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Abstract Handling large-scale software variability is
still a challenge for many organizations. After decades
of research on variability management concepts, many
industrial organizations have introduced techniques
known from research, but still lament that pure textbook
approaches are not applicable or efficient. For instance,
software product line engineering—an approach to
systematically develop portfolios of products—is diffi-
cult to adopt given the high upfront investments; and
even when adopted, organizations are challenged by
evolving their complex product lines. Consequently,
the research community now mainly focuses on re-
engineering and evolution techniques for product lines;
yet, understanding the current state of adoption and
the industrial challenges for organizations is necessary
to conceive effective techniques. In this multiple-case
study, we analyze the current adoption of variability
management techniques in twelve medium- to large-
scale industrial cases in domains such as automotive,
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aerospace or railway systems. We identify the current
state of variability management, emphasizing the tech-
niques and concepts they adopted. We elicit the needs
and challenges expressed for these cases, triangulated
with results from a literature review. We believe our
results help to understand the current state of adoption
and shed light on gaps to address in industrial practice.

Keywords variability management, software product
lines, multiple-case study, challenges

1 Introduction

Companies often need to engineer a portfolio of soft-
ware variants instead of one-size-fits-all solutions. Cre-
ating variants allows tailoring systems towards varying
stakeholder requirements—different functionalities, but
also non-functional requirements, such as performance
or power consumption. Variant-rich systems are es-
pecially common in traditional engineering domains
including automotive, industrial automation, telecom-
munication. In addition, recent trends such as the In-
ternet of Things (IoT) [15], cyber-physical systems [113,
156], or robotics [84], further increase the need for cus-
tomization.

Software product line engineering (SPLE) aims at
effectively engineering a variant-rich system—a soft-
ware product line—in an application domain. SPLE
advocates establishing an integrated software platform
from which individual variants can be derived, typ-
ically in an automated, configuration-driven process.
SPLE provides a range of dedicated concepts, includ-
ing processes, modeling techniques or design patterns,
supported by commercial and open-source tools, such
as pure::variants [36], Gears [106] or FeatureIDE [101].
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Recognizing the benefits, especially radically de-
creased time-to-markets for new variants, industry has
adopted SPLE concepts [94,78,30,132,46,18,184] at dif-
ferent levels of maturity [41]. Yet, many organizations
still lament an adoption barrier. In fact, most organi-
zations create variants in ad hoc ways [30], such as
clone & own, which is simple and cheap [64,44,177,
178], but does not scale with the number of variants and
then requires product-line migration efforts [14,74,95,
60,7,76]. When adopted, a product line can also limit
flexibility, since evolving the platform affects many
variants [129]. To improve this situation, we need to
improve our empirical understanding of the state of
product-line adoption and the needs for improvement
in industrial practice.

Such an updated empirical understanding of in-
dustrial needs helps steer the scope of research efforts.
Consider the many SPLE concepts that have been con-
ceived by researchers. Already until 2011, a survey
identified 91 variability management approaches [48],
most of which rely on feature modeling to specify vari-
ability information [99,58,6,141]. Another trend was to
build hundreds of dedicated analyses for product lines,
typically by lifting single-system analyses (e.g., model
checking) [130,117,162]. A recent survey [186] identi-
fied 123 analyses from the literature—including lifted
type-checking, static-analysis, and model-checking tech-
niques. Already eight years ago, a survey [23] identified
30 different feature-model analyses in 53 papers). Other
analyses check the consistency between feature models
and implementation artifacts or analyze code properties.
Notably, more recent work [138] shows that industrial
needs substantially deviate from the state of the art,
while most analyses are not applicable in industrial con-
texts. Likewise, traceability of features across a product
line’s lifecycle is another challenge [189], where the state
of the art and the state of the practice differ significantly,
and the low industrial relevance of solutions proposed
in the literature prevents wider adoption of traceability
for product lines in industry.

We present a study on the state of adoption of
variability-management concepts and remaining prac-
tical challenges in twelve industrial cases from differ-
ent organizations engineering variant-rich systems. We
used document analysis, semi-structured interviews,
and focus groups on cases that cover a wide range of
domains and development scales, from a rather small
web-application engineering case to ultra-large software
engineering for automotive or industrial component
production. In addition, we conducted a lightweight lit-
erature review on relevant SPLE adoption case studies,
experience reports, surveys, and meta-studies, support-
ing the formulation and synthesis of challenges we

present. Our industrial cases primarily represent the
development in a small part of a company, such as
a single division or development team. We refer to
these as use cases in the remainder. We also investigated
cases provided by tool vendors who are looking to inte-
grate product-line engineering concepts into their tools,
referred to as tool cases. For our study, we combined
eliciting structured case descriptions with focus-group
interviews to identify the concepts that were adopted,
as well as variability drivers and variable assets.

We report our cases’ drivers of variability, the SPLE
concepts they adopted, as well as remaining challenges
to be addressed by the research community and tool
vendors. We believe our results support practitioners
and researchers. Practitioners can use our results as a
baseline to compare their own organization’s capabili-
ties and understand which concepts are at their disposal
for future development. Researchers obtain the current
state of adoption of SPLE concepts in industry, as well
as they learn about remaining challenges.

2 Background

We briefly discuss strategies and important concepts
for engineering variant-rich systems, gradually from ad
hoc strategies to more advanced variant management
strategies and concepts, partly inspired by the levels
proposed by Antkiewicz et al. [11].
Clone & own. An organization creates variants by copy-
ing and adapting existing variants to new requirements.
Assets are propagated in an ad hoc way among the
variants. No platform or any kind of systematic vari-
ability management exists. Clone & own is a simple and
readily available [64,65,44,177] strategy for developing
variants, but does not scale with the number of variants
and easily causes maintenance overheads.
Clone Management. Enhancing the governance, an
organization could adopt a clone-management frame-
work. Such frameworks [159,160,161,148,11] have been
proposed, but have not found any documented adop-
tion. They allow managing clones by using features as
the main entities of reuse (instead of code assets) and
record meta-data about the clones.
Configuration. An organization can introduce config-
uration mechanisms to reduce redundancies. Such a
mechanism is an implementation technique to realize
calibration or variation. In the latter case, it is commonly
referred to as a variability mechanism [190,29], ranging
from simple conditional compilation (e.g., #ifdef) via
control-flow conditional statements (e.g., IF), build sys-
tems [31,61], and component frameworks, to so-called
feature modules [13] or delta modules [163]; or com-
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Fig. 1 Feature model example [29]

binations thereof [22,137]. The configuration options
(a.k.a., calibration parameters or just parameters) and
their constraints are typically declared in a model, such
as a feature model (explained shortly). Using such a
model, an interactive configurator tool can support the
configuration process, guiding users by propagating
choices or resolving configuration conflicts.
Platform. Further scaling the development, an organi-
zation can adopt an integrated platform. There, instead
of cloning, all variants are integrated into one software
platform. By exploiting the commonalities among the
variants, redundancies are removed while variability
among the variants is represented by variation points
within the platform. Variability is typically described in
terms of features declared in a feature model, as follows.
Feature. Using the notion of feature is core to scaling
the development, for instance, when adopting a plat-
form. A feature represents end-to-end functionality of a
system [27]. Features are intuitive entities that can be un-
derstood by different roles, including marketing experts,
project leads, and customers. Features abstractly repre-
sent assets and are tracked, for instance, in a database or,
more formally, in a feature model. Many features also
serve as a configuration option (a.k.a., optional feature).
Feature Model. Keeping an overview understanding of
features, organizations should create a feature model—
an intuitive, tree-like representation of features and
their constraints [99,58,6,141]. The typical graphical
notation is shown in Fig. 1, representing a small excerpt
of the Linux kernel’s variability model. For brevity, we
refer to related work [33,32,29] for an introduction into
feature models and this particular example.
SPLE Process. For an organization to effectively engi-
neer a platform, textbook SPLE methods [12,150,57]
introduce two main processes: domain engineering,
which aims at engineering the platform, and applica-
tion engineering, which aims at deriving individual
variants from the platform. Each process comprises typ-
ical software-engineering tasks, such as requirements
engineering, design, implementation and quality assur-
ance, with domain engineering also containing scoping
(determining and prioritizing platform features).
Product-Line Quality Assurance. Enhancing the qual-
ity assurance, organizations can adopt analyses of prod-
uct lines [186,23,138], which differ conceptually from

single-system analyses. The latter, especially dynamic
analyses such as testing, can only be used for indi-
vidual variants. While analyses such as optimization
for individual variants can be beneficial, single-system
analyses are usually insufficient when a product-line
platform has been adopted and errors related to all pos-
sible variants should be found. For instance, unwanted
feature interactions can occur for certain variants based
on the combination of features in the variant. Applying
single-system analyses for finding such errors requires
configuration sampling [53,147].

3 Methodology

Our study aims to “collect and summarize evidence
from a large representative sample of the overall popula-
tion” [134] and can therefore be constructed as a survey.
We follow the well-known guidelines by Kitchenham
and Pfleeger [102] to structure this section, and we rely
on the simplified 7-step process of Linåker et al. [119].

3.1 Aims and Objectives

As laid out in Sec. 1, the motivation for our study was
to understand which variability management concepts
are adopted in substantial industrial cases, and the chal-
lenges that industrial practitioners perceive in their
daily work, determining the concepts that are still
needed. Coming from an academic perspective, we
also aimed to identify in how far the academic literature
on SPLE takes industrial circumstances into account
and to what extent the solutions offered by academia
correspond to the practical challenges. Our discussions
with practitioners, and our lightweight literature review,
supported our view that there is a disconnect between
SPLE practice and theory. We formulated three research
questions:

RQ1: What are drivers for variability in our cases?
RQ2: Which SPLE concepts are adopted in our cases?
RQ3: What concepts are missing for our cases and for

cases previously reported in the literature?

