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Summary11

We derive a theoretical relationship between the cross correlation of ambient Rayleigh waves12

(seismic ambient noise) and the attenuation parameter α associated with Rayleigh-wave prop-13

agation. In particular, we derive a mathematical expression for the multiplicative factor14

relating normalized cross correlation to the Rayleigh-wave Green’s function. Based on this15

expression, we formulate an inverse problem to determine α from cross correlations of recorded16

ambient signal. We conduct a preliminary application of our algorithm to a relatively small17

instrument array, conveniently deployed on an island. In our setup, the mentioned multi-18

plicative factor has values of about 2.5 to 3, which, if neglected, could result in a significant19

underestimate of α. We find that our inferred values of α are reasonable, in comparison with20

independently obtained estimates found in the literature. Allowing α to vary with respect to21

frequency results in a reduction of misfit between observed and predicted cross correlations.22

1 Introduction23

A number of theoretical and experimental studies have proved that the cross correlation be-24

tween two recordings of a diffuse surface-wave field approximately coincides with the surface-25

wave Green’s function associated with the two points of observation. This is relevant to the26

field of seismology, since recorded seismic ambient signal has been found to mostly consist of27

seismic surface waves, and empirical Green’s functions are now routinely retrieved from the28

cross correlation of seismic ambient noise [e.g. Boschi and Weemstra, 2015, and references29

therein]. Most authors have been able to derive the medium’s velocity from the phase of30

the reconstructed Green’s functions; this resulted in successful applications of ambient-noise31

theory to imaging and monitoring [see the reviews by, e.g., Campillo and Roux , 2014; Boschi32
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and Weemstra, 2015]. The amplitude of the Green’s function in principle provides comple-33

mentary information on the medium’s anelastic properties; but it tends to be less accurately34

reconstructed by cross correlation.35

Initial attempts to constrain surface-wave attenuation from ambient noise [e.g. Prieto36

et al., 2009; Harmon et al., 2010; Lawrence and Prieto, 2011; Weemstra et al., 2013] were37

based on the assumption (questioned by Weaver [2011]) that the “lossy” Green’s func-38

tion be simply the product of the elastic Green’s function times an exponential damping39

term. Tsai [2011] validated mathematically this assumption, but both he and Harmon et al.40

[2010] emphasized the difficulty of constraining earth’s attenuation whenever the ambient41

field is not perfectly diffuse. The study of Weemstra et al. [2014] additionally showed that42

data-processing techniques typically used in ambient-noise literature, such as whitening or43

time-domain normalization [e.g. Bensen et al., 2007], could also affect attenuation estimates.44

Whitening and/or normalization, however, are necessary to avoid that localized events of45

relatively large amplitude, like earthquakes, obscure random noise and thus bias cross corre-46

lations.47

It is the purpose of this study to introduce a new normalization criterion, which is in prac-48

tice similar to whitening, but is derived directly from the reciprocity theorem as stated, e.g.,49

by Boschi and Weemstra [2015]; i.e., it does not follow from data-processing considerations,50

but from the physics of ambient-noise cross correlation. The relationship we obtain (eq. (30)51

in sec. 2.3.2), and on whose basis we formulate an inverse problem to determine attenuation,52

can be summarized simplistically by stating that cross correlations are normalized against the53

power spectral density of emitted noise. An approximate equation expressing source power54

spectral density in terms of recorded data is also found (eqs. (27) and (29), sec. 2.3.2). To55

achieve all this, we assume the same theoretical framework of, e.g., Boschi et al. [2018], de-56

scribing Love- and Rayleigh-wave as combinations of two-dimensional membrane waves and57

“radial eigenfunctions.” Our treatment (sec. 2) involves an independent derivation of the58

surface-wave Green’s function in a lossy medium (sec. 2.1 and app. B).59

Importantly, the fact that the medium is lossy requires that noise sources be uniformly60

distributed over the surface of the earth (and not just over all azimuths) for the Green’s61

function to be reconstructed by noise cross-correlation [Snieder , 2007; Tsai , 2011]. In addi-62

tion, our formulation is strictly valid only if the spectrum of signal emitted by ambient-noise63

sources is laterally homogeneous (sec. 2.3). Because seismic ambient noise is mostly origi-64

nated by coupling between the solid earth and the oceans, it is reasonable to expect that65

both requirements will be best approximated by deploying instruments on an island. We ac-66

cordingly test our algorithm on two years of continuous data recorded by an array of fourteen67

broadband stations in Sardinia. We explore two different parameterizations of attenuation in68

the area of interest, i.e. constant (sec. 3.2.1) vs. frequency-dependent (sec. 3.2.2) attenuation69

parameter. In both cases, we identify an attenuation model that minimizes data misfit. We70

discuss the resulting models in light of independent studies of Rayleigh-wave attenuation.71
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2 Theory72

2.1 Green’s problem for a lossy membrane73

Let us first summarize the treatment of surface-wave theory given by Boschi et al. [2018],74

based on earlier studies by Tanimoto [1990] and Tromp and Dahlen [1993]. We shall work75

in the frequency (ω) domain and employ the Fourier-transform convention of Boschi and76

Weemstra [2015]. It is convenient to first introduce the Rayleigh- (uR) and Love-wave (uL)77

displacement Ansätze78

uR(x1, x2, x3, ω) = U(x3, ω)x3φR(x1, x2, ω) + V (x3, ω)∇1φR(x1, x2, ω), (1)

79

uL(x1, x2, x3, ω) = W (x3, ω)(−x3 ×∇1)φL(x1, x2, ω), (2)

respectively, where x1, x2, x3 are Cartesian coordinates, with the x3-axis perpendicular to80

Earth’s surface (which we assume to be flat) and oriented downward; the unit-vectors x1, x2,81

x3 are parallel to the Cartesian axes; ∇1 denotes the surface gradient x1
∂
∂x1

+ x2
∂
∂x2

. The82

functions U(x3, ω), V (x3, ω) and W (x3, ω) control the dependence of surface-wave amplitude83

on depth, and the functions φR(x, ω) and φL(x, ω) are respectively dubbed Rayleigh- and84

Love-wave “potentials”. Upon substituting expressions (1) and (2) into the frequency-domain85

displacement equation, it is found that φR and φL can be determined through the Helmholtz’86

equations87

∇2
1φL,R(x1, x2, ω) +

ω2

c2
L,R

φL,R(x1, x2, ω) = f(x1, x2, ω), (3)

where cL,R(ω) denote the value of Rayleigh- or Love-wave phase velocity at frequency ω and88

f is a generic forcing term.89

This study is limited to recordings of seismic ambient noise. Because seismic noise has90

been shown to essentially amount to surface waves, it is safe (provided that signals related to91

large or nearby earthquakes are excluded) to assume that eqs. (1) and (2) correctly describe92

the corresponding ground displacement. Furthermore, for the sake of simplicity we only93

consider vertical-component recordings, i.e., the x3-component of uR, or94

uR,3 = U(0, ω)φR(x1, x2, ω), (4)

with x3=0 as long as recordings are made at Earth’s surface. It is inferred upon multiplying95

eq. (3) by U(0, ω) that the following vertical-displacement equation holds,96

∇2
1uR,3(x1, x2, ω) +

ω2

c2
R

uR,3(x1, x2, ω) = U(0, ω)f(x1, x2, ω). (5)

Eqs. (3) and (5) coincide with the equation governing the displacement of a lossless,97

stretched membrane [e.g. Kinsler et al., 1999]. Following Boschi and Weemstra [2015], we98

define the Green’s function G2D as the membrane response to impulsive (Dirac δ(x1)δ(x2))99

initial velocity at the reference-frame origin, with zero initial displacement and zero forcing100

term f ; it follows (app. A.1) that, for Rayleigh waves,101

G2D(x1, x2, ω) = − iP

4
√

2πc2
R

H
(2)
0

(
ωx

cR

)
, (6)
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where i denotes the imaginary unit, H
(2)
0 the zeroth-order Hankel function of the second kind102

