(dipyrazolylstyrylpyridine)Fe(II) complexes
(Figure 5) [47,48]. A partial transition from HS to LS was observed by performing a cis to trans
photoisomerization (A > 420 nm) of cis ligand within [Fe'l(cis-dipyrazolylstyrylpyridine),](BF4)s,
but the switching was irreversible in the solid state.

Much stronger switching effect can be achieved by using electrocyclic isomerizations of
photochromic ligands that are attached directly to the coordination site. Recently Khusniyarov et al.
have used a phenanthroline ligand functionalized by a photochromic diarylethene moiety in
a bis(pyrazolyl)borate Fe(Il) complex (Figure 6). Under UV-irradiation, the open HS form is reversibly
converted (about 40%) to a LS closed form [49,50]. In parallel, Oshio et al. studied similar compounds
and showed bidirectional spin-state switching by LIESST and reverse-LIESST in the solid state and in
butyronitrile solution [51]. In all of these examples of LD-LISC, the mechanical motion centered on the
ligand is used to modulate its electronic properties often resulting in small changes in the ligand-field.
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Moreover, in light activated switches, the photostationary state usually limits the total conversion of
the ligand, making it difficult to obtain drastic changes of the magnetic properties.

visble light
(> 420 nm)

Figure 5. Bis(dipyrazolylstyrylpyridine)Fe(II) complex showing irreversible switching in the solid
state [47,48].
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Figure 6. Reversible photocyclization and photocycloreversion upon UV and visible light irradiation
respectively for the Fe(I) complex [FeH(btphen)(bpzb)z] [51].

3. Spin State Change by Coordination Number Modulation

Recently, Herges et al. have introduced a new concept for switching the magnetic properties
of homogeneous solutions at room temperature by using a light-driven ligand-induced spin-state
switching (LD-CISSS). The principle is to modify the coordination number of a metallic center by
the way of an isomerizable ligand. In contrast to the LD-LISC approach, where the modification in
ligand field strength tends to be small and a complete switching between magnetic states is difficult to
achieve, the change in coordination number can induce large ligand-field modifications. The authors
focused on Ni(Il)-porphyrin complexes, where the Ni(II) can adopt a LS (S = 0) square planar geometry
or a HS (S = 1) square pyramidal pentacoordinated geometry upon coordination of an apical ligand.

In a first approach, azopyridines were used as photodissociable axial ligands to control the
coordination number and concurrently the spin state of the Ni(II)-porphyrin (Figure 7) [52]. In the trans
configuration, the azopyridines bind to the Ni as axial ligands, forming paramagnetic HS (5 =1) 1:1 and
2:1 complexes. Upon photoisomerization to the cis configuration, the steric hindrance significantly
reduces the binding constant, leading to a dissociation of the apical ligand and a diamagnetic (S = 0)
square-planar Ni(II). By using a large excess of an azopyridine substituted in 4 and 4’ position with
an isopropyl group, the percentage of paramagnetic Ni centers was reversibly switched between 20.5%
and 68.1%. In this system, the efficiency depends on the photostationary states of the ligand at the
two irradiation wavelengths and the association constants of the two corresponding configurations.
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Figure 7. (a) Schematic representation of the spin-state switching of square planar Ni(II) complexes by
light-induced association and dissociation of a photochromic axial ligand and (b) the corresponding
Ni(II)-porphyrin and azopyridine ligand. Reprinted with permission from [52]. Copyright American
Chemical Society, 2011.