3.2 Planning, Scheduling, and Designing the Study

Based on the research questions, we planned a de-
scriptive study using qualitative data. The study was
planned to be conducted in several iterations where
data was collected repeatedly, then analyzed, and fi-
nally followed up. The data collection itself ran during
2018. In addition, we conducted a lightweight literature
review on industrial case studies and experience reports
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on adopting SPLE, to triangulate with the challenges
from our twelve cases.

Our personal network gave us access to compa-
nies that engineer variant-rich systems and intend to
invest into improving their engineering. We therefore
employed purposive sampling, in particular expert sam-
pling [70] in which we identified those experts that deal
with the problems we set out to investigate. We created a
list of potential candidates and narrowed it down by ex-
cluding those with insufficient resources to participate.
We also selected companies that would provide a spe-
cific viewpoint and tried to achieve heterogeneity both
in terms of company size, age, and size of the system,
and implementation technology. We also achieved a
good geographical distribution by including companies
from five different countries in the European Union.

The final list consisted of twelve companies, nine of
which create a variant-rich system and three of which
are tool vendors selling software-engineering tools that
want to integrate variability mechanisms into their ex-
isting tools. For assuring anonymity, we report the cases
we studied and only provide high-level information
about the different companies, and the meetings we
had with them.

3.3 Data Collection

The primary data collection method was a case descrip-
tion provided by the companies that describes the case
for product line engineering. It relied on a template
that included the product and market context, the tech-
nology context, a description of existing processes and
automation techniques, goals, and key performance
indicators, the variability management practices cur-
rently in use, and the principal assets, their reuse and
management. The template was piloted with one of the
organizations and subsequently refined. The organiza-
tions involved in this study iteratively improved the
case descriptions to homogenize them and to ensure
that relevant information was included.

Based on the description, we conducted a prelimi-
nary analysis to identify open questions. This resulted
in an interview guide for each of the cases that was
used in semi-structured interviews or in small focus groups.
While the interviews were conducted with experts from
individual companies, the focus groups included repre-
sentatives from several companies. We chose to use the
latter format when cases were similar to each other and
we needed to understand the differences and similari-
ties better, and when resources allowed such a meeting.
Each of these occasions included one or two researchers
and at least two industrial participants. In all cases,

the industrial participants were engineers working ac-
tively with software product lines. Each interview or
focus group lasted between 30 and 60 minutes and was
conducted by the researchers in person. Data was col-
lected in the form of extensive notes and shared among
all authors. The semi-structured format allowed us to
explore additional aspects that were not covered in
the original case descriptions. Specifically, we had the
following number of small focus-group meetings or in-
terviews: power electronics (3 meetings, 4 participants),
traffic control (1 meeting, 1 participant), chip model-
ing (2 meetings, 3 participants), modeling platform (2
meetings, 2 participants), railway (8 meetings, 3 par-
ticipants), aerospace (3 meetings, 4 participants), truck
manufacturing (2 meetings, 3 participants), web appli-
cation (1 meeting, 2 participants), automotive firmware
(2 meetings, 3 participants), requirements engineering
(1 meeting, 1 participant).

On two occasions, we held larger focus group meet-
ings with a majority of the involved researchers and
companies. This assured that we met representatives
of all companies at least once. We discussed adopted
concepts and needs, providing another opportunity to
explore differences and similarities.

We also conducted a lightweight literature study
where we collected and inspected meta-studies, sur-
veys, exploratory studies, industrial case studies, and
experience reports. Even though, we know from ex-
perience that the large majority of these publications
focus on praising the benefits of SPLE (e.g., cost sav-
ings and shorter time to markets) while not providing
sufficiently detailed data on the adopted concepts and
on challenges (i.e., remaining challenges for SPLE re-
search, as opposed to those that were solved in the
case study), we decided to systematically collect those
publications and triangulate our synthesized challenges
with those from these cases. To collect publications, we
used our own expertise as well as we consulted the
SPLE community’s “Hall of Fame,”1 a book with a col-
lection of successful SPLE cases [121], and the Software
Engineering Institute’s catalog of case studies [175].

3.4 Data Analysis

We analyzed the data in several iterations. The first
iteration based on the use case descriptions was mainly
targeted at identifying which aspects of the current
product line approach in the cases remained unclear—
to be able to follow-up with our industrial contacts. For
this purpose, we transformed each use case into a narra-
tive as presented in Sec. 6. This allowed us to structure

1 http://www.splc.net/fame.html

http://www.splc.net/fame.html
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the information and find aspects that needed clarifi-
cation. We then derived questions for semi-structured
interviews and small focus groups from this. The results
also guided the discussion in the larger focus groups.
We met regularly to discuss the open questions and to
gain an overall understanding of the issues.

We then merged information from the interviews
and the small and large focus groups in the common
narrative. In addition, we performed coding on the
available data. The codes focused on the current prac-
tices and the challenges stated by the companies. We
pre-defined codes based on variability management
concepts and known challenges from the literature, and
complemented these with emergent codes that were
based on the first analysis round and the information
from the interviews and focus groups. Once a stable set
of codes emerged, we conducted a coding workshop to
harmonize and refine the codes. Again, all information
available at this point was used to validate the codes, to
join codes with a high degree of similarity, and to refine
the codes, in particular with respect to their concrete
formulation. If questions arose during the data analysis
or the researchers disagreed on the data, we used per-
sonal contacts within the organizations to clarify issues
quickly before misunderstandings could arise or bias
could manifest.

Once the concepts were identified and the authors
agreed on the adopted concepts, we forwarded the in-
formation to our contacts for member checking. We also
asked clarifying questions about the overall study and
the long-term perspective of the cases.

For the literature review, we analyzed the collected
publications by reading through the paper, specifically
searching for challenges related to variability manage-
ment concepts that were not solved within the respective
case. We mapped those challenges to our challenges,
enriching the challenge descriptions. Of course, the va-
lidity of reporting challenges from other cases, most of
which are at least one or two decades old, is lower than
the challenges we extracted from our companies. Still,
they substantially enhance the relevance and richness
of our reported challenges.

4 Literature Review

In our lightweight literature review we identified the
following related meta-studies, surveys, case studies,
and experience reports.

4.1 Meta Studies

Marimuthu et al. [124] conduct a tertiary study of sys-
tematic studies on variability management. They pro-
vide detailed bibliometrics, but do not extract any chal-
lenges that might be reported in their identified studies.
Bastos et al. [18] investigate product-line adoption in
small and medium-scale companies via a multi-method
approach comprised of a mapping study, a case study,
and a survey among experts. The mainly elicit success
factors and practices, but no challenges. Chen et al. [47]
conduct a literature review on variability management
and, among other results, list the challenges evolu-
tion (“systematic approach to provide a comprehensive
support for variability evolution is not available”), scal-
ability of techniques, as well as testing and quality
assurance in general. In another study, Chen et al. [48]
study the state of evaluation of variability management
techniques, concluding the lack of proper evaluations
as a challenge that researchers should address. Finally,
Mohagheghi et al. [132] conduct a literature study on
the benefits of software reuse (not limited to reuse via
variability management), emphasizing that: “For in-
dustry, evaluating reuse of COTS or OSS components,
integrating reuse activities in software processes, better
data collection and evaluating return on investment are
major challenges.”

4.2 Exploratory Studies

Chen et al. [46] present an exploratory study relying on
focus-group research investigating the perceived chal-
lenges of variability management using eleven partici-
pants from organizations that do consulting or in-house
SPLE. With respect to variability modeling, the focus
group reports, among others, the following challenges:
visualization of features, evolution (maintenance) of
models (in particular dependency management), and
variability modeling being not very user-friendly. In
general, the study questions academic techniques. It
also points out challenges when migrating to an SPLE
(cf. Sec. 7.3), specifically that clone detection techniques
are not applicable to multiple systems. Furthermore,
while structural variability is well supported, behav-
ioral and timing aspects are not.

4.3 Surveys

A survey of variability modeling in industrial practice
by Berger et al. [30] lists specific challenges for variabil-
ity modeling, including visualization, model evolution,
and traceability. Thörn et al. [184] survey variability
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management in small and medium-scale companies in
Sweden; however, the reported challenges are rather
general and not specific to variability-management con-
cepts.

4.4 Experience Reports and Case Studies

Over the last decades, practitioners and researchers
have published a large number of case studies and
experience reports, the majority between the end of
the 1990s and the beginning of the 2000s. We now list
all cases we identified. When available, we provide all
references that describe the case in detail. However,
some cases were described in the respective source only,
not as part of a publication on its own.

All the cases in the book of van der Linden et al. [121]
describe successful adoptions of product lines, where
usually the typical concepts are adopted (platform,
feature modeling, automated product derivation, auto-
mated testing); for each, the obstacles and limitations
in SPLE are also described. We inspected all the cases:
AKVAsmart, Bosch [187,179,183], DNV Software, Mar-
ketMaker [192], Nokia Mobile Phones, Nokia Networks,
Philips Consumer Electronics Software for Televisions,
Philips Medical Systems, Siemens Medical Solutions,
and Telvent. Furthermore, the book also referenced the
following cases, each of which we inspected as well:
Salion [43,52], Testo [164], Axis and Ericsson [181], Axis
and Securitas [38,39], and RPG Games [195]

From the SPLE community’s “Hall of Fame”2 we
identified and inspected: Boeing [170], CelsiusTech Sys-
tems AB [17,42], Cummins [51], Ericsson Telecommuni-
cations Switches, Fiscan Security Inspection Systems [115],
Hewlett Packard’s printer firmwar Owen [188], Home-
Away [107], Lockheed Martin, LSI Logic [92], Lucent,
Siemens Healthcare [16], Toshiba [128], U.S. Army [114],
U.S. Naval Research Laboratory [17], General Motors [78],
and Danfoss [94,95,79]. The cases Salion, Bosch, Market-
Maker, Nokia, Philips (Medical Systems and Software
for Television Sets) were already contained in the book
of van der Linden et al. [121], explained above.