[e.g. Abramowitz and Stegun, 1964, eq. (9.1.4)], P accounts for the physical dimensions of103

G2D as discussed in app. A.1, and x =
√
x2

1 + x2
2 is the distance between (x1, x2) and the104

“source.”105

Following Tsai [2011], we now make the assumption that surface-wave attenuation can106

be accounted for by replacing eq. (5) with a damped membrane equation, i.e. introducing107

an additional forcing term, or “loss term proportional to, and oppositely directed from, the108

velocity of the vibrating element” [Kinsler et al., 1999, sec. 4.6]. It is convenient to denote109

2α
cR

the proportionality factor between force and velocity, with the “attenuation coefficient”110

α coinciding with that of Tsai [2011]. In the frequency domain, the resulting displacement111

equation reads112

∇2
1u(x1, x2, ω) +

(
ω2

c2
− i

2αω

c

)
u(x1, x2, ω) = U(0, ω)f(x1, x2, ω) (7)

[e.g. Kinsler et al., 1999; Tsai , 2011], where all unnecessary subscripts have been dropped.113

It is inferred by comparing eqs. (5) and (7) that the expression (6) is still a solution of (7),114

if the real ratio ω/c in its argument is replaced by the complex number
√

ω2

c2
− 2iαω

c [Kinsler115

et al., 1999; Snieder , 2007; Tsai , 2011; Weemstra et al., 2015]; the two-dimensional, damped116

Green’s function therefore reads117

Gd2D(x1, x2, ω) = − iP

4
√

2πc2
H

(2)
0

(
x

√
ω2

c2
− 2iαω

c

)
. (8)

We show in app. B that as long as attenuation is relatively weak, i.e. α � ω/c [Tsai ,118

2011], and provided that frequency is high and/or the effects of near-field sources are negli-119

gible, expression (8) can be reduced to the more convenient, approximate form120

Gd2D(x1, x2, ω) ≈ − iP

4
√

2πc2
H

(2)
0

(ωx
c

)
e−αx

≈ G2D(x1, x2, ω)e−αx;

(9)

in other words, if ωx
c � 1 and α � ω/c, the lossy-membrane Green’s function Gd2D can be121

roughly approximated by the product of the lossless two-dimensional Green’s function G2D122

times a damping term e−αx; we verified this result via numerical tests (Fig. 1).123

2.2 Reciprocity theorem for a lossy membrane124

We extend the reciprocity-theorem derivation of Boschi et al. [2018], who only considered125

lossless media, to the case of a lossy membrane. The procedure that follows is similar to that126

of Snieder [2007], which, however, is limited to lossy three-dimensional media. In analogy127

with Boschi et al. [2018], let us introduce a vector v = − 1
iω∇1u, such that128

∇1u+ iωv = 0. (10)
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Figure 1: Comparison between the exact (red) and approximate (blue) formulae (eqs. (8)
and (9), respectively) for the lossy-membrane Green’s function. The real parts of the Green’s
function are shown on the left (panels a, c, e, g), the imaginary parts on the right (b, d, f
and h). Green’s functions corresponding to interstation distances of 50 km (a through d) and
200 km (e through h), and α=2× 10−5m−1 (a, b, e and f) and α=5× 10−5m−1 (c, d, g and
h) are shown. The approximation is good when α is small and ω is high, and decays with
growing α and decreasing ω.
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Upon substituting (10) into the damped-membrane displacement equation (7),129

∇1 · (−iωv) +

(
ω2

c2
− i

2αω

c

)
u = U(0, ω)f. (11)

After some algebra,130

∇1 · v + i
ωκ

c2
u− q = 0, (12)

where κ = 1 − i2αc
ω for brevity, and q= i

ωU(0, ω)f to be consistent with Boschi et al. [2018].131

In the frequency domain, q has units of squared time over distance. (Kinsler et al. [1999]132

show that, in the stretched-membrane model, this forcing can be thought of as proportional133

to “pressure divided by surface density”.)134

Eqs. (10) and (12) are similar to eqs. (24) and (25) of Boschi et al. [2018], except that135

the real number ω
c2

in eq. (25) of Boschi et al. [2018] is replaced here by the complex ωκ
c2

.136

Following Boschi et al. [2018], consider an area S on the membrane, bounded by the closed137

curve ∂S; let qA(x1, x2, ω), uA(x1, x2, ω) and vA(x1, x2, ω) denote a possible combination of138

the fields q, p and v co-existing at (x1, x2) in S and ∂S. A different forcing qB would139

give rise, through eqs. (10) and (12), to a different “state” B, defined by uB(x1, x2, ω) and140

vB(x1, x2, ω). The reciprocity theorem is obtained by combining the left-hand sides of eqs.141

(10) and (12) as follows,142 ∫
S

d2x [(10)A · v∗B + (10)∗B · vA + (12)A u
∗
B + (12)∗B uA] = 0, (13)

where x=(x1, x2), d2x = dx1dx2, and ∗ denotes complex conjugation. (10)A is short for the143

expression one obtains after substituting u = uA(x, ω) and v = vA(x, ω) into the left-hand144

side of eq. (10), etc. Following the same procedure as in sec. 3 of Boschi et al. [2018], we145

find146 ∫
S

d2x [∇1(uA · v∗B) +∇1(u∗B · vA)] +
iω

c2
(κ− κ∗)

∫
S

d2x uAu
∗
B =

∫
S

d2x (qAu
∗
B + q∗BuA) .

(14)

Notice that the second term at the left-hand side of eq. (14) would be 0 if the membrane147

were lossless (α=0, and therefore κ=κ∗); it is easy to see that in that case (14) is equivalent148

eq. (31) of Boschi et al. [2018].149

The divergence theorem allows to reduce the first surface integral at the left-hand side150

of (14) to a line integral along ∂S. Following Snieder [2007], we consider the particular151

case where surface integration is over the entire two-dimensional space R2, i.e. the area S152

is infinite. This is relevant to seismic ambient-noise applications, where receiver arrays are153

typically deployed within a relatively small area, receiving signal from “noise” sources that154

are distributed with (approximately) equal probability over the entire surface of the globe.155

Then, for attenuating media the wave field vanishes exponentially at infinity, and the integral156

along ∂S accordingly vanishes. We are left with157

4α

c

∫
R2

d2x uAu
∗
B =

∫
R2

d2x (qAu
∗
B + q∗BuA) . (15)

Consider now the states A and B associated with impulsive forcing terms qA=Fδ(x−xA)158

and qB=Fδ(x− xB), respectively. xA and xB are two arbitrary point-source locations, and159
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the factor F accounts for the physical dimensions of q (recall that δ(x) has dimensions of one160

over squared distance). It follows from app. A, eq. (A.22), that the corresponding membrane161

displacements are uA = iωFc
2

P Gd2D(x,xA, ω) and uB = iωFc
2

P Gd2D(x,xB, ω), respectively.162

Substituting into eq. (15), F simplifies out and163

2αωc

P

∫
R2

d2x Gd2D(x,xA, ω)Gd∗2D(x,xB, ω) = −=[Gd2D(xA,xB, ω)], (16)

which is the sought reciprocity theorem. Eq. (16) is similar, e.g., to eq. (39) of Boschi164

et al. [2018], with one fundamental difference: the integral in (16) is not over a closed curve165

containing the receiver pair (as in Boschi et al. [2018]), but over the entire real plane. As166

shown in the following, this implies that, for the lossy Green’s function Gd2D to be accurately167

reconstructed by seismic interferometry, sources should be uniformly distributed over space,168

rather than azimuth, and both in the near and far field of the receivers [Snieder , 2007; Tsai ,169