In order to improve the effective concentration of the ligand, a tethered azopyridine ligand to
the Ni(Il)-porphyrin complex was used (Figure 8) [53]. In this compound, when the azopyridine is in
trans configuration, the nitrogen atom of the pyridine is directed away from the Ni center, resulting in
a diamagnetic LS square planar geometry. Upon irradiation by visible light at 500 nm the azopyridine
unit isomerizes from trans to cis bringing the pendant pyridine ligand in proximity to the nickel atom.
The mechanical motion thus enables a coordination of the pyridine, resulting in a pentacoordinated
HS (S = 1) Ni(Il) in square pyramidal geometry. The reversibility of the switching was achieved
by irradiation at 435 nm with a spin-state photo-conversion of 48% being observed in the initial
design. Subsequent modifications of the system by electron-donating substituent on the pyridine
moiety allowed to increase the photo-conversion rate up to 85% [54]. This work demonstrates the
interest of using switchable ligands to achieve hysteresis without the need of cooperative effects,
such as magnetic coupling or lattice interactions. This approach was successfully applied to obtain
a photoswitchable Magnetic Resonance Imaging (MRI) contrast agent [55]. The relaxation time of the
solvent protons was switched between 3.5 and 1.7 s improving the relaxivity of the contrast agent by
a factor of 6.7. No fatigue or side reactions were observed, even after >100,000 switching cycles in air at
room temperature showing the robustness of the system. In an extension of this work, azoimidazoles
were found to exhibit higher switching efficiencies than previously described phenylazopyridine
ligands [56], and were used in the tethered form for spin state switching in solution [57], as well as
light responsive MRI contrast agent [58].

trans—___

hv (500 nm)

hv (435 nm)
A

low-spin R=C¢Fs high-spin
diamagnetic paramagnetic

Figure 8. Photo-induced spin switch on a Ni(II)-porphyrin with tethered azo-pyridine ligand.
Reprinted from [53]. Copyright American Association for the Advancement of Science, 2011.

Very recently, Weber et al. described a proton-driven coordination-induced spin state switch
(PD-CISSS) of [Fell(bipy);]** complex [59] (Figure 9). By lowering the pH, LS [Fe(bipy);]** is
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protonated to form a LS [Fe!!(bipy); H]** complex that was observed by 'H-NMR. This protonation
weakens the nitrogen—iron bond, leading to a reversible bond breaking between the iron center and
the protonated nitrogen of the bipy ligands, resulting in a HS pentacoordinated Fe(II) complex upon
heating. In this system, the mechanical motion of the ligand is triggered by a combination of a chemical
stimulus (pH) and temperature. The effect was observed in solution and as composite materials
encapsulated in the supercages of zeolite faujasite NaY [59].

®

H AT
R R
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LS HS

Figure 9. Proposed mechanism for the proton-driven coordination-induced spin state (PD-CISSS) of
[Fell(bipy)3]** [59].

4. Spin State Change by Exchange Interaction Modulation

Switching magnetic properties by modulating the coupling between two spin-centers via
controlling their distance via a mechanical motion is a relatively new approach. This strategy can
be coined as Ligand Driven Mechanically Induced Spin Change (LD-MISC). An early example
was described by Irie et al. with a diarylethene photochromic unit substituted by two organic
radicals (Figure 10) [60]. When the diarylethene unit is open, the two organic radicals are isolated.
The photoinduced electrocyclization of the diarylethene moiety leads to an extended 7 system, allowing
for an electronic communication between the two spin carriers. An antiferromagnetic coupling is
observed resulting in a modification of the total spin of the molecule. It should be noted that the spin
state switch is mainly due to the change in the electronic structure of the bridging ligand and not the
conformational reorganization that is induced by the closing of the photochromic unit.
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Isolated 2 xS =1/2 S=0

Figure 10. Photo-induced modulation of exchange coupling interaction between two radicals [60].

A similar strategy has been used by Yamashita et al. to repeatedly turn on and off the SMM
(Single Molecule Magnet) behavior of two Mn(IIl)-salen complexes that are connected to diarylethene
derivatives with two carboxyl groups (Figure 11) [61]. When the complex with the diarylethene in
the closed form is converted to the open form by irradiating with visible light, slow relaxation of
the magnetization was observed. This behavior, not observed for the closed form, is due to slight
modifications in inter- or intra-unit Mn(III)-Mn(III) distances upon photoisomerization. In addition,
the superexchange interactions between the two Mn(Ill) ions caused by the 7-conjugation of the
two thiophene rings affects the magnetic properties of the two forms. In this example, the magnetic
properties are interestingly activated upon irradiation with visible light.
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Figure 11. Switching of the Single Molecule Magnet (SMM) properties of Mn(III)-salen complexes by
photoisomerization of diarylethene moiety [61].