We inspected all cases of the Software Engineer-
ing Institute’s catalog of case studies [175]: US Army’s
Common Avionics Architecture System (CAAS) [49],
CCT (Control Channel Toolkit) [50], Naval Underwa-
ter Warfare Center [54,55,56], Argon [35], ABB [83,157,
150,180], Deutsche Bank [75], Dialect Solutions [178], E-
COM [116], Ericsson [133,10], Enea [10], Eurocopter [63,
91], Hitachi [182], LG [150], Lufthansa [45], MSI [169],
NASA [81], NASA JPL [82], Nortel [62], ORisk Consult-
ing [152], Overwatch Textron Systems [93], Ricoh [104],

2 http://www.splc.net/fame.html

Rockwell Collins [73], Rolls-Royce [86], TomTom [174],
and Wikon [146]. The cases CelsiusTech, Salion [52],
Axis [40], Boeing, Cummins, Danfoss, and DNV Soft-
ware were already contained in one of the other sources
above.

Finally, we also included some cases that we know
from our experience are neither contained in the book
of van der Linden et al., the SPLE community’s “Hall of
Fame” nor the Software Engineering Institute’s catalog.
These were: six German SMEs (including MarketMaker
from above) [98], a telecommunication system known
as Terrestrial Trunked Radio (TETRA) [149], Volvo Cars
and Scania [67,85], Audi [87], and Daimler [66,19].

4.5 Summary

While we will report the identified challenges from
the literature together with our challenges in Sec. 7, we
learned that the majority of publications does not report
challenges that pertain specifically to variability man-
agement or that have not been resolved in the course of
the respective case. Most case studies report practices or
lessons learned that contributed to the success, but not
challenges. Especially, all are about successful adoption,
and primarily report about the perceived benefits (some
also quantified) that SPLE brought. Negative experi-
ences, shortcomings of tooling, or actual challenges for
the SPLE community are largely missing. For most of the
case studies and experience reports, we conjecture that
these are biased, since the case study authors primarily
want to show success stories instead of problems and
failed attempts. As such, most of these publications pri-
marily report on the benefits achieved as well as success
factors experienced as relevant for SPLE. When report-
ing about the specific product line, the predominant
focus is on the product-line architecture, followed by
organizational and process aspects. Interestingly, some
publications even have “challenges” in the title, but
those challenges are usually experiences and hindrances
that the organization faced before adopting SPLE or
that occurred during the case and that were addressed.

Furthermore, it is apparent that some challenges
mentioned in previous case studies have been ad-
dressed nowadays. For instance, for Bosch [187,179]
and MarketMaker [192], the publications emphasize the
lack of proper, industry-strength SPLE tooling (includ-
ing feature modeling) as the main challenge, which
is addressed with commercial and open-source tools
nowadays. Also, Chen et al. [46] report that variability
modeling is not very user-friendly, which can be seen
as a solved challenge with the commercial and open-
source feature-modeling tooling that exists nowadays.

http://www.splc.net/fame.html
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Finally, we also observed that the extent and level
of details in which challenges relevant for SPLE re-
searchers are reported is not sufficient. Some provide
information about adopted concepts, for instance, as
Linden et al. [121] point out for their collection of cases:
“Most architectures are based on a platform, supporting
the requirements of present and future products. Often
there are several similar products that are combined in
the product line to improve the benefit of reuse. The de-
velopment of a common, variable platform is often con-
sidered as the basis for introducing the product line in
the organisation. Plug-in mechanisms and the definition
of the right interfaces seem to be crucial.” The majority
of publications does not provide a finer level of details.

5 Variability Drivers and Variable Artifacts in our
Cases

We begin the report on our results by discussing the
factors driving the variability in our cases in Sec. 5.1.
These variability drivers affect various types of artifacts,
which we discuss in Sec. 5.2. This data has been derived
from the data we collected in the case descriptions,
interviews, and focus groups.

5.1 Primary Variability Drivers

For our cases, a number of different variability drivers
was reported, as shown in Table 1. The most prominent
drivers are markets and hardware. Being able to place
products on different markets with different regulations
and to ensure that the products are able to adopt to new
market needs is crucial. Hardware is a relevant driver,
since many of our cases concern systems, and the soft-
ware needs to be able to work with a variety of different
target hardware. In many cases, it is the customer who
can select certain hardware, and the software needs to
be able to run on the hardware configuration chosen by
the customer. This is one form of end-user customization,
another important variability driver.

In times of Industry 4.0 and IoT the customers demand
connected and smart drives. So, the variability of features
within future drive generations will be quite high.

power electronics (use case)

An increase in variability through a number of forces
was also reported. One case of firmware for power
electronics, for instance, sees an increased need for vari-
ability driven by the more wide-spread use of different
types of multi-core processors in their products (hard-
ware) and increased industrial digitalization (markets,
operating environments). The importance of the market

and its growth as the prime driver of variability is
also mentioned for the automotive firmware and traffic
control cases. The latter also emphasizes that innova-
tion is an important driver for variability: the company
needs to be able to deliver innovative solutions while
at the same time be able to maintain the existing prod-
ucts in the portfolio. For our modeling platform case,
the organization explained that the product needs to
compete with software-as-a-service (SaaS) offers, where
customization is seen as an advantage. Furthermore, IoT
is a new, core driver of variability, as prominently men-
tioned for the cases power electronics—more precisely,
Industrial IoT—and chip modeling.

Another interesting driver is simulation. In our aero-
space case, a simulator resembles the real aircraft, but
has more variability through the use of models at differ-
ent levels of fidelity. For instance, verifying a specific
sub-system might require a detailed high-fidelity model,
while for real-time simulation, the model needs to be
replaced with a lower-fidelity model (which might use
interpolation) due to limits in computation capability.

5.2 Variable Artifact Types

Not surprisingly, the most frequently mentioned vari-
able artifact is source code as shown in Table 1. Many
companies use conditional compilation with prepro-
cessor directives to include variability information in
the source code. Custom descriptors are also relatively
common, e.g., as the foundation for code generation.
These are often expressed using domain-specific lan-
guages. We found little evidence for variability in tests,
and requirements. Only one company explicitly reports
to use components as variable assets, but we expect that
there are many companies that do this implicitly.

A use case that is a bit neglected in research is
variability in models used for code generation. Five of
our subjects write application logic in Simulink and
then generate code. Apparently, common variability-
management techniques on the code level are not appli-
cable; instead, variability modeling concepts, especially
variation-point support is needed in the models and
needs to be supported by the modeling tools.

6 Adoption of Variability Management Concepts in
our Cases

We now introduce our use and tool cases by describing
core characteristics and the adopted variability manage-
ment concepts. An overview can be found in Table 2,
which also shows the near-term adoption goals. The
particular challenges faced by the organizations will
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Table 1 Variability drivers and variable artifacts as reported by the different cases
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Variability Drivers

hardware � � � � � � � � �
usage scenarios � � �
markets � � � � � � � � �
simulation �1 �
end-user customization � � � � � �
operating systems and middleware � � �
operating environments � � � � �
evolving requirements � �2

design exploration �

Variable Artifact Types

source code � � � � � � � � �
build system �
custom descriptors �3 �4 �3 �7 � �8 �10 �11

system models � � � � � � �
interfaces � � �
tests � � � �
meta-data �5 �9

requirements � � � � �
components �6 � �
operating system and base libraries � �

1 the need for simulations substantially increases variant space, due to models representing environment or hardware at different
levels of fidelity 2 functional requirements such as processing power or connectivity and non-functional requirements such as
power consumption and safety as well as intellectual property (IP) cores 3 XML files as source for code generator
4 proprietary DSML instances 5 documentation, language files, resources 6 OSGi bundles 7 meta-models and UML profiles
8 software, hardware, and simulation models 9 documentation 10 design variants as proprietary DSML instances (graphs)
in XML files 11 proprietary DSML instances based on the IP-XACT standard (IEEE1685), with some in-house extensions for
modeling registers and memory

be presented thereafter, in Sec. 7. Each case description
follows a common format: context, variability drivers,
variability strategy, additional capabilities (e.g., trace-
ability or testing), and product derivation.

6.1 Power Electronics Use Case

This case concerns the production of, among others, mo-
tor controllers (drives) for electric motors. Around 300
million drives are in industrial use worldwide and used
in mining, ski lifts, big industry automation processes,
and turbines (e.g., solar and wind turbines). The devel-
opment is characterized as agile through clone & own.

The diversity in hardware and usage scenarios is
the primary driver of variability. In addition, country-
specific regulations contribute to the number of required
variants. The company expects a further increase in
variability through trends such as multi-core processing
and increased industrial digitalization, as well as adding
more software features to the drives.

So far [the variants] are managed in a clone & own manner,
but that will not be possible in the future [...] going to
multi-core, digitalization or adding more features [...].

power electronics (use case)

This use case primarily relies on clone & own. Yet,
configuration mechanisms in individual variants also exist.
The drive software is written in C/C++ and a substan-
tial part of the code is generated from XML files with
an in-house generator. The source code contains pre-
processor statements controlled by configuration options.
Automatic testing of individual variants is in place
through a continuous integration system using Jenkins
with automated, nightly tests. The connection between
customer adaptations and features is tracked in a database
to ensure long-term maintainability. Likewise, rationales
for variability decisions are recorded.