2011; Weemstra et al., 2015].170

2.3 Cross-correlation amplitude as a constraint for attenuation171

We shall next (sec. 2.3.1) use eq. (16) to establish a relationship between the cross correlation172

of ambient surface-wave signal (“noise”) recorded at two locations xA, xB, and the imaginary173

part of the Green’s function Gd2D(xA,xB, ω). Based on this relationship, in sec. 2.3.2 an174

inverse problem will be formulated, having attenuation α as unknown parameter, and the175

cross correlation of recorded noise as data. In this endeavour, it is assumed that ambient noise176

can be represented by a distribution of point sources of constant spatial density, emitting177

at random times (i.e., random phase in the frequency domain) but, in analogy with the178

numerical study of Cupillard and Capdeville [2010], all sharing the same spectral amplitude.179

The assumption that the spectral amplitude of noise sources be constant across the globe180

is based on the idea that Rayleigh-wave noise on earth is generated by the coupling, at the181

ocean bottom, between oceans and the solid earth. It has been shown that, while local effects182

play a role, the resulting spectrum has maxima determined by the main frequencies of ocean183

waves (i.e., primary and secondary microseisms at 0.05–0.12 and 0.1–0.25 Hz, respectively),184

independent of location [e.g. Longuet-Higgins, 1950; Ardhuin et al., 2011; Hillers et al., 2012].185

We accordingly consider our assumption to be valid at least as a rough approximation of the186

real world.187

2.3.1 Noise cross-correlation and the Green’s function188

The vertical-component, Rayleigh-wave displacement associated with a noise “event” can189

be thought of as the time-domain convolution of Gd2D and a source time function. In the190

frequency domain, convolution is replaced by product, and the signal emitted at a point x191

and recorded at, say, receiver xA reads h(ω)Gd2D(xA,x, ω)eiωφ, with h(ω) and φ denoting the192

amplitude and phase of the emitted signal. It follows that the ambient noise recorded at xA193

can be written194

s(xA, ω) = h(ω)

NS∑
j=1

Gd2D(xA,xj , ω)eiωφj , (17)
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where NS denotes the total number of sources, and the index j identifies the source; as an-195

ticipated, it is assumed that the unitless, frequency-domain amplitude h(ω) is approximately196

the same for all noise sources. Based on eq. (17), the cross correlation of noise recorded at197

two receivers xA, xB can be written198

s(xA, ω)s∗(xB, ω) =|h(ω)|2
NS∑
j=1

Gd2D(xA,xj , ω)eiωφj

[NS∑
k=1

Gd∗2D(xB,xk, ω)e−iωφk

]

=|h(ω)|2
[
NS∑
j=1

Gd2D(xA,xj , ω)Gd∗2D(xB,xj , ω)

+

NS∑
j=1

NS∑
k=1,k 6=j

Gd2D(xA,xj , ω)Gd∗2D(xB,xk, ω)eiω(φj−φk)

]
.

(18)

The phases φ1, φ2, φ3, . . . are assumed to be random (uniformly distributed between 0 and199

2π); it follows that the cross correlations of signals emitted by different sources, i.e. the second200

term at the right-hand side of (18) (“cross terms”), can be neglected if noise is recorded over201

a sufficiently long time, or if a sufficiently large amount of uniformly distributed sources are202

present [e.g. Weemstra et al., 2014; Boschi and Weemstra, 2015, App. D]; then203

s(xA, ω)s∗(xB, ω) ≈ |h(ω)|2
NS∑
j=1

Gd2D(xA,xj , ω)Gd∗2D(xB,xj , ω). (19)

It is convenient to transform the sum at the right-hand side of eq. (19) into an integral; said204

ρ the surface density of noise sources, which we assume to be constant,205

s(xA, ω)s∗(xB, ω) ≈ ρ |h(ω)|2
∫
R2

d2xGd2D(xA,x, ω)Gd∗2D(xB,x, ω). (20)

It will be noticed that the integral in (20) is over the entire real plane: this follows from the206

assumption, made in sec. 2.1, that sources be uniformly distributed over R2. Dividing both207

sides by ρ|h(ω)|2, we find from eq. (20) that208 ∫
R2

d2xGd2D(xA,x, ω)Gd∗2D(xB,x, ω) ≈ 1

ρ|h(ω)|2
s(xA, ω)s∗(xB, ω), (21)

and finally, substituting eq. (21) into (16),209

s(xA, ω)s∗(xB, ω) ≈ −|h(ω)|2Pρ
2αωc

=[Gd2D(xA,xB, ω)]. (22)

Eq. (22) is the “lossy” counterpart of, e.g., eq. (65) of Boschi and Weemstra [2015].210

Let us emphasize, again, that eq. (22) was obtained under the assumption that sources are211

uniformly distributed over the entire real plane R2. It follows from eq. (22) that, in the212

absence of attenuation, i.e. α=0, the cross correlation of ambient signal at its left-hand side213

is divergent. This is why in ambient-noise literature, whenever attenuation is neglected, the214

assumption is made that sources are uniformly distributed with respect to azimuth, rather215

than in space: for instance, the mentioned eq. (65) of Boschi and Weemstra [2015] results216

from a uniform distribution of sources along a circle that surrounds the receivers.217
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Like eq. (65) of Boschi and Weemstra [2015], eq. (22) can be used as the basis of inverse218

problems: the seismic observations at its left-hand side are “inverted” to constrain unknown219

parameters contained in the theoretical formula at its right-hand side. Importantly, surface-220

wave phase velocity c(ω) can be determined from eq. (22) without knowledge of the factor221

|h(ω)|2Pρ (that is to say, of the power spectral density, surface density and intensity of the222

noise sources); Ekström et al. [2009] show that this amounts to identifying the values of c and223

ω for which the left-hand side of eq. (22) is zero (i.e., the “zero crossings” of the reconstructed224

Green’s function). The factor |h(ω)|2Pρ becomes relevant if the Green’s function’s amplitude225

is to be accurately reconstructed, which is necessary if one wants to determine attenuation.226

2.3.2 From noise cross-correlation to attenuation: the inverse problem227

We show in the following how eq. (22) can be manipulated to formulate an inverse problem228

with α as unknown parameter, without neglecting |h(ω)|2Pρ. Let us start by expressing229

|h(ω)|2 as a function of noise data.230

It follows from eq. (17) that the power spectral density of the ambient signal recorded at231

a location x can be written232

|s(x, ω)|2 =|h(ω)|2
NS∑
j=1

Gd2D(x,xj , ω)eiωφj

[NS∑
k=1

Gd∗2D(x,xk, ω)e−iωφk

]

=|h(ω)|2
[
NS∑
j=1

|Gd2D(x,xj , ω)|2 +

NS∑
j=1

NS∑
k=1,k 6=j

Gd2D(x,xj , ω)Gd∗2D(x,xk, ω)eiω(φj−φk)

]
;

(23)

then, if one neglects cross terms based on the same arguments as above,233

|s(x, ω)|2 ≈|h(ω)|2
NS∑
j=1

|Gd2D(x,xj , ω)|2

≈|h(ω)|2
NS∑
j=1

|Gd2D(rj , ω)|2,

(24)

where we have introduced the source-receiver distance rj=|x−xj |, to emphasize the fact that234

the value of Gd2D at a given point depends on its distance from the source, but not on the235

absolute locations of source and receiver. We next transform the sum at the right-hand side236

of eq. (24) into an integral over source-receiver distance; let us first replace the summation237

over sources with a summation over ND distance bins, i.e.,238

|s(x, ω)|2 ≈ |h(ω)|2
ND∑
k=1

Nk|Gd2D(rk, ω)|2, (25)

where Nk denotes the number of sources at distances between rk and rk+1 from the receiver,239

and it is assumed that Gd2D(rk, ω) ≈ Gd2D(r, ω) as long as rk ≤ r ≤ rk+1 (which will be the240

case as long as the increment δr=rk+1− rk is small). The area of the annulus centered at the241

receiver and bounded by the circles of radii rk and rk+1 is approximately 2πrkδr. It follows242

