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In this text, we focus on a subset (called the set of tiny braids) of factors of the Garside braid and generalize some known results related to tiny braids. These generalized results, along with some combinatorics, strengthen the existing relationship between this subset and Fibonacci numbers. We also associate a commuting graph with the subset and explore its fundamental identities, including its order, diameter, girth and degree-related properties.

Introduction

The monoid of positive n-braids B + n is defined in [START_REF] Artin | Theory of braids[END_REF] as

B + n = σ 1 , σ 2 , • • • , σ n-1 : σ i+1 σ i σ i+1 = σ i σ i+1 σ i σ i σ j = σ j σ i for |i -j| ≥ 2 . (1) 
In fact, a positive braid α is a class of words in the set of generators {σ 1 , σ 2 , . . . , σ n-1 } :

1 σ i 2 i i + 1 n -1 n . . . . . . r r r ¨1
The monoid B + n canonically embedds in the braid group B n , which is defined by the same presentation as B + n , but considered as a presentation of a group. The monoid B + n is embedded in B + n+1 , and two braids α, β ∈ B + n commute in B + n+1 if and only if α and β commute in B + n . Three kinds of divisors of α ∈ B + n are defined as factors of α: (γ|α), Div(α) = {γ ∈ B + n : there exist δ, ε ∈ B + n , α = δγε}; left divisors of α (γ| L α), Div L (α) = {γ ∈ B + n : there exists ε ∈ B + n , α = γε}; and right divisors of α (γ| R α), Div R (α) = {γ ∈ B + n : there exists δ ∈ B + n , α = δγ}. Clearly, Div L (α) ∪ Div R (α) ⊆ Div(α). Let T B n be the set of all positive braids in which a letter σ i occurs at most once (see [START_REF] Ashraf | Simple braids[END_REF]). Clearly, any word representing a braid in the set T B n must contain σ i at most once. The set T B n is a proper subset of Div(∆ n ), where

∆ n = σ 1 (σ 2 σ 1 ) • • • (σ n-1 σ n-2 • • • σ 2 σ 1 )
is the Garside braid (see [START_REF] Garside | The braid groups and other groups[END_REF]). The set Div(∆ n ) plays a vital role in the solutions to the word and conjugacy problems given in [START_REF] Garside | The braid groups and other groups[END_REF]. In the solution to the latter problem, the factors of the braid ∆ n are used to generate an invariant (called the summit set) of a conjugacy class. Note that in the classical literature on braid theory, every factor of the Garside braid is known as a simple braid, but in [START_REF] Ashraf | Simple braids[END_REF][START_REF] Ashraf | Fibonacci numbers and positive braids[END_REF], the elements from the set T B n are called simple braids. Previous articles [START_REF] Ali | Braids with trivial simple centralizer[END_REF][START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF] follow the same naming convention for the braids in T B n . To avoid confusion, we call