The specific variants are built through a Python-
based build system that allows component selection.
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Table 2 Adopted product-line engineering concepts and near-term adoption goals

use cases tool cases

po
w

er
el

ec
tr

on
ic

s

tr
uc

k
m

an
uf

ac
tu

ri
ng

ae
ro

sp
ac

e

au
to

m
ot

iv
e

fir
m

w
ar

e

ra
ilw

ay

w
eb

ap
pl

ic
at

io
n

m
od

el
in

g
pl

at
fo

rm

im
ag

in
g

te
ch

no
lo

gy

tr
affi

c
co

nt
ro

l

re
qu

ir
em

en
ts

en
gi

ne
er

in
g

ha
rd

w
ar

e
m

od
el

in
g

ch
ip

m
od

el
in

g

clone & own � �1 � � � � � �11 �11

clone management �1 � �
configuration

component/module selection � � � � � � � � � �
conf. options / calib. parameters15 � � � � � � � � � �
configurator tool � � � � � �

features2 � � � � � � �13 � � � � �
centralized variability representation14 � � � � � � � � � � � �
feature model

FODA-like model � � � � � � � � �
feature database � � �
informal, but structured feature model4 � � � � �
declared/managed feature constraints � �6 � � � � �6 � � � �

platform
integrated software platform � � � � � � � � � �10

product (variant) derivation � � � � � � � � � �
integrated with SPLE tool � � � � � � �

separated domain and application engineering � � � � � � �
variability-aware analyses

feature-model analyses � � � � � � � �
visualizations (e.g., feature hierarchy) � � � � � � � � �
change-impact analyses3 � �
consistency analyses � � � � � � � � �16

requirements completeness/correctness � �
safety analyses �
performance analyses � �
other quality attributes analyses � � �18

traceability
feature-to-code � � � � � � � � �
customer adaptations � � � � �
variability decisions/rationales � � � � � �

security
feature-level authorization � � �

� adopted concept rudimentarily adopted � adoption goal 1 on product-line level 2 or feature-like entities
3 on variant level 4 e.g., spreadsheet 6 declared over assets 10 a platform of models 11 tool vendor, applies to usage
of tool 13 Eclipse features; very high level 14 also unified to some extent 15 for in-component/in-module configuration
16 constraints checking 18 Systems-On-Chip specific quality attributes such as heat dissipation or power consumption

6.2 Truck Manufacturing Use Case

This case comprises the software development of a large
truck manufacturer. All of its products (80,000 trucks
per year) come from the same platform.

Almost every product shipped has a unique con-
figuration. The main differentiator of the brand on the
global market is full product customizability.

The truck manufacturing case relies on an integrated
platform to manage variability and employs separate
domain and application engineering. All configuration op-
tions are realised with configurable values (i.e., without
#ifdef or similar constructs). Features are maintained

in a feature database that contains traceability links to the
code. Assets (different levels of specifications and source
code) are stored in separate databases. Consistency is
checked when a system is made ready for release.

Even a simple fuel level indication system in a truck has
24,000 variants! This means that only a very small portion
of all possible variants can possibly be verified by testing.

truck manufacturing (use case)

On release, all relevant information about a sys-
tem, including trace links and variability information
(presence conditions) are released to the product data
management (PDM) system. When deriving a product
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from the PDM, a specialized configurator selects the rel-
evant components and derives source code parameters
to generate the source code variant that implements
the desired functionality using the possible values for
configuration parameters and the constraints as input.

6.3 Aerospace Use Case

This case is related to the development of an aircraft sim-
ulator for a full, configurable aircraft. Both the simulator
and the aircraft software can be seen as product lines.

Variability is driven by differences in equipment
and software between aircrafts. Assets are primarily
developed for the aircraft product line and then prop-
agated to the simulator product line via clone & own
of the entire product line. For the simulator, multiple
variants target different scenarios ranging from simple
computer-screen-based simulators to realistic simulator
with actual cockpit hardware. We focus on the simulator.

Before the migration [to a product-line approach] it was
estimated then by the product managers that we would
save 6.8 million euros in three or four years. We have
saved more than that.

aerospace (use case)

The simulator is an integrated platform with features
that can be mandatory, optional, or a special type of op-
tional features that need to be deletable without a trace
to protect customer interests. Each of the latter is com-
pletely modularized, meaning that the complete module
can be left out and that none of these features is cross-
cutting. Another type of feature, so called “role change
equipment,” are customer-configurable features that are
placeholders for future development. This means that
configurations can be partial and are selected with com-
ponent/module selection at checkout time. The organiza-
tion maintains an informal feature model as a spreadsheet
with a hierarchy, but no explicitly modeled dependen-
cies, as well as manifest files describing components. In
addition, calibration parameters refine components.

To derive a product, these parameters are set at build
time. Preprocessor directives are prohibited.

6.4 Automotive Firmware Use Case

This case concerns a complex product line for elec-
tronic control units (ECUs). Around 2,000 variants are
delivered per year; each deliverable is a distinct config-
uration. Each variant can comprise over 100 function
packages and up to 2,000 functional components; the
latter are updated regularly (every three months).

Variability arises from the need to customize ECUs to
different vehicle types and customers. An integrated plat-
form was defined to reduce time-to-market of variants
for customers. It is combined with a limited version of
clone & own, since developers can choose to create a new
branch for a new feature based on guidelines that take
longevity and complexity of the feature into account.
Packages are developed as part of the platform (domain
engineering), but variant- and customer-specific pack-
ages can exist (application engineering). The functional
components can be configured via static parameters,
which are feature-like entities used within variation points
relying on conditional compilation (e.g., with #ifdefs).

These parameters are arranged in a relatively flat
hierarchy stored in a distributed feature database and
allow feature-to-code traceability. Rationales are recorded
by tracing feature information to requirements. An in-
formal feature model maps the high-level features and the
static parameters. Constraints are defined over the static
parameters. Interestingly, these parameters represent
both variations and versions, since some of them map
to pre-processor macros, and the version-control system
directly supports checking out variants. As such, variability
and version management are to some extent unified
(like in variation control systems [122,176,24]).

We are [...] outstanding in managing product variants
[...] Of course there is further potential for improvement
and that is what we are seeking.

automotive firmware (use case)

Also, dynamic (calibration) parameters for late bind-
ing exist, some of which can be defined by the customers
after delivery. These parameters, including precondi-
tions, are stored in separate databases, upon which
experts configure customer adaptations using in-house
tools. Configurations are recorded in a special database.

Various analyses are run on the distributed feature
database, including internal feature consistency check-
ing. An SPLE tool is increasingly used to complement
the existing cross-database consistency analyzes with
rules and predicates. Single-system performance anal-
ysis is done for the products shipped to customers.

6.5 Railway Use Case

This case concerns the development of signalling sys-
tems for urban transport networks for many cities in
the world. Each city has specific needs for the signalling
system, which is reflected in the variants.

The specific signalling system for each city is cre-
ated from a different city’s variant using clone & own
by creating branches in the software repository. The
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variants are composed by component selection, where
components represent modules for different sensors
and functionality. In addition, each variant also con-
tains a set of internal configuration options based on C
preprocessor directives.

Developers tend to be specialized in one variant [...], as
the architecture is different [...]. They have difficulties to
switch from one variant to another. Due to these difficulties,
merges are done by the most experienced developers, who
we would want to use on more useful tasks.

railway (use case)

The software was refactored and broadly re-archi-
tected at least in one branch. Due to development con-
straints (e.g., time, budget, separate responsibilities),
the company never had time to integrate these branches.

Customer adaptations are tracked, since each client is
represented by a specific branch.

6.6 Web Application Use Case

This case focuses on the creation of web applications
that, among others, allow companies to manage media
campaigns. Each client receives a customized variant.

Different variants are created with clone & own. Each
application consists of frontend and backend code and
most variability is in the user-facing frontend part of
the system, realized using JavaScript and AngularJS.
Features are recorded in a highly informal feature model.
Otherwise, the company relies on the knowledge of an
expert engineer who knows the distribution of features
across branches. The system is implemented using dif-
ferent services where a final product is a composition of
different services from a core library, product-specific
code, and third-party services. The core services can be
adapted with calibration parameters in configuration files
to achieve specific behavior for each product. Component
selection is performed on the service level.

This architecture allows customer adaptations through
the services and provides limited traceability between
features and code, since features are mapped to services.

The most common adaptation in variants are UI customiza-
tions. Since the web UI is not standard, users usually
want a special interface.

web application (use case)

6.7 Modeling Platform Use Case

This case concerns a commercial model-driven engineer-
ing tool for business architects, system architects, and de-
velopers. The tool is component-based and either comes

pre-packaged for one of these target audiences or can be
assembled based on customer wishes. It is also possible
that specific features are developed for a certain cus-
tomer. Additionally, different license schemes can be em-
ployed (e.g., commercial and open source versions), and
six different operating systems versions are supported,
further driving variability. There are twelve solutions,
with two major releases per year, that include more than
50 modules and three meta-models. More than 30 mod-
ules with variations can be obtained from a store to fit
specific needs. The store also contains scripts and model
components for different versions of the platform.

To this end, an integrated software platform based on
Eclipse plug-ins is used. All provided solutions share a
common set of modules. Because features are localized
in specific plug-ins, feature-to-code traceability is avail-
able. Currently, the variability in terms of packaging is
not managed in a tool-supported way.

Variants are composed by component selection, rely-
ing on the Eclipse P2 packaging system, which considers
constraints between features and plugins, and uses a
limited feature model. The configurator defines which mod-
ules are part of a package and has limited support to
set configuration options for the individual plug-ins.

No particular tool is used to manage the variability in
terms of packaging. Technically the variability is ensured
by the modular design.

modeling platform (use case)

6.8 Imaging Technology Use Case

This case comprises camera software that is packaged
for individual customers based on customer require-
ments. This packaging includes configuring sensor pa-
rameters, prototyping and testing different sensor con-
figurations, integrating onto the hardware for sensor
validation and exporting sensor configuration param-
eters for use in a production software system.

An integrated platform along with a home-grown
configurator tool is used to create these packages. Assets
are currently managed via repositories (e.g., Git) and
file-based storage. To create a product, module selection
is used to package the correct firmware and driver
software. In addition, calibration parameters are used to
define the correct sensor and software configuration.

The key trend [we want] to follow [...] is mainly applying
“continuous integration” to software infrastructure that
supports the development and validation of hardware.

imaging technology (use case)
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6.9 Traffic Control Use Case

This case concerns the development of several genera-
tions of integrated road traffic control and surveillance
solutions, including custom sensors along with embed-
ded software. Backend software is produced to process
the data sent by these sensors. Different variants of
the product are created for different customers and
different regional markets, in particular if certification
is necessary.