9



that Nk ≈ 2πrkρδr, and243

|s(x, ω)|2 ≈ 2πρ|h(ω)|2
ND∑
k=1

δr rk |Gd2D(rk, ω)|2

≈ 2πρ|h(ω)|2
∫ ∞

0
dr r |Gd2D(r, ω)|2

≈ ρP 2|h(ω)|2

16c4

∫ ∞
0

dr r
∣∣∣H(2)

0

(ωr
c

)∣∣∣2 e−2αr,

(26)

where we have replaced Gd2D with its leading term, according to eq. (9). We have not been244

able to find a closed-form solution for the integral at the right-hand side of eq. (26); let us245

denote246

I(α, ω, c) =

∫ ∞
0

dr r
∣∣∣H(2)

0

(ωr
c

)∣∣∣2 e−2αr. (27)

Then, solving eq. (26) for |h(ω)|2,247

|h(ω)|2 ≈ 16c4

ρP 2I(α, ω, c)
|s(x, ω)|2. (28)

Eq. (28) stipulates that the power-spectral density of emitted ambient noise can be obtained248

from the power-spectral density of signal recorded at any receiver x, by application of a249

simple filter (provided that the surface density ρ and “intensity” P of noise sources are250

known). Since it was assumed that the function h is the same for all source-receiver vectors251

x, the right-hand side of (28) can be replaced by an average over all available receivers, which252

we denote < |s(x, ω)|2 >x:253

|h(ω)|2 ≈ 16c4

ρP 2I(α, ω, c)
< |s(x, ω)|2 >x; (29)

this is irrelevant from a purely theoretical perspective, but useful when processing real data,254

as averaging over all receivers will reduce effects that are not accounted for in our theoretical255

formulation, i.e. structural heterogeneities, dependence of the source time function on source256

location, nonuniformities in noise source distribution, etc.257

Substituting (29) into (22), we find after some algebra that258

s(xA, ω)s∗(xB, ω)

< |s(x, ω)|2 >x
≈ c

ω I(α, ω, c)

√
2

π
J0

(
ω|xA − xB|

c

)
e−α|xA−xB |

α
, (30)

where J0 denotes the zeroth-order Bessel function of the first kind [e.g. Boschi and Weemstra,259

2015]; importantly, the intensity P and surface density ρ of noise sources have canceled260

out, and only α and c remain to be determined. A nonlinear inverse problem can then be261

formulated, with α as its only unknown parameter. In practice, the dispersion curve c(ω) is262

first inverted for, ideally through a robust method that bypasses amplitude information and263

only accounts for phase [e.g. Ekström et al., 2009; Kästle et al., 2016]. We discuss in sec. 3.2264

how a cost function to be minimized can then be introduced, based on eq. (30).265

It might be noticed that a closed-form expression for α can be derived from the above266

treatment. Let us rewrite eq. (30) after replacing xA and xB with the locations of two267

other stations in our array, denoted xC and xD. We next divide eq. (30) by the equation so268
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Figure 2: (a) Geographical locations of receivers (black triangles with station names) over
the island of Sardinia. (b) Distribution of interstation distances for all station pairs in our
deployment; the mean and median of the distribution are 114.45 km, 104.95 km, respectively.
Acronyms starting with the letters UT identify stations deployed by our team.

obtained, and find269

s(xA, ω)s∗(xB, ω)

s(xC , ω)s∗(xD, ω)
≈ J0 (ω|xA − xB|/c)
J0 (ω|xC − xD|/c)

eα(|xC−xD|−|xA−xB |), (31)

which can be solved for α to obtain the sought formula270

α(ω) = log

{
[s(xA, ω)s∗(xB, ω)] [J0 (ω|xC − xD|/c)]
[s(xC , ω)s∗(xD, ω)] [J0 (ω|xA − xB|/c)]

}
1

|xC − xD| − |xA − xB|
, (32)

where log denotes the natural logarithm. We have found that application of eq. (32) to our271

database does not lead to stable results, and, at the present stage, have not pursued this272

approach further. Eq. (32) might be of interest in the presence of a more diffuse ambient273

field, or a higher number of receivers allowing, e.g., for averaging over different azimuths as274

in Prieto et al. [2009].275

3 Application to Sardinian data set276

At the end of June, 2016, our team has deployed an array of broadband seismic stations (Tril-277

lium Nanometrics 120s posthole broadband stations) around Sardinia, as shown in Fig. 2a.278

This temporary deployment was complemented by three permanent stations belonging to the279

Italian MN and IV networks. Except for UT001 and UT011, stations recorded continuously280

for 24 months. Station UT001 recorded from June 2016 until November 2017; it was then281

removed and redeployed at location UT011, where it recorded November 2017 to September282

2018. We next explain how ambient recordings of displacement (vertical component only)283

were cross correlated to one another, to determine first a set of Rayleigh-wave dispersion284

curves, and then, according to sec. 2.3.2, the attenuation parameter α.285
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Figure 3: Five examples of power spectral density < |s(x, ω)|2 >x, computed for five consec-
utive six-hour long intervals. The computation is repeated for each season, with panels a,
b, c and d showing the results obtained in summer, autumn, winter and spring, respectively.
Recordings used for this examples start on (a) July 8, 2017 at 8:49AM; (b) October 5, 2017,
at 2:49AM; (c) January 20, 2018, at 2:49AM; April 14, 2018, at 8:49PM.

3.1 Data cross correlation286

Recordings of earthquakes are characterized by amplitudes much larger than those of truly287

diffuse, “ambient” signal, and can accordingly bias cross correlations [e.g., Bensen et al.,288

2007]. After subdividing seismic recordings into relatively short time intervals, some au-289

thors minimize this bias by identifying intervals where anomalously large displacements are290

recorded, to then exclude them from cross correlation. An alternative solution consists of291

cross-correlating separately the segments of seismic recording associated with each time inter-292

val; then, “partial” cross correlations so obtained can be normalized independently, usually293

by whitening, before being summed.294

We follow here the latter approach, but, instead of whitening, normalize by the power295

spectral density < |s(x, ω)|2 >x, as in the left-hand side of eq. (30). As explained in sec. 2.3.2,296

< |s(x, ω)|2 >x is averaged over all stations x, and is proportional, through eq. (29), to the297

actual power spectral density |h(ω)|2 of ambient noise. 6-hour long non-overlapping time298

windows are normalized independently before being summed. We shall refer to this procedure299

as PSD- (power spectral density) normalization. Examples of the factor < |s(x, ω)|2 >x are300

shown in Fig. 3 for twenty different time windows, sampling all four seasons. The cumulative301

power spectral density < |s(x, ω)|2 >x is shown in Fig. 4.302

To verify that possible biases introduced by anomalous events are indeed suppressed by303

PSD-normalization, we also attempted to remove them directly from the data. We define as304

“event” the Fourier transform of one day of recording, and flag it as anomalous (an “outlier”)305
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Figure 4: Power spectral density < |s(x, ω)|2 >x (red line) used to normalize the observed
cross-spectra as in eq. (30). The power spectral density obtained after removing from the
data all 24 hour-long time intervals where anomalous events (sec. 3.1) were recorded (blue
line) is also shown.

if the maximum amplitude exceeds a certain value. After testing various criteria to identify306

outliers, we decided to follow the Interquartile Range rule (IQR) [Tukey , 1977], with outlier307

constant set to 5, which we applied separately on 2-month-long subsets of the entire data set.308

The power spectral density < |s(x, ω)|2 >x obtained after removing the so defined outliers309

is also shown in Fig. 4 for the sake of comparison. We show in Fig. 5 the cross correlation310

of signals recorded over more than one year at several stations, before and after removing311

outliers, as described. After conducting the same test on several other station pairs, we312

conclude that the two approaches result in practically coincident results. We prefer PSD-313

normalization as it involves no arbitrary choices, e.g. in the definition of outlier. In Fig. 6314

the results of PSD-normalizing and whitening the same cross correlations are compared.315

Discrepancies are, again, very small, which confirms the stability of our results.316