Reversible through-space control of magnetic interaction has been described recently by Kaneko et al.
using a polymer bearing organic radicals (Figure 12) [62]. Chiral diethynyl-1,1"-binaphthyl moieties were
inserted in a poly(1,3-phenyleneethynylene) chain. The polymer can fold into a helicoidal conformation
in basic media, bringing the radical units in spatial proximity. This proximity results in a relatively strong
antiferromagnetic behavior when compared with the weak antiferromagnetic behavior of the polyradical
in the unfolded conformation. This system uses a chemical stimulus (pH) to trigger the conformational
change of the polymer and the modification of the magnetic properties.
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Figure 12. (a) Folding of polyradical polymer upon pH change; (b) xT = f(T) of unfolded (green),
and folded structure (red). Reprinted with permission from [62]. Copyright American Chemical
Society, 2013.

Feringa et al. [63] used the photoisomerization of an overcrowded double bond to switch the
intramolecular through-space magnetic interaction between two (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl
(TEMPO) spin centers (Figure 13). In the trans state, the two spin centers are well separated by
a distance of ~22 A, resulting in a non-coupled system, as shown by the three-line electron paramagnetic
resonance (EPR) spectrum. Upon photoswitching, the trans form is converted to a cis conformation,
where the two radicals are separated by ~7 A. The two spins are strongly interacting by a through
space dipolar coupling, as shown from the five-line EPR spectrum. This switching is obtained at room
temperature and in solution, but the conversion is limited by the photostationary state of 89% cis form.

A similar control of the interaction between two TEMPO radical moieties was recently described
by Credi et al. [64] using an acid-base switchable molecular shuttle (Figure 14). The shuttle is based on
a [2]rotaxane, bearing stable TEMPO radical units on the ring and on the side of the axle. The ring is
located on the dialkylammonium station when it is protonated, resulting in non-coupled radicals with
a characteristic three-line EPR spectrum. Upon deprotonation, the ring moves to the bispyridinium
site and the two radicals become coupled by through space dipolar interaction, as observed from the
five-line EPR spectrum. The process is reversible, and was repeated six times, highlighting the stability
of the system. Thus the mechanical motion of the ring triggered by a chemical stimulus (pH) in this
molecular machine enables a reversible on/off switching of magnetic interactions.
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Figure 13. (a) Photo-induced mechanical switch of through space dipolar interaction by a molecular
motor scaffold; (b) EPR spectra of trans (black) and cis form after irradiation at 312 nm (red). Reprinted
with permission from [63]. Copyright American Chemical Society, 2011.
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Figure 14. (a) pH-induced mechanical switch of through space dipolar interaction by a [2]rotaxane;
(b) EPR spectra before (A) and after sequential addition of 2 equiv. of iPr, EtN (B) and CF3COOH (C).
Reproduced from [64]. Copyright WILEY-VCH Verlag GmbH&Co. KGaA, 2015.

Coordination-based switches are attractive as they present benefits over photochemical switches,
by enabling total conversion and offering thermal stability. We have recently developed switchable
molecular tweezers [65,66], which are based on a terpyridine ligand substituted by metal-salphen
complexes that can switch upon metal coordination from a “W” shaped open form to a “U” closed form
bringing the two salphen moieties in close spatial proximity (Figure 15). We have used this modular
design to control the magnetic interaction between paramagnetic Cu(Il)-salphen (d° S = 1/2) complexes
via a mechanical motion [67]. Upon zinc coordination to the terpy moiety, conversion from the open
to the closed conformation was obtained. The reversible re-opening was achieved by the addition of
a competitive ligand. Crystallographic structures showed a considerable modification of the distance
between the two Cu(Il) ions (from 21 to 4 A) induced by the mechanical motion (Figure 15). Each Cu(II)
presents a spin S = 1/2, and is isolated in the open form, as demonstrated by the characteristic EPR
signal. In the closed form, intramolecular through space dipolar interactions were observed by EPR
with doublet-like signal expected for a triplet state. Superconducting Quantum Interference Device
(SQUID) measurements have shown an antiferromagnetic exchange interaction in the closed form,
with a ] = —1.4 cm~! value that is typical of through space exchange interaction. Thus, the control
of the exchange interaction between two paramagnetic centers was achieved in solution by using
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a mechanical motion. Upon tweezers closing the two isolated % spins located on each Cu(II) become
antiferromagnetically coupled through space, leading to a singlet ground state. This system is a rare
example of mechano-induced modification of magnetic properties offering quantitative conversion
between both states that are stable at room temperature.
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Figure 15. (a) Principle of the control of the exchange interaction between two paramagnetic centers by
using the mechanical motion of switchable molecular tweezers; (b) Crystal structure of open and closed
terpy(Cu-salphen), tweezers and (c) corresponding EPR spectra in frozen solution showing a signal
characteristic of isolated 2 x S = 1/2 spins in the open form, and a doublet signal corresponding to
S =1 system resulting from dipolar interaction between the two Cu(Il) in the closed form. Adapted
from [67] with the permission of The Royal Society of Chemistry.