The challenges of the market are mostly technological.
A relatively small group of players constantly improves
the performance and versatility of the product. Regional
presence is important in the market.

traffic control (use case)

Ad hoc reuse via clone & own is present, relying on
branching in the version-control system, which the com-
pany considers bad practice and strives for an integrated
platform. If a software needs certification it can become
a permanent branch in the software repository. Calibra-
tion parameters are used to configure the software for
specific sensors. Some of these are considered features
exposed and sold to customers. Component selection hap-
pens at compile time where source code modules are
statically linked or at runtime via dynamic linking.

6.10 Requirements Engineering Tool Case

This case is our first tool case, concerning a tool for im-
proving the quality of requirements. It allows defining
an ontology of the application domain. Based on the on-
tology, clients can write semi-natural language require-
ments. The company also develops pattern-based extrac-
tors to populate the ontology from semi-structured doc-
uments (conceptually similar to techniques that offer lan-
guages for defining patterns that can be used to extract
requirements from semi-structured documents [154]).
The clients of requirements engineering produce safety-
critical software-intensive systems mostly in the trans-
portation and defense industries.

One challenge faced by [our tool customers] is to take
advantage of all the knowledge developed among different
projects, produced in many times with no management in
a disorganized way, and to reuse the existing requirements
in new variations of the same systems.

requirements engineering (tool case)

Currently, the tool customers apply clone & own of
the requirements specification. The tool does not offer
variability features out-of-the-box. However, one stated
use-case is the extraction of variability information —
including a vocabulary and ontology of variability and

assets — from requirements about an existing product-
line platform. In other words, the requirements describe
variation points and variants using dedicated terminol-
ogy to be extracted by pattern-based extractors.

6.11 Hardware Modeling Tool Case

This case concerns the development of a tool that al-
lows to assemble system models (e.g., about automotive
suspensions) from pre-defined building blocks and sim-
ulate them. The tool interfaces with other tools such as
the company’s own product-lifecycle management tool.
The variability in the considered models concerns the
blocks that vary, e.g., among automotive suspensions.

The current tool uses an ad hoc representation of
variability only visible in terms of component selection
inside the architecture models. The modeling language
allows realizing variability encoding [155], that is, using
built-in conditionals relying on configuration options,
which enables this component selection. The tool is
already able to explore the design space by creating
all possible architecture models that are supported by
the selected components. Nevertheless, the current tool
chain does not support product line concepts explicitly.
In particular, the concept of feature is not supported
and variability is only managed within the design space
without any knowledge about the problem space.

One challenge faced by [our tool customers] is to design
and compare a significant number of product [...] design
variants.

hardware modeling (tool case)

6.12 Chip Modeling Tool Case

This case concerns a tool for designing Systems-on-
Chips (SoC) and the reusable hardware component
designs from which these SoCs are assembled. These
designs are passed to machines that produce the cor-
responding integrated circuits. The company believes
that emerging applications with huge growth poten-
tial, such as SoC for IoT will lead to a combinatorial
explosion of variants, with features being related via
complex trade-off constraints.

The variants differ by: their provided functions, ex-
ecution performance of functions, packaging of SoC in-
side a circuit, power consumption, safety level (typically
determined by standards), and life-cycle durations.

The modeling tool is based on the IP-XACT stan-
dard (IEEE 1685) and extensions for modeling registers
and memory. The integrated software platform currently
does not support any specific variability management
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facilities, nor is it seamlessly integrated with an SPLE tool.
Consequently, the tool users are currently restricted to
clone & own, specifically, using branching and merging
facilities of the tool’s built-in version-control facilities.
Also, there is no centralized variability representation.

[There are] more and more applications with specifics—
for example, the emerging IoT applications that require
smaller platforms, with low or medium processing, and
very hard constraints on reliability and power consump-
tion.

chip modeling (tool case)

7 Variability Management Challenges

We now synthesize and discuss the challenges faced
among our cases. We observed that our cases cover a
wide range of maturity levels with respect to the adop-
tion of variability management concepts. Consequently,
we structure the challenges according to these maturity
levels, providing the context in which the challenge oc-
curs and in which it should be addressed by researchers
or tool builders.

We first present two general challenges that affect
any maturity level. We then discuss those related to
support for clone management, which are encountered
in organizations that use clone & own as their main
technique to derive new products. We then identify
challenges that occur when migrating to an integrated
platform, that is, when clone & own starts to be comple-
mented by feature and asset management. Next, we
discuss challenges that exist once migration is more or
less complete and working with an integrated platform
becomes the focus of work, followed by challenges that
appear when the product line is modernized and evolved.

7.1 General Challenges

Challenge 1, Model-Driven Engineering. A common
challenge we observed for any maturity level is model-
driven engineering (MDE) and code generation. While
source code is still the most frequently mentioned vari-
able artifact (cf. Sec. 5.2), we observed that often code
is generated from domain-specific languages (DSLs).
While the relation between DSLs and SPLE has been
studied [193], the DSLs used in our cases do not support
SPLE concepts. As seen in our power electronics, aero-
space, and truck manufacturing cases, embedded sys-
tems organizations often rely on MDE using Simulink
with code generation. Such a setup challenges not only

handling cloned variants (e.g., when trying to trace fea-
tures), but also adopting, working with, and evolving
an integrated platform [103]. This observation is sub-
stantiated by our three tool cases striving to integrate
variability mechanisms into the modeling tools.

Furthermore, the experience reports on Danfoss [79],
General Motors [78], and CCT [50] also mention this
challenge. They request a better integration of SPLE con-
cepts, specifically variability mechanisms, with model-
ing tools. Notably, the experience report on Daimler [66]
focuses on handling variability in Simulink models,
specifically, describes how to represent variation points
in models. Nokia Networks [121] laments missing sup-
port for reusing systems engineering assets, in line with
the experienced needs of customers of our our two tool
cases chip modeling (Sec. 6.12) and hardware modeling
(Sec. 6.11).

Challenge 2, Tool Integration. These elaborations from
our cases and the literature illustrate a more general
problem: tool integration. Since variability is a cross-
cutting concern, variability-related tooling usually needs
to be integrated with other engineering tools as named,
e.g., by our automotive firmware and aerospace cases
that exhibit overall high maturity. This tool integration
challenge was also expressed in the literature for Dan-
foss [79], General Motors [78], Siemens Medical Solu-
tions [121], Fiscan [115], Argon [35], and CCT [50], who
not only request integrated tool chains, but more ma-
ture variability-related tooling in general. General Mo-
tors [78] suggests to integrate SPLE concepts with prod-
uct lifecycle management (PLM) concepts. Argon [35]
requests the integration of variability in version-control
systems. In summary, this challenge is further sup-
ported by a recent study on product-line analyzes [138],
which found that adopting such is, among others, a
tool-integration problem.

7.2 Clone Management

As seen in Table 2, seven of our use cases exercise
clone & own for managing variants—while for two of
our tool cases, the customers’ variant management also
relies on clone & own. The other tool vendor’s modeling
tool (cf. Sec. 6.11) offers variability encoding [155] using
built-in conditionals relying on configuration options.
While clone & own is the most common strategy for en-
gineering variants, we observed substantial awareness
among our subjects of the problems connected to it.

Challenge 3, Visualize and Track Variability. A need ex-
pressed by all cases is keeping an overview understand-
ing of cloned variants, since understanding the content
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and purpose of individual variants is challenging with-
out more abstract representations of the codebases.

Feature-Orientation. Adding the notion of features
and feature locations to clone & own would enhance
the practice. When features are present, then stakehold-
ers can know what is in the branches, as opposed to
trying to understand the difference between variants
through assets differences, which is challenging. In addi-
tion to recording features, recording their location (e.g.,
through lightweight code annotations [96,9,1,69,108])
also helps with maintenance. As such, this challenge
is about keeping clone & own, but giving developers
more control and overview understanding, which will
help with maintenance (e.g., developers know the, po-
tentially scattered [144,145], locations of a feature when
cloning it to another variant).

In addition, better visualization and support for code
propagation, ideally based on features, is needed. Espe-
cially for the power electronics case, better support for
localization and propagation of features across cloned
variants is requested. In summary, introducing some
notion of feature-orientation to facilitate a more abstract
understanding (abstracting over code-level structures)
of variants, is an expressed need for our cases. The
existing case studies on Axis and Securitas [38,39] em-
phasize the lack of architectural abstractions (features)
in programming languages, as well as the exploratory
study of Chen et al. [46] confirming this challenge.

Record and Analyze Variability Decisions. Several
of our cases stated that they need a way to record and
later analyze variability decisions (railway, imaging
technology, and traffic control case), such as rationales
for introducing variability. It was also stated that record-
ing information about refactorings would be helpful
(preferably using embedded annotations [96,9,1,168,
109,110]). The recording should explicitly relate refac-
torings to either the introduction of new functionality
(features) or to maintenance. This information other-
wise needs to be recovered when later propagating code
across variants or migrating towards a platform (e.g.,
when assessing architectural mismatches). Specifically,
for the railway and traffic control case, there is a need
to reconstruct the architectural and functional evolu-
tion of the product line. While architectural evolution
is mainly represented by typical refactorings (for the
railway case, eight typical refactorings from Fowler [80]
are mentioned), functional evolution (i.e., the imple-
mentation of new functionality, bug fixes, and so on),
needs to be distinguished.

Challenge 4, Cloning in Combination with Variability.
An interesting observation is that none of our subjects
exercises pure clone & own, but that variants already

use variation points. This challenge is also mentioned
in existing experience reports about Danfoss [79], AK-
VAsmart [121], Philips Consumer Electronics Software
for Televisions [121], Philips Medical Systems [121], and
Dialect Solutions [178], as well as the case studies on
Axis and Ericsson [181]. Interestingly, Staples et al. [178]
point out for Dialect Solutions, and Fogdal et al. [79] for
Danfoss, that using variability mechanisms also avoids
merge conflicts during clone & own and allows more
isolated feature development.