Figs. 5 and 6 also show that the imaginary parts of our observed cross correlations can317

be relatively large. This is in contrast with eq. (30), stipulating that the imaginary part318

of the frequency-domain cross correlation should be zero (or, equivalently, the causal and319

anticausal parts of the time-domain cross correlation should coincide [e.g. App. B of Boschi320

and Weemstra, 2015]). The same limitation affects many other seismic ambient-noise studies,321

where the conditions that the field be diffuse and that sources be uniformly distributed over322

space are not exactly met. To quantify the azimuthal bias of recorded ambient signal, we323

narrow-band-pass filter and inverse-Fourier-transform the frequency-domain cross-correlation324

associated with each station pair; we then compute, in the time domain, the signal-to-noise325

ratio (SNR) of both causal and anticausal parts of each cross correlation, defined as the326

ratio of the maximum signal amplitude to the maximum of the trailing noise [e.g. Yang327

and Ritzwoller , 2008; Kästle et al., 2016]. The results are shown in Fig. 7, where it is328

apparent that, because our array is small, its azimuthal sampling is limited (sampling is329

particularly poor around the East-West direction). The sampled azimuths appear however330
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Figure 5: Real (a, c, e) and imaginary (b, d, f) parts of the cross correlations of the en-
tire available recordings at stations UT.006 and UT.009 (a, b), IV.AGLI and IV.DGI (c,
d), UT.002 and UT.003 (e, f). The associated interstation distances are 231, 97 and 57
km, respectively. Cross correlations of the entire recorded traces are PSD-normalized (red
lines); alternatively (blue), outliers are removed from the traces prior to cross-correlating, as
discussed in sec. 3.1. PSD-normalization is preferred throughout the rest of this study.
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Figure 6: Same as Fig. 5, but PSD-normalized (red lines) and whitened cross correlations
(blue) are now compared. In both cases, the entire available seismic records are cross corre-
lated, without attempting to identify and remove outliers. For each interstation distance ∆,
the Bessel function J0(ω∆/c) (yellow), to which the real parts of cross correlations should be
proportional according to (30), is also shown.
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Figure 7: Estimates of the SNR of our cross correlations, as a function of station-pair az-
imuth, at periods of 3 to 15s, as specified. The value of SNR determines the length of the
red segments, while their orientation coincides with the station-pair azimuth, with 0◦ corre-
sponding to the North, 90◦ to the East, etc. The signal-to-noise ratios associated with both
the causal and anticausal parts of the cross correlations are computed and plotted; for each
station pair, the causal and anticausal segments point in opposite directions. In practice,
longer segments should point to the direction where most seismic ambient signal comes from.

to be characterized, on average, by similar values of SNR, at least at periods ≥5s, indicating331

a relatively isotropic ambient field: compare, e.g., with Fig. 12 of Kästle et al. [2016], which332

was obtained by applying the exact same procedure to a larger and denser array.333

In the following, we shall further reduce the unwanted effects of azimuthal bias, by implic-334

itly averaging over all station pairs (and therefore all available azimuths) as only one model335

of α is sought that fits cross correlation data for all station pairs. Authors that process data336

from larger/denser arrays often also group station pairs in distance bins, and for each distance337

bin take an average over all azimuths [e.g. Prieto et al., 2009; Weemstra et al., 2013], but338

this is not feasible in our case owing to the limited size of our array.339

3.2 Dispersion and attenuation parameters340

For each station pair i, j, a dispersion curve cij=cij(ω) is derived via the frequency-domain341

method of Ekström et al. [2009], Boschi et al. [2013], Kästle et al. [2016]. Specifically, the342

algorithm of Kästle et al. [2016] is slightly modified, i.e. the data are PSD-normalized rather343

than whitened; examples of dispersion curves resulting from both PSD-normalization and344

whitening are shown in Fig. 8. After determining that both approaches lead to approx-345

imately coincident results, we use in the following the dispersion curves obtained by PSD-346

16



Figure 8: Phase velocity curves retrieved from the whitened (red lines) and PSD-normalized
(blue) cross-spectra, for station pairs (a) UT.006 - UT.009 (interstation distance ∼ 231 km),
(b) UT.002 - UT.004 (∼ 152 km), (c) IV.AGLI - IV.DGI (∼ 97 km), and (d) UT.002 - UT.003
(∼ 57 km).

normalization. Importantly, in both cases the frequency range over which the dispersion curve347

is defined changes depending on the station pair; as a general rule, it is hard to constrain its348

low-frequency end if stations are relatively close to one another.349

3.2.1 Attenuation parameter as a scalar constant350

Taking the squared modulus of the difference of the left- and right-hand sides of eq. (30), and351

summing over all frequency samples ωk and station pairs i, j, the cost function352

∑
i,j

∑
k

∣∣∣∣∣s(xi, ωk)s∗(xj , ωk)< |s(x, ωk)|2 >x
− 2cij(ωk)

ωk
√

2π

1

I[α, ωk, cij(ωk)]
J0

(
ωk|xi − xj |
cij(ωk)

)
e−α|xi−xj |

α

∣∣∣∣∣
2

(33)

is obtained.353

The right-hand side of eq. (30) is, through the Bessel function J0, an oscillatory function354

of ω. The value of the attenuation parameter α, however, only affects its envelope, and not355

its oscillations, with respect to ω. Following other authors who estimated attenuation on the356

basis of ambient-noise cross correlation [e.g., Prieto et al., 2009], we accordingly define the357
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Figure 9: Cost C1 as defined by eq. (34), as a function of the scalar attenuation parameter
α.

cost function358

C1(α) =
∑
i,j

∑
k

∣∣∣∣∣env

[
s(xi, ωk)s

∗(xj , ωk)

< |s(x, ωk)|2 >x

]

− env

[
2cij(ωk)

ωk
√

2π

1

I[α, ωk, cij(ωk)]
J0

(
ωk|xi − xj |
cij(ωk)

)
e−α|xi−xj |

α

]∣∣∣∣∣
2

,

(34)

where env denotes the envelope function, which we implement by fitting a linear combination359

of splines [e.g. Press et al., 1992] to the maxima of the absolute value of its argument.360

The attenuation parameter α in this case is a scalar value, independent of both frequency361

and location. We show in Fig. 9 how C1 varies as a function of α; a clear minimum is identified362

at α=3.03 × 10−5 m−1, which is our preferred attenuation model in this scenario. We next363

use this value for α to evaluate numerically the right-hand side of eq. (30), and compare364

the results with the normalized cross-correlation at the left-hand side; this is illustrated in365

Fig. 10 for four different station pairs. The modeled Green’s functions have their zeroes at366

approximately the same frequencies as the measured ones, indicating that dispersion curves367

derived as described above are reliable. At short interstation distances, the found value of368

α also results in a relatively good fit of observed amplitude at most frequencies. The fit369

deteriorates with increasing distance, indicating that the assumption that α be constant does370

not honour the actual complexity of the medium.371

As an additional test, we found the cost function defined by expression (33) (i.e., no372

envelopes are taken) to be similar to C1, with a less prominent but well defined minimum at373

α=2.75× 10−5 m−1. The similarity of this estimate of α with the one based on function C1374
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Figure 10: Comparison of normalized data (red lines) and model (blue), i.e. left- and right-
hand side of eq. (30), after substituting α=3.03 × 10−5 m−1, as explained in sec. 3.2.1 (i.e.,
inversion via the cost function C1). As in Fig. 8, panels a, b, c and d correspond to station
pairs UT.006-UT.009, UT.002 - UT.004, IV.AGLI-IV.DGI and UT.002-UT.003, respectively,
with interstation distances decreasing from 231 to 57 km.
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Figure 11: Cost function C2(α, ω) (sec. 3.2.2) shown (after normalization) as a function of
the attenuation parameter α and frequency ω. We normalize C2 according to the formula

C2(α,ω)−min[C2(α,ω)]
max[C2(α,ω)]−min[C2(α,ω)] , where min[C2] and max[C2] denote the minimum and maximum val-
ues of C2 for all sampled values of α and ω. The stepwise trend of the minima of C2 is
correlated with the stepwise growth (also as a function of ω) of the number of station pairs
for which cross-correlation data are available.