The modularity of our platform was then exploited to combine ion-triggered mechanical motion
with redox activity in order to achieve a multi-state switch [68]. Ni(II)-salen complexes were chosen as
functional units since they are known to be redox non-innocent with reversible oxidation properties

and valence tautomerism between Nilll

-salen and Nill-salen™ species. A six level switch was obtained
by combining three orthogonal stimuli (Figure 16): (i) metal coordination of the terpyridine moiety to
open/close the tweezers; (ii) reversible oxidation of the Ni-salen complexes; and, (iii) guest binding to
oxidized Ni-salen coupled to valence-tautomerism. The metal coordination stimulus (axis a) enables
a mechanical closing of the neutral and oxidized open states (edges a, a’, a”). The switching along theses
edges is reversible upon addition of a competitive ligand, such as tren or terpyridine. The orthogonal
redox stimulus (axis b) triggers a reversible oxidation of the open or closed tweezers adding two new
accessible states along edge b and b’. Finally, the pyrazine binding stimulus (axis ¢) enabled two new
states that were accessible from the oxidized species along edge ¢ and ¢’. The coordination of the
pyrazine ligand in the oxidized state has a drastic effect on the electronic properties of the system by
shifting the radical location from NiH—phenoxyl to NiIH—phenoxide as monitored by EPR (Figure 16b).
In the open form the two spins located on the Ni(Ill) are isolated. Upon closing by coordination,
a through ligand magnetic coupling is obtained between the two Ni(IIl) centers by a bridging pyrazine
ligand, as observed by EPR with a S = 1 system. This multi-functional system combines mechanical
motion with redox-activity to change magnetic properties in a six-state system that is accessible by
three orthogonal stimuli.
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Figure 16. (a) Six-states mechanical switch with valence tautomerism and magnetic interaction control
by a bridging ligand; (b) Evolution of EPR spectra upon oxidation, valence tautomerism and bridging
ligand intercalation. Reprinted with permission from [68]. Copyright American Chemical Society, 2017.

5. Summary and Outlook

In this review, we have outlined the different approaches using mechanical motion to switch
magnetic properties. The first reported one is based on a modification of the ligand field strength by
a configurational change that was successfully applied in SCO complexes. However, the electronic
modifications resulting from the motion are usually weak, resulting in limited changes of the
magnetic properties. The development of supramolecular approaches to control the coordination
sphere or the interaction between spin carriers has resulted in a renewal of the field with larger
effects being achievable. Despite the fact that the synthesis of complex architectures becomes more
challenging and requires the development of more sophisticated theoretical models, these strategies
are attractive as they do not rely on intermolecular interactions and enable switching at the single
molecule level. Potential application can be envisaged for the elaboration of, among others, smart MRI
contrast agents, molecular actuator devices [69], molecular spintronics [70], and quantum computing
devices [71]. However future challenges remain in the surface deposition of such systems as thin
films, self- assembled monolayers, or even at the single molecule level. The recent development of
new physics instruments, such as the nano-SQUID, which enables the study of magnetic properties at
the single-molecule level are encouraging and should open new perspectives. While most systems
are based on light stimulus, the electric control of the spin state should be more developed, as it is
crucial for spintronics applications and is currently limited. Finally, the integration of the concepts of
mechanical motion with other properties, such as SMM, luminescence, or chirality are investigated to
obtain multifunctional systems [72], which could lead, for example, to optoelectronic devices.
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