Limitations of Clone-Management Techniques. This
challenge complicates using clone-management frame-
works proposed in the literature [148,161,159,160,11]
and techniques for integrating variants [77,126], since
existing variability needs to be taken into account. In
fact, as explained for the railway case (cf. Sec. 6.5), the
integration is done by experts who should rather realize
new functionality instead of recovering information
about variability in cloned variants and re-engineering
code. Furthermore, most of our use cases applying
clone & own also have an integrated platform, that is, a
project with common assets. We are only aware of one
work in this direction [118], which should further be
complemented with methodologies and tools.

Clone Management of Whole Product Lines. Ap-
proaches to enable product lines of product lines have
been investigated in the literature [100,158,105]. How-
ever, what our cases require is clone management at
the product-line level. A previous experience report on
Philips Medical Systems [121] also emphasizes the reuse
of components across product lines. Our aerospace case
exercises clone & own for two highly complex prod-
uct lines. The primary product line controls a real air-
craft, and the cloned product line the simulator. The
case strives to improve the—currently manual and
laborious—synchronization between aircraft and the
simulator product line. Specifically, it requests guid-
ance for creating variability models (e.g., whether one
or separate, but largely redundant models should be
created; how they should be decomposed to reflect
the architecture) and modeling constraints. This should
help defining an aircraft or a simulator configuration, in-
cluding matching an aircraft configuration to a suitable
simulator configuration for a particular test activity.

7.3 Migration to an Integrated Platform

Our three use cases that want to establish an integrated
platform, as well as the customers of our two tool cases
that aim to establish a platform, practice clone & own.
Recall the core motivation for our railway case to free
experienced developers from performing migrations (cf.
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Sec. 6.5). As such, migrations should be semi-automated,
supporting less experienced developers or enabling do-
main experts performing it. We observed the following
challenges.

Challenge 5, Platform Migration Process and Tools. For
two of our use cases (power electronics, railway), the
need for a dedicated migration process was expressed.
Such a process should be lightweight and should guide
engineers through the whole migration. Almost all
of our use cases expressed the need for commonality
and variability analysis. Furthermore, such a process
should guide through the identification and location
of features (potentially integrated with manual feature-
location techniques [111]) or through creating the target
architecture (potentially supported by feature-model
composition techniques [4]). According to our railway
and aerospace cases, such a process should also sup-
port engineers in creating variation points with an
appropriate variability mechanism (cf. Sec. 2), in other
words, prescribing the introduction of variation points.
This challenge is also mentioned by previous experi-
ence reports on Bosch [187], MSI [169], and Siemens
Healthcare [16], both requesting a process for incremen-
tal migration, the latter even during running projects,
without disrupting the development.

Diffing of Cloned Variants. We observed the need for
higher-level diffing support for cloned variants. Specif-
ically, as pointed out for our railway case, there should
be means to express historical additions, suppressions,
and modifications at the highest level of abstraction,
specifically distinguishing architectural and functional
evolutions. As such, practically usable, dedicated diff-
ing techniques, which support existing variation points
(e.g., #ifdef), are needed, potentially building upon
recent techniques such as intention-based clone integra-
tion [118]. Enhanced visualization capabilities should
also support highly scattered features [145,144], as ex-
plained for the web application and power electronics
case. Furthermore, the visualization should be guided
by extracting the structure of the underlying config-
uration management base (including branching and
revision structures), as pointed out for our railway case.

Notably, this challenge is also expressed for Ri-
coh [104], and the exploratory study of Chen et al. [46]
reports that clone detection techniques are not applica-
ble to software variants.

From a tool-vendor perspective, expressed for the
chip modeling case, the organization strives to provide
automated commonality and variability analyses to
customers of the tool, so that existing cloned models
can be migrated. As such, the challenge is to adopt
automated analyses conceived by researchers, ideally

adhering to standards, which are almost non-existent
for variability management.

Asset Integration at Code and Model Level. Inte-
grating assets into a platform is challenging. Such
an integration differs from integrating assets during
clone & own in the sense that platform integration needs
to consider many more variants—those derived from
the platform—which might make it more challenging.
Understanding and characterizing both kinds of integra-
tion is subject to future work. For our cases, better merge-
refactoring techniques taking existing variability (e.g.,
#ifdef in the cloned variants) into account are necessary.
For instance, our railway case needs such techniques
for automatically proposing integration strategies for
features from variants, that is, focusing on identifying
functional (feature-based) evolution from the branching
history, ignoring refactorings and other non-functional
evolutions. Finally, asset integration is challenged (Chal-
lenge 1) when MDE techniques or code generation are
used (e.g., in the power electronics case). This requires
focusing on the migration (i.e., integration) of models,
while not ignoring customized code.

Training, Certification, and Budgeting. Other issues
to be addressed by a process are to: (i) establish a
common understanding among the stakeholders about
product-line engineering concepts (requirements engi-
neering case), calling for training support in a migra-
tion process, to (ii) establish certification support, as
requested by an experience report on Rolls-Royce [86],
and (iii) as expressed for our relatively small web ap-
plication case, there is no dedicated budget to develop
the platform, so assisting in budgeting is a challenge a
platform migration process should support.

Definition of a Target Architecture. A core issue
when adopting an integrated platform is architectural
degradation, and therefore architectural mismatches
among the cloned variants, which need to be resolved.
Architectures of the cloned variants need to be com-
pared and a target architecture [173,3] defined, which is
expressed as a core challenge (e.g., for our railway case).
Specifically, expressed for the imaging technology case,
the target architecture should be layered and modu-
larized, to be maintainable. The goal is to enable fully
automated variant derivation without programming
effort (i.e., developing adaptations). Another challenge
expressed is to create documentation (or generate such)
about the architecture itself (chip modeling case), and
about using such an architecture for variant derivation
in parallel.

In our literature survey we found that most of
the case studies focus on describing the architecture
of the resulting product line. For instance, for RPG
Games [195], the authors discuss the architecture devel-
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opment and necessary adaptations of cloned variants
(e.g., changes of variable types and refactorings) to
obtain a common product-line architecture. Recently,
Krüger et al. [60,7] provide datasets and experiences
migrating cloned Java and Android game variants to
such a common architecture.

Challenge 6, Migration Decision Support. A migration
process should also provide decision support about
the migration itself, based on the expected costs and
benefits [8,112]. Specifically, for our power electronics
case, the suggestion was made to enhance feature iden-
tification and location with indicators about the cost of
the extraction and re-engineering of relevant assets for
making them reusable or integrating into a platform.

Cost/Benefit Estimation. The need for effective cost/
benefit estimation is further supported by existing ex-
perience reports on Deutsche Bank [75], on Philips Med-
ical Systems [121], on Hitachi [182], on Ericsson [133,
10], on Axis and Ericsson [181], as well as on Axis
and Securitas [38,39]. Specifically, for Philips Medical
Systems [121], clone & own sometimes appeared to be
beneficial (close to the break-even point), which led to
tensions to develop outside the platform. Axis and Eric-
sson [181] also need cost estimation for decision making.
They explain it for the case that when a new product is
added, sometimes rewriting the components instead of
adapting them is easier, depending on the extent of the
changes. The challenge is also described in other case
studies on Axis and Securitas [38,39], among others,
demanding decision making support for: “Deciding
to include or exclude a product in the product-line
[...] Guidelines or methods for making more objective
decisions would be valuable to technical managers.”

Measurement. The pre-requisite for cost/benefit es-
timation are effective techniques to measure the costs
and benefits of reuse. Previous experience reports on
Bosch [183], Testo [164], Argon [35], Overwatch Tex-
tron Systems [93], Wikon [146], and CCT [50] emphasize
such a measurement technique as an important chal-
lenge. Generally, in a case study on Axis [38], the lack
of economic models is lamented.

Challenge 7, Continuous Integration. Six of our cases
(web application, traffic control, aerospace, automo-
tive firmware, railway) explicitly point out the need
for supporting continuous integration. Most of them
have sets of automated unit tests (grown incrementally,
typically with the discovery of bugs), UI tests, and
integration tests. We found typical tools used for con-
tinuous integration, such as Jenkins, Maven, BuildBot,
Git, and Jira. While some approaches to automate, e.g.,
interaction testing in continuous integration exists [97],

the larger challenge is to obtain a feature-oriented and
configurable architecture that supports continuous in-
tegration, ideally with the tools mentioned.

This challenge is implicitly expressed in the cases
for Philips Consumer Electronics Software for Televi-
sions [121], for Overwatch Textron Systems [93], and for
CelsiusTech [17,42], where balancing between domain
and application engineering is a core challenge, striving
to bringing both closer together. In addition, CCT [50]
demands a process for integration testing.

7.4 Working with an Integrated Platform

We observed the following challenges expressed for
our use cases and tool cases when dealing with an
integrated platform.

Challenge 8, Representation of Variability. A need ex-
pressed by all cases is a centralized (and ideally uni-
fied [24]) representation of variability. For instance, for
the aerospace and automotive firmware cases, an overall
view providing a unified description of the variability
was demanded, ideally in the form of a feature model de-
clared in an established SPLE tool. Specifically, in one of
these two cases, the variability information is scattered
across different representations, including a distributed
feature database and configuration files, preventing a
coherent view of all relevant product line information.
Also recall that many different types of artifacts (e.g.,
requirements, architecture, design models, source code)
are used in the cases (cf. Sec. 5.2), and that each artifact
type has its own technical representation of variation
points, which challenges obtaining a global view of vari-
ability. This challenge is closely related to Challenges
1 and 2, requiring variability support in modeling lan-
guages, tool integrations, and traceability support.

Missing Standards. Standardisation efforts in the
direction to provide unified representations for vari-
ability and variation points exist, such as CVL [88]
and VEL [165]. However, CVL was never adopted as a
standard and VEL is explicitly aimed at providing an
exchange language between tools rather than a fully
integrated variability representation to be edited di-
rectly. Recently, a new initiative3 was launched, aiming
again at establishing a common feature modeling lan-
guage, supporting common, community-agreed usage
scenarios for such a language [25].