suggests that this result is robust.375

3.2.2 Frequency-dependent attenuation parameter376

We next allow the attenuation parameter α to change as a function of ω; in practice, we377

evaluate the cost function378

C2(α, ω) =
∑
i,j

∣∣∣∣∣env

[
s(xi, ω)s∗(xj , ω)

< |s(x, ω)|2 >x

]

− env

[
2cij(ω)

ω
√

2π

1

I[α(ω), ω, cij(ω)]
J0

(
ω|xi − xj |
cij(ω)

)
e−α|xi−xj |

α

]∣∣∣∣∣
2

,

(35)

shown in Fig. 11, after normalization, as a function of both α and ω. Since both terms within379

the square brackets in eq. (35) are close to a Bessel function of ω, it is not surprising that380

their difference has an oscillatory behaviour with respect to ω; because only a discrete and381

limited set of interstation distances are available from our data set, this effect is not canceled382

by summation, as is apparent from Fig. 11. Fig. 11 also shows that C2(α, ω) has a single,383

well-defined minimum at all frequencies, resulting in the α(ω) curve of Fig. 12.384

The actual values of the minima of C2(α, ω), without normalization, are shown in Fig. 12.385

C2 decreases with growing ω, meaning that relatively high frequencies are better fit than low386

frequencies. Fig. 13 also shows that the amplitude fit between observed cross correlations387

and modeled Green’s functions is worse for large interstation distances.388

In analogy with sec. 3.2.1, we also evaluated an alternative cost function, where the differ-389

ence of observed and theoretical, normalized cross correlation is computed without extracting390
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Figure 12: Attenuation parameter α (red dots, scale on the left) and corresponding values
of the cost function C2(α, ω) (blue dots, scale on the right), both plotted as functions of
frequency ω.

Figure 13: Same as Fig. 10, but the blue curves are obtained by substituting into eq. (30)
the values of α(ω) obtained by minimizing the cost function C2 of sec. 3.2.2.
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Figure 14: Same as Fig. 11, but the cost function C3 is evaluated, where contributions of
different station pairs are weighted differently (sec. 3.2.3) according to interstation distance.

their envelopes. This function varies more rapidly than C2 does, with respect to both α and391

ω; but it spans a similar range of values and, like C2, has a unique minimum at all frequencies.392

The corresponding values of α are similar to those obtained based on C2; we do not show or393

discuss them here in the interest of brevity.394

3.2.3 Cost function as a weighted sum395

Attenuation models of secs. 3.2.1 and 3.2.2 achieve a systematically worse fit of cross corre-396

lations between faraway as opposed to nearby stations (see examples in Figs. 10 and 13).397

To some (minor) extent, this bias might stem from the error involved in the far-field/high-398

frequency approximation discussed in sec. 2.1, causing a fictitious loss of amplitude of the399

theoretical cross correlation at large interstation distances (Fig. 1). More importantly, it400

might result from the fact that, by geometrical spreading, cross-correlation amplitude de-401

creases with growing interstation distance; assuming the relative misfit on cross-correlation402

amplitude to be independent of distance, pairs of faraway stations are then systematically403

associated with smaller absolute errors and thus contribute less to the cost functions C1 and404

C2. We attempt to reduce this effect by replacing the sum in C2 with a weighted sum,405

C3(α, ω) =
∑
i,j

w(|xi − xj |)

∣∣∣∣∣env

[
s(xi, ω)s∗(xj , ω)

< |s(x, ω)|2 >x

]

− env

[
2cij(ω)

ω
√

2π

1

I[α(ω), ω, cij(ω)]
J0

(
ω|xi − xj |
cij(ω)

)
e−α|xi−xj |

α

]∣∣∣∣∣
2

,

(36)

where w(|xi − xj |) = |xi − xj |e and e is the Euler number. We selected this weighting406

scheme after a suite of preliminary tests, where the weight w was chosen to coincide in turn407

with different powers (from square root to fourth power) of interstation distance. We show408

C3(α, ω) in Fig. 14, and the corresponding best-fitting values of α in Fig. 15. Interestingly,409
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Figure 15: Same as Fig. 12, but the values α(ω) (red dots) that minimize at each ω the cost
function C3 (sec. 3.2.3), and the corresponding values of C3 (blue dots) are shown.

it is apparent from Fig. 15 that the so obtained function α(ω) spans a smaller range of values410

than its counterpart discussed in sec. 3.2.2; α is also generally smaller, resulting in larger411

amplitude of modeled cross correlations (Fig. 16) at all interstation distances.412

We are unable to determine a unique function α(ω) that results in a comparably good fit of413

cross-correlation amplitude for all station pairs: observed amplitudes tend to be overestimated414

by our “model” at short interstation distances, and underestimated at large interstation415

distances. This effect might point to possible lateral heterogeneities of α that our data set416

is too limited to constrain; it could also be associated with the error inherent in ambient-417

noise-based reconstruction of the Green’s function, when the seismic ambient field (as in most418

practical applications) is not truly diffuse.419

4 Discussion and conclusions420

The main purpose of this study was to clarify some aspects of the relationship between the421

cross correlation of seismic ambient noise and surface-wave attenuation (attenuation param-422

eter α or quality factor Q). It is known that this relationship is complicated by the need423

to process ambient-noise cross correlation data so as to reduce as much as possible the bias424

introduced by anomalous high-amplitude events (earthquakes). This is often achieved by425

subdividing continuous traces into shorter time intervals, which are then whitened and cross-426

correlated separately before being “stacked” together; but whitening has a complicated effect427

on the mentioned noise-attenuation relationship [Weemstra et al., 2014]. We develop here a428

different normalization criterion, with practical effects similar to whitening, but obtained by429

simply manipulating the reciprocity theorem without any additional data processing. This430

results in the relationship (30), which is strictly valid provided that sources of seismic ambient431

noise be uniformly distributed over R2, that their phases be random and uncorrelated, and432

that the spectrum of noise sources be spatially uniform (sec. 2.3.2). Our experimental setup,433
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Figure 16: Same as Figs. 10 and 13, but the blue curves are obtained by substituting into
eq. (30) the values of α(ω) obtained by minimizing the cost function C3 (sec. 3.2.3).

consisting of a small array deployed on an island, is chosen to approximately satisfy these434

requirements.435

Eq. (30) involves a proportionality factor, relating normalized cross-correlation and the436

product J0(ω∆/c)e−α∆ (with ∆ denoting interstation distance), that had been neglected in437

previous studies. Compare, e.g., with eq. (7) of Prieto et al. [2009] or eq. (1) of Lawrence and438

Prieto [2011]. The need to account for such a factor was pointed out theoretically by Tsai439

[2011], while Harmon et al. [2010] and Weemstra et al. [2013] introduced it as a free parameter440

of their inversions. Similar to Tsai [2011], we have derived an analytical expression for it,441

and evaluate it numerically based on our estimates for α and phase velocity c(ω). Fig. 17442

shows that the factor in question is of the order of unity, which would explain the success of443

Prieto et al. [2009], Lawrence and Prieto [2011] and others in inferring reasonable values for444

α.445

On the basis of eq. (30), we explored several possible definitions of cost function (secs.446

3.2.1 through 3.2.3), quantifying the misfit between observed and modeled cross-correlation447

amplitudes. We first assumed the attenuation parameter α to be constant, independent of448

frequency and position. We next identified a frequency-dependent α = α(ω) model that449

minimizes the misfit for all receiver-receiver pairs at the same time. Since the cost function450

involves a sum over station pairs, we finally introduced a cost function where the contribution451

of each station pair was weighted differently depending on interstation distance.452

To compare quantitatively the misfit achieved by different models, let us introduce the453
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Figure 17: Proportionality factor
√

2
π c/ [αω I(α, ω, c)] relating normalized cross correlation

and J0(ω∆/c)e−α∆ in eq. (30). Its numerical value is evaluated based on inferred dispersion
curves c(ω), and estimates for α obtained by minimization of the cost functions C1, C2, C3

(each denoted by a different color, as specified). Panels (a) through (d) correspond to the
same station pairs used as examples in previous figures.
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Figure 18: Number (vertical axis) of station pairs for which the misfit mij falls within a given
interval (horizontal axis), for models of α resulting from the minimization of cost functions
(a) C1, (b) C2, and (c) C3. (d) Box plots [Tukey , 1977] of the distributions at (a), (b) and
(c).

misfit function454

mij =
∑
k

∣∣∣∣∣s(xi, ωk)s∗(xj , ωk)< |s(x, ωk)|2 >x

− 2cij(ωk)

ωk
√

2π

1

I[α(ωk), ωk, cij(ωk)]
J0

(
ωk|xi − xj |
cij(ωk)

)
e−α(ωk)|xi−xj |

α(ωk)

∣∣∣∣∣
2

,

(37)

associated to the station pair ij. We implement eq. (37) for each model (corresponding to455

the cost functions C1 through C3) and for each station pair ij, and visualize the resulting456

values of mij in Fig. 18, in the form of one histogram per model.457

It is apparent from Fig. 18, and could be anticipated from a visual comparison of Fig. 10458

with Fig. 13, that allowing α to vary with respect to ω results in an overall improvement of459

fit with respect to constant-α models. Minimizing the cost function C3, on the other hand,460

results in an increase in the misfit mij with respect to C2, as nearby station pairs tend to461

contribute to mij more than faraway ones (see discussion of the cost function C2 in sec.462

3.2.3). We found by a Kolmogorov-Smirnoff test [e.g. Press et al., 1992] that the probability463

that the three histograms in Fig. 18 correspond to the same statistical distribution is always464

.3%, and always .1% for the histogram in Fig. 18b (C2 in Fig. 18d). This suggests that the465

improvement in fit achieved by the cost function C2 is significant. Only a limited number of466

samples (station pairs) is available, however, and a more reliable statistical analysis should467

be conducted in the future on a larger database. In addition, the level of complexity (number468
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of degrees of freedom) in the function α=α(ω) that can be constrained by the available data469

remains to be determined; it is beyond the scope of our current contribution.470

It would be useful to compare our observations with independent estimates of α in the471

region of interest, but, to our knowledge, no studies of surface-wave attenuation in Sardinia472

have been published so far. Comparison with global surface-wave attenuation literature473

suggests that our estimates of α (on the order of 10−5m−1 in the period range 2-10s according474

to Figs. 12 and 15) are relatively large. Studies based on earthquake data suggest values of475

α on the order of 10−6m−1, but quickly growing, with decreasing period, within the period476

range of interest to us [Mitchell , 1995; Romanowicz and Mitchell , 2015]. Surface waves at477

those periods are perhaps best sampled by ambient-noise cross correlations; Prieto et al.478

[2009] find α≈6.4 × 10−6m−1 from seismic ambient noise at 5s period, consistent with the479

laterally-varying values obtained by Lawrence and Prieto [2011], and not far from the values480

proposed here; Lin et al. [2011] estimate α≈1× 10−6m−1 or lower. Those studies neglect the481

proportionality factor shown here in Fig. 17, which might partially explain the discrepancy.482

Both Harmon et al. [2010] and Weemstra et al. [2013] account for this effect, although in a483

different way than done here; Harmon et al. [2010] find α≈5× 10−7m−1 at 7.5s period, while484

Weemstra et al. [2013] obtain estimates of α actually larger than ours. Viens et al. [2017]485

likewise fit ambient-noise surface-wave data with α=1.4×10−5m−1 in the period range 3-10s,486

consistent with our estimates.487

As values of α obtained from different methods are compared, one should keep in mind the488

significant uncertainties associated with the many practical issues quantified, e.g., by Menon489

et al. [2014]. Estimates of surface-wave attenuation might be affected by the presence, in490

seismic ambient noise, of body-wave signal not accounted for by the theory [e.g. Gerstoft491

et al., 2008]. Differences in the terrains where the data were collected also play a role.492

This preliminary application, limited to a small data set, demonstrates that our new493

algorithm leads to reasonable estimates of α. Future applications to denser instrument arrays,494

with a more thorough account of heterogeneity in source distribution, are likely to benefit495

more significantly from the theoretical improvements that we have introduced.496
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Appendix A Green’s functions of the scalar wave equation592

(homogeneous lossless media)593

We describe in the following two definitions of the Green’s function that are commonly found594

in the literature. In one case (sec. A.1), the Green’s function is obtained by prescribing595

nonzero initial velocity at the source; initial displacement is zero and no other forcing is596

present. In another case (sec. A.4), both initial displacement and velocity are everywhere597

zero, but an impulsive force is applied at the source. Following Boschi and Weemstra [2015],598

we adhere throughout this study to the former definition, but in sec. 2.2 implicitly make use599

of the latter. Through the mathematical tools provided in secs. A.2 and A.3, a relationship600

between the two definitions is obtained; this relationship is employed in sec. 2.2.601

A.1 Green’s problem as homogeneous equation602

In analogy with Boschi and Weemstra [2015], we call Green’s function G2D = G2D(x,xS , t)603

(with t denoting time) the solution of604

∇2G2D −
1

c2

∂2G2D

∂t2
= 0, (A.1)

with initial conditions605

G2D(x,xS , 0) = 0, (A.2)
606

∂G2D

∂t
(x,xS , 0) = Pδ(x− xS), (A.3)

i.e. an impulsive source at xS . Only “causal” solutions, vanishing when t < 0, are relevant.607

The scalar constant P serves to remind us of the physical dimensions of G2D; for instance, one608

can think of (A.1) as the displacement equation for a membrane, in which case ∂G2D
∂t (x,xS , 0)609

is the initial velocity, and P has dimensions of cubed distance over time (recall that, in two610

dimensions, δ has dimensions of one over squared distance).611

Boschi and Weemstra [2015] show that, in the time domain, the “Green’s problem” (A.1)-612

(A.3) has solution613

G2D(x, t) =
P

2πc2

H
(
t− x

c

)√
t2 − x2

c2

, (A.4)
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where H denotes the Heaviside function. This corresponds to614

G2D(x, ω) =
P

4i
√

2πc2
H

(2)
0

(ωx
c

)
(A.5)

in the frequency domain, with H
(2)
0 denoting the zeroth-order Hankel function of the second615

kind. When ωx/c� 1, the expression (A.5) can be replaced by the far-field/high-frequency616

approximation617

G2D(x, ω) ≈ P

4iπc3/2

e−i(ωxc −
π
4 )

√
ωx

. (A.6)

It might be noticed upon comparing our expression (A.5) for G2D(x, ω) with that of, e.g.,618

Tsai [2011], that the membrane-wave Green’s function given in that study is proportional619

to the zeroth-order Hankel function of the first kind: this apparent discrepancy is explained620

by the fact that the Fourier-transform convention assumed by Tsai [2011] differs from ours621

(compare eq. (4) of Tsai [2011] and eq. (B2) of Boschi and Weemstra [2015], and consider622

eq. (E16) of Boschi and Weemstra [2015]).623

A.2 Duhamel’s principle624

Consider the initial-value problem625

∇2
1u−

1

c2

∂2u

∂t2
= η(x, t), (A.7)

626

u(x, 0) = 0, (A.8)
627

∂u

∂t
(x, 0) = 0, (A.9)

with η an arbitrary forcing term. Suppose that a solution v(x, t) to the following, similar628

homogeneous problem can be found:629

∇2
1v −

1

c2

∂2v

∂t2
= 0, (A.10)