Representation of Behavioral Variability. Further-
more, the cases from the literature CCT [50], ENEA [10],
and the study of Chen et al. [46] request the support
for quality properties when representing variability.

3 https://modevar.github.io

https://modevar.github.io
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Specifically, “structural variability is well supported,
behavioral and timing aspects are not” [46].

Representation of Topological Variability. We ob-
served the need for representing topological variability
in the five cases that use design models (hardware
modeling, modeling platform, chip modeling, aero-
space, and power electronics). These are often XML-
based domain-specific modeling languages (DSMLs)
using graphs as their underlying structure. As op-
posed to feature-oriented (switch on/off features) vari-
ability, topological variability requires dedicated mod-
eling languages. Typically, organizations create their
own domain-specific languages (DSLs) for this reason,
given limitations of established variability modeling
languages [34,72,21]. A challenge is that topological
variability can hardly be expressed using variability
annotations and preprocessors, but typically requires
more flexible code generators.

Representation of User-Interface Variability. An in-
teresting need was explained for the web application
case, where the prime driver of variability is the cus-
tomization of user interfaces. The current web frame-
works do not offer any facilities for customization, so
the company needs to rely on clone & own. UI vari-
ability has several peculiarities compared to traditional
source code, as UIs encapsulate human computer inter-
action (HCI) assets (e.g., dialog models, context models,
and aesthetic concerns). This challenge is related to
Challenge 1 (MDE and code generation), given that
abstract HCI models are sometimes used before the
generation of concrete HCI implementations in target
languages [125]. Also note that web applications as cases
are rather rare among the existing literature. Exceptions
are HomeAway [107] and MarketMaker [192]; however,
none of the publications describes the realization of
variability in the web-based user interfaces of these web
applications.

Challenge 9, Feature Modeling. In the light of obtaining
a unified representation of variability, almost all of our
subjects (9 of 12) strive to adopt feature modeling. For
the power electronics case, a feature model would aim
at visualizing the variant space and keeping the variants
manageable. For the automotive firmware case, a feature
model would be the basis for a configurator with in-
telligent configuration facilities, which should support
product derivation using defaults, choice propagation,
and conflict resolution—easing the configuration (and
avoiding having to decide all features) Likewise, for the
modeling platform case, an improved product deriva-
tion through an intelligent configurator tool is needed.
In the imaging technology case, a more intuitive repre-
sentation of configuration knowledge is needed, where

even configuration profiles (partial configurations) or
a feature hierarchy is seen as beneficial. In fact, as ex-
plained for the automotive firmware case, the feature
hierarchy is considered the most valuable information.
Furthermore, the experience report by Audi [87] also re-
quests modeling guidelines. A first step in this direction
are probably the feature modeling principles of Nesic
et al. [141].

Feature-Modeling Process. As such, a feature mod-
eling process is needed, that supports obtaining a fea-
ture model from a diverse set of variability information
sources [20,59,110], integrated with feature-model man-
agement, merging, and synthesis techniques [4,6,2,171,
172]. Our cases express that functional evolution is well
reflected in commit messages (e.g., bug fix information,
new feature implementations, new branches), which
confirms some insights that commit messages are a
good source for feature identification [110,109,196].

Variation-Point Methodology. Another issue per-
taining to such a process is a variation-point methodol-
ogy (expressed for the aerospace case). It should guide,
upon the decision to introduce a feature (originating
from some scoping process), the flow of variation points
into requirements, code, models, and other affected ar-
tifact types.

Feature-Oriented Authorization. For the chip mod-
eling, aerospace, and requirements engineering case,
the need for user access control and authorization mech-
anisms was explicitly mentioned. Users have different
access rights for different parts (features) of the product
line. Especially the aerospace case needs to control visi-
bility of variation points, where certain variation points
or variants even need to be completely invisible (i.e., no
trace should be visible that a variation point exists) for
unauthorized personnel. Unfortunately, beyond work
by Fægri et al. [71], this challenge has not yet been recog-
nized or received attention in the research community.

Feature-Oriented Views and Synchronization. For
nine of our twelve cases, the need for better visualiza-
tions, especially establishing feature-oriented views [5,
9,135,136,143,127], was expressed. In one of our cases
it is planned to reverse-engineer feature constraints
from the codebase and distributed feature databases, in-
cluding identifying the model hierarchy [139,140], and
to synthesize a feature model. This challenge is also
reported by the exploratory study of Chen et al. [46],
and by the survey of Berger et al. [30].

An additional issue arising (related to Challenge 11
below) is that materialized views need to be continu-
ously synchronized with the information sources, in-
cluding feature databases, which cannot be abandoned.
In other words, feature models as views degrade and
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need to be re-synthesized or synchronized continuously,
as expressed for the automotive firmware case.

Challenge 10, Quality Assurance. Our cases expressed
various challenges with respect to assuring the quality of
their variants or platforms. While most responses were
rather vague (e.g., the power electronics case: combine
testing and SPLE to reduce efforts), since the cases strive
to adopt more systematic variability management in
the first place, they expressed challenges with respect
to assuring the consistency of assets, more effective
validation techniques, and the verification of platforms
or many variants. Also note that dedicated studies on
product-line analyses in industrial practice exist [138].

Consistency Analyses. Recall that many cases strive
to adopt feature models or have at least an informal, but
structured feature model (cf. Table 2). When asked about
analyses, they also confirmed that they would like to
use feature-model analyses to assure their consistency,
especially in relation to the other assets (including code
and requirements with functional or quality proper-
ties), and under the continuous increase of concurrently
maintained variants.

A further requested consistency-related analysis is
dead-code analysis (automotive firmware case), and
our requirements engineering case suggests a metrics-
based approach [68,26] for completeness, correctness,
and consistency of requirements.

Validation and Verification. The following two cases
explicitly expressed the need for assuring properties for
all possible variants (a.k.a., variability-aware analysis
[130,117]).

The truck manufacturing case requests safety verifi-
cation for the widest possible number of variants with
a scalable compositional verification approach. Such a
compositional verification should verify each lowest-
level component individually, then reuse the results for
verifying component combinations, showing that func-
tional or quality properties are fulfilled for large sets of
configurations that cannot be tested exhaustively. To this
end, source code needs to be annotated with formal spec-
ifications, which in turn needs a clear picture of the prod-
uct lines, especially configuration constraints. In the
truck manufacturing case, this requires consolidating
information scattered across various databases before.

For our chip modeling case, a challenge is to ex-
tend the modeling tool with verification capabilities for
complex properties covering, for instance, market data
to physical constraints concerning heat dissipation or
power consumption. Then all variants should comply
with the quality attribute specified for the platform
(which is a model).

Given the static nature of variability-aware analyses,
we can see future research direction in effectively com-
bining validation and verification techniques, making
both variability-aware for product lines.

7.5 Product Line Evolution and Modernization

Once an integrated platform has been established and
a certain maturity has been achieved in working with
it, the focus shifts towards its modernization and evo-
lution. Our modeling platform case constantly aims at
a more systematic management of existing variability.
The automotive firmware case, on the other hand, seeks
to eliminate redundancy in an already very advanced
product line. In the automotive firmware, hardware
modeling, and modeling platform case, the developers
strive to constantly identify new and changed feature
constraints to enhance configuration processes and,
therefore, improve the platform’s maturity.

In general, better support for evolving software
product lines is already requested in the literature,
specifically in the studies of Chen et al. [47,48,46] (es-
pecially evolution of variability models, including de-
pendency management), the survey Berger et al. [30]
(model evolution), as well as for the cases Danfoss [79]
(evolution of architectures and interfaces, and evolving
towards a software ecosystem, explained shortly), Axis
and Securitas [38,39] (information distribution, asset
version management, asset dependency management,
and reuse of assets in different contexts), Nokia Net-
works [121] (backwards compatibility of assets, and
quick changes in technology that need to be incorpo-
rated into the product line), Nokia Mobile Phones [121]
(continuous architecture conformance checking), and
Volvo Cars and Scania [67,85]. The latter even explain:
“We have not found any literature describing how prod-
uct lines are maintained; most of those we found de-
scribed the transition to a software product line and
those challenges.” Valuable guidelines are provided
by Svahnberg et al. [181], but thorough support is still
needed. Our cases face the following challenges.

Challenge 11, Artifact Synchronization. The synchro-
nization of different platform artifacts, including code
and feature model, was emphasized for half of our
cases (railway, aerospace, modeling platform, web ap-
plication, automotive firmware, and chip modeling). A
question that arises is how to keep the feature model
in sync, for instance, whether incremental updates or
a frequent re-synthesis should be done. Co-evolution
scenarios in SPLE have been studied [90,166], but have
not yet been adopted in industry.



The State of Adoption and the Challenges of Systematic Variability Management in Industry 19

The synchronization challenge is, not surprisingly,
further complicated by Challenge 1 (MDE), when mod-
els constitute the primary variable artifacts. A specific
challenge expressed for the chip modeling and model-
ing platform case is co-evolution of the variability-aware
language of the model and the product line (i.e., the
feature model).

Finally, for our aerospace case, the organization
expressed the need for a better coordination among
teams developing new features on branches (i.e., project
management and integration management).

Challenge 12, End-User and After-Market Traceability.
A challenge explicitly mentioned for two of the cases
(aerospace, automotive firmware) is the need to trace
customer adaptations on the after-market, as well as the
general use of software assets. The experience reports
by Danfoss [79], Nokia Networks [121], Naval Under-
water Warfare Center [54,55,56], and PHILIPS Medical
Systems [121], as well as the survey of Berger et al. [30],
also mention this challenge. The former explains: “Fre-
quency converters can collect a lot of data. [...] This
information can be used for predictive maintenance
purposes, not only for the frequency converter but also
for the machine.” [79]

Our cases explain that it needs to be clear which
specific configurations the customers use in order to
offer dedicated support and keep the software up-to-
date. As such, organizations have a need to keep track
of product variations that have been delivered to cus-
tomers in their own portfolio. Of course, the question
arises how to efficiently store and efficiently keep such
customer configuration databases updated.