630

v(x, 0; ζ) = 0, (A.11)
631

∂v

∂t
(x, 0; ζ) = Dc2η(x, ζ), (A.12)

with D a scalar constant.632

It can be shown by direct substitution (applying Leibniz’s rule for differentiating under633

the integral sign) that if v(x, t; ζ) solves (A.10)-(A.12) for all possible values of ζ, and634

u(x, t) =
1

D

∫ t

0
dζ v(x, t− ζ; ζ), (A.13)

then u(x, t) solves (A.7)-(A.9).635

This result is known as Duhamel’s principle [e.g. Hildebrand , 1976; Strauss, 2008].636

A.3 General initial condition637

Once the Green’s function associated with a given differential equation is found, it can be used638

to solve rapidly more general initial-value problems based on the same equation. Consider639
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for example640

∇2
1f −

1

c2

∂2f

∂t2
= 0 (A.14)

with the more general initial conditions641

f(x, 0) = 0, (A.15)

642

∂f

∂t
(x, 0) = θ(x). (A.16)

It can be proved by direct substitution that if G2D solves (A.1)-(A.3), then643

f(x, t) =
1

P

∫
R2

d2x′G2D(x,x′, t)θ(x′) (A.17)

solves (A.14)-(A.16).644

Problem (A.14)-(A.16) is equivalent to (A.10)-(A.12), provided that condition (A.16) is645

replaced with646

∂f

∂t
(x, 0; ζ) = Dc2η(x, ζ). (A.18)

Then, based on Duhamel’s principle,647

u(x, t) =
1

D

∫ t

0
dζ f(x, t− ζ; ζ)

=
c2

P

∫ t

0
dζ

∫
R2

d2x′G2D(x,x′, t− ζ)η(x′, ζ)

(A.19)

solves the general inhomogeneous problem (A.7)-(A.9) for any forcing term η(x, t).648

A.4 Green’s problem as inhomogeneous equation649

We next consider the membrane-displacement eq. (5); it is convenient to choose the forcing650

term U(0, ω)f(x1, x2, ω) = −iωFδ(x − xS) so that q = Fδ(x − xS) in sec. 2.2. In the time651

domain the resulting equation reads652

∇2
1u(x, t)− 1

c2

∂2

∂t2
u(x, t) = −Fδ(x− xS)δ′(t), (A.20)

where δ′(t) denotes the derivative of the delta function. Assuming zero inital displacement653

and velocity, eq. (A.20) is a particular case of problem (A.7)-(A.9). A solution is found by654

substituting η(x, t) = −Fδ(x− xS)δ′(t) into eq. (A.19),655

u(x, t) =− Fc2

P

∫ t

0
dζ

∫
R2

d2x′G2D(x,x′, t− ζ)δ(x′ − xS)δ′(ζ)

=− Fc2

P

∫ t

0
dζ δ′(ζ)G2D(x,xS , t− ζ)

=
Fc2

P

∂

∂t
G2D(x,xS , t).

(A.21)

In the frequency domain, this maps to656

u(x, ω) = iω
Fc2

P
G2D(x,xS , ω). (A.22)
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In the literature, problem (A.7)-(A.9) with an impulsive forcing term is often presented as657

the Green’s problem, and its solution (A.21), (A.22) as the Green’s function. It is important658

to realize that this is not mathematically the same as our Green’s function G2D. Other defi-659

nitions of Green’s function likewise exist. In practice, the phrase “Green’s function” always660

refers to the response of a medium to an impulsive excitation; but this definition is ambigu-661

ous, and, for any given medium, the “impulsive response” can be defined mathematically in662

a virtually unlimited variety of ways.663

Appendix B Approximate expression for the damped-membrane664

Green’s function665

We show in the following that, as long as attenuation is weak, the lossy-membrane Green’s666

function667

Gd2D(x1, x2, ω) = − iP

4
√

2πc2
H

(2)
0

(
x

√
ω2

c2
− 2iαω

c

)
(copy of eq. 8)

can be approximated by the product of the lossless Green’s function G2D and a term that668

decays exponentially with source-receiver distance. Two different arguments are provided in669

the next two sections.670

B.1 Stationary-phase approach671

If z is small,
√

1 + iz ≈ 1 + iz/2 is accurate to first order in z. It is then reasonable to write672

the argument of H
(2)
0 in eq. (8)673

x

√
ω2

c2
− 2iαω

c
=
ωx

c

√
1− 2iαc

ω

=
ωx

c
(1− εi),

(B.1)

where ε ≈ cα/ω � 1.674

Substituting expression (B.1) into the integral representation of H
(2)
0 , e.g. eq. (10.9.11)675

of DLMF,676

H
(2)
0

(
x

√
ω2

c2
− 2iαω

c

)
=

i

π

∫ +∞

−∞
dt e−i cosh(t)[ωxc (1−iε)]

=
i

π

∫ +∞

−∞
dt e−iωx

c
cosh(t) e−ε

ωx
c

cosh(t).

(B.2)

V. Tsai (personal communication, 2013) first derived eq. (B.2), and solved the integral on677

its right-hand side via the stationary-phase approximation. The right-hand side of (B.2) has678

indeed the same form as the one-dimensional stationary-phase integral, e.g. eq. (A1) of679

Boschi and Weemstra [2015], except for the fact that the non-oscillatory term e−ε
ωx
c

cosh(t)
680

depends not only on the integration variable t, but also on x. Because this term is small in681

the vicinity of the (only) stationary point t=0, we assume that the stationary-phase formula682

still applies; considering that cosh coincides with its second derivative, and that cosh(0) = 1,683
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it follows from eq. (A2) of Boschi and Weemstra [2015] that684 ∫ +∞

−∞
dt e−iωx

c
cosh(t) e−ε

ωx
c

cosh(t) ≈ 2 e−ε
ωx
c e−i(ωxc −

π
4 )
√

πc

2ωx
, (B.3)

with the factor 2 at the right-hand side to account for the fact that the stationary point t=0685

is not one of the integration limits. Consequently,686

H
(2)
0

(
x

√
ω2

c2
− 2iαω

c

)
≈
√

2c

πωx
e−αxe−i(ωxc −

π
4 )

≈ H(2)
0

(ωx
c

)
e−αx,

(B.4)

where we have replaced ε with cα/ω. Substituting eq. (B.4) into (8),687

Gd2D(x1, x2, ω) ≈ − iP

4
√

2πc2
H

(2)
0

(ωx
c

)
e−αx (B.5)

Importantly, this approximation is only valid for large x, i.e. the presence of sources in the688

near field of the receivers, which is necessary to reconstruct the Green’s function according689

to sec. 2.2, introduces a possibly significant error.690

B.2 Taylor-series approach691

Making use, again, of the Taylor expansion
√

1 + iz ≈ 1 + iz/2 in the argument of Gd2D,692

Gd2D(x1, x2, ω) = − iP

4
√

2πc2
H

(2)
0

(
ωx

c

√
1− 2iαc

ω

)

≈ − iP

4
√

2πc2
H

(2)
0

(ωx
c
− iαx

)
.

(B.6)

If one substitutes into (B.6) the far-field and/or high-frequency approximation for H
(2)
0 [e.g.693

Boschi and Weemstra, 2015, eq. (C5)],694

Gd2D(x1, x2, ω) ≈ − iP

4
√

2πc2

√
2

π
(
ω
c − iα

)
x

e−i(ωxc −
π
4 )e−αx (B.7)

Expression (B.7) can be simplified if one considers that, for small z, (1− iz)−
1
2 ≈ 1+ iz/2695

is accurate to first order in z; after so expanding the square root,696

Gd2D(x1, x2, ω) ≈ − iP

4
√

2πc2

(
1 + i

αc

2ω

)√ 2

π ωxc
e−i(ωxc −

π
4 )e−αx,

≈ − iP

4
√

2πc2

(
1 + i

αc

2ω

)
H

(2)
0

(ωx
c

)
e−αx,

(B.8)

and the leading term at the right-hand side coincides with the right-hand side of eq. (B.5).697

Let us emphasize, again, that this simplification relies not only on the weak-scattering ap-698

proximation, but also on the far-field approximation for H
(2)
0 .699
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