Addressing this challenge would require continuous
measurement, perhaps building upon monitoring sup-
port [153], which needs to be extended and integrated
with variability management concepts.

Challenge 13, Dynamic Product-Line Platform. An im-
provement goal expressed for our aerospace case is to
conceive its next-generation product-line architecture,
which specifically aims at adopting dynamic variability.
This challenge is also pointed out in existing experience
reports on Enea [10] and on Danfoss [79].

The challenge is to adopt more modern variabil-
ity mechanisms (supporting late dynamic binding) to
support reconfiguration in the aircraft simulator envi-
ronment. In fact, the organization expresses the need to
adopt an ecosystem platform and strategy (to include
contributions from suppliers as well as COTS compo-
nents) with respective variability mechanisms [29,167].
As such, the challenge is not only to migrate to an archi-
tecture supporting dynamic variability, but also foster

inter-organizational reuse by allowing to extend varia-
tion points dynamically with third-party contributions.

8 Threats to Validity

We now consider threats on the construct, internal, and
external validity of our multiple-case study, as well as
its reliability. We also discuss our mitigation strategies
using the categorization by Yin [194] as a guideline.
Construct Validity. The initial data used in this paper is
taken from semi-structured use case descriptions. Even
though, the companies involved in the study refined
these descriptions several times to harmonize them,
these descriptions still show diversity in terms of level
of detail and relevance. We addressed this threat by
following up with the companies in semi-structured
interviews and focus groups. This gives us high con-
fidence in the data we collected and used for analysis
and also helped us avoid any bias by triangulating
the different data sources. To further avoid bias, we
continuously discussed the material and ensured that
each piece of information was interpreted by at least
two of the authors. The additional member checking of
the analyzed results confirms the correctness.

Not all subjects that participated in this study were
familiar with the established terminology in the SPLE
literature. That meant that we needed to map the ter-
minology used in the use case description to the ter-
minology used in this paper. To avoid any bias in this
regard and limit the freedom of interpretation of the
researchers, critical concepts were member checked
before interacting with the companies.
Internal Validity. To ensure that we could establish
valid cause and effect relationships, we compared our
findings across our cases and synthesized our results
from the overall picture that emerged from a joint anal-
ysis, thus following the recommendations in [131]. The
individuals we interviewed were highly skilled engi-
neers that are currently working with variability and
have reflected on their work with variants. We also made
extensive use of cross-checking between the different
cases and different investigators to ensure that findings
are correct [194]. In addition, during the focus groups
and interviews with the case companies, we started the
data analysis by preliminary explanation-building [194]
together with the experts from the companies, a process
that was later completed by the researchers. The results
were then submitted to the case companies for member
checking and subsequent refinement.
External Validity. It is the nature of a study that includes
multiple cases that it offers better generalizability than
studies of a single case. We followed the process of ana-
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lytical generalization to abstract beyond the specificities
of the individual cases and identified underlying issues
that are generic enough to affect a large class of cases.
The fact that we found several instances for almost all
of the challenges we identified provides confidence that
our findings are applicable beyond the twelve cases
in this study. In addition, our triangulation with the
results of our lightweight literature review enhances the
validity of the challenges we identified and formulated.

We used a purposive sample of companies that have
expertise in software product lines when selecting our
cases. We argue that this is an advantage: the cases we
included understand the need to manage variability
and have encountered the challenges we report on first
hand. Thus, we gathered a more detailed and nuanced
picture than if we had included cases with less maturity.
Our sample supports the aims of the paper which is
to show the level of adoption and the challenges for
variability management in cases with a certain maturity.
Since we selected mature organizations, our cases are,
however, skewed towards rather large companies. Only
large organizations can maintain relatively large prod-
uct lines and achieve a high level of sophistication in
working with them. We would expect that smaller orga-
nizations with smaller product lines will not encounter
all challenges mentioned here with the same severity,
but that many of them will still encounter issues on a
smaller scale.

In addition, the sample contains companies from
five European countries. Geographic distribution is a
relevant factor since organizational culture is deter-
mined by the country the organization resides in [123]
and organizational culture in turn affects product line
adoption [37]. However, we cannot control for cultural
differences in other continents. In principle, companies
in South America, Asia, or elsewhere could behave
differently and thus exhibit different challenges. On the
other hand, our challenges are related to very technical
aspects, mainly architecture and process in the BAPO
framework [120,142], as opposed to business and or-
ganization, which indicates that similar engineering
companies face the same or very similar challenges.
Replicating our study to confirm or refute individual
challenges would be valuable future work.

We also aimed for diversity in terms of the domains
in which the organizations are active. By combining nine
cases that rely on variability to develop their products
and three tool providers, we also integrate two different
perspectives on product-line engineering. In addition,
we also combine six companies that create physical
systems that include hardware and software (e.g., aero-
space and power electronics) and six companies that
create only software (e.g., modeling platform and imag-

ing technology) of which three are tool providers. Sys-
tems engineering companies like the ones we surveyed
represent a large share of the value creation and the
R&D investment within the European Union [151]. As
such, we address a highly relevant market segment.
Reliability. The research methodology has been jointly
developed by the authors and refined over several itera-
tions, often using feedback from the study participants.
However, in order to use the resources made available
to us by the case companies to maximum effect, we often
used rather informal information channels with a fast re-
sponse rate for clarifications, e.g., phone calls that were
not recorded. That means that some of the findings are
based on notes by an individual researcher and not on
mechanical recordings. We have addressed this by trian-
gulation with more formal techniques and by member
checking. In addition, we have shared all collected infor-
mation between all involved researchers. We have also
recorded all steps we took in a case study protocol [194],
an abbreviated version of which is presented in Sec. 3.

9 Conclusion

We presented a multiple-case study on the adoption
and challenges of systematic variability management
in industrial practice, organized in a common frame-
work. Our twelve cases comprised nine use cases, where
SPLE concepts are adopted for developing an organi-
zation’s systems, and three tool cases, representing
modeling tools for software and hardware, where the
vendor sees a need for adopting SPLE concepts in the
tools—enhancing variant-engineering practices among
customers. Given that most experience reports [121] are
more than a decade old and very diverse in terms of de-
tails reported, we provided an up-to-date snapshot on as
many as twelve cases. With a specific focus on the adop-
tion of concepts organized in a common framework,
our work is also the first that systematically elicited
this state of adoption from a range of companies—a
surprisingly challenging task, given that we needed
many iterations to understand the development and
thereby also which concepts are used.

Variability Drivers. Not surprisingly, hardware is still
one of the most significant drivers, directly followed
by market pressure for customization. What appears to
gain increasing relevance are Industry 4.0 and digital-
ization, challenging variability management even more.

Adoption of SPLE Concepts. Not surprisingly, our sub-
jects from the automotive domain are most advanced
in terms of adopting SPLE concepts. This highlights the
importance of existing experience reports from this do-
main [78,187,85,87,66,183,19]. Yet, what this domain is
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still lacking is a well-unified management of variability,
given a diversity of different asset types we observed,
including features, configuration options, calibration
parameters, components, and coarse-grained packages.
All cases understand the benefit of features and strive
to adopt them. It is a bit surprising that the concept
of features is not well adopted. Perhaps, lifting pro-
grammers’ work practices from low-level components
to the domain-level is more challenging than expected.
In fact, developers are not used to working on different
abstraction levels [28]. Our automotive cases are a bit
closer to adopting features, given the complexity of
their variability. Yet, they do not use feature models or
common SPLE tooling.

We observed a preliminary adoption of off-the-shelf
SPLE tools in the domain, but since the adoption is
still limited, the needs and requirements in this domain
seem to not yet been fully understood and met.

While we omitted detailed information about the
case companies for anonymity reasons, we can see an in-
creased adoption of concepts in the large cases. Yet, our
study again shows the need for adoption also in smaller
companies, including those in the web application do-
main. Experience reports and surveys on adoption in
such smaller companies [192,184,185] and strategies
for incremental adoption of concepts [11] are certainly
relevant to consider in future research.

Challenges. We observe that the adoption of SPLE con-
cepts is still a tool-integration problem, given all the
different types of artifacts and existing tooling, which en-
gineers are familiar with and that is core to the develop-
ment. How this situation can be improved, and whether
there are research questions (as opposed to it being just
an engineering problem that tool integrators need to
solve), are interesting questions to be answered in the
future. Some steps in this direction were taken with
the publicly available Common Variability Language
proposal [89], the Variability Exchange Language [191],
the recent initiative for a common feature-modeling lan-
guage (cf. Challenge 8 in Sec. 7.4), or a recent Dagstuhl
seminar on unifying versioning and variability con-
cepts [24]. However, more agreement and adoption will
be needed to consider it. Among the most requested
needs by our practitioners are a better representation
and visualization of variability, process support for con-
ducting the migration, support for continuous integra-
tion, and traceability throughout the lifecycle including
the aftermarket. Surprisingly, product-line analysis for
validation or verification played a rather minor role
in the results of our literature review and among the
challenges faced by our cases, perhaps since more sys-
tematic variability management needs to be adopted in
the first place.

Future Work. Finally, beyond the scope of this study, it
would be valuable future work to identify and justify
research directions that are addressed in the research
community, but that are not worth investigating based
on empirical evidence. Such studies probably would
need to focus on particular sub-directions in product-
line research, and might be hotly contested among the
community, but would apparently be very useful to
scope future research to focus on relevant challenges.
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157. Rösel, A.: Experiences with the evolution of an application
family architecture. In: Proceedings of the Second Inter-
national ESPRIT ARES Workshop on Development and
Evolution of Software Architectures for Product Families
(1998)

158. Rosenmüller, M., Siegmund, N.: Automating the configu-
ration of multi software product lines. In: D. Benavides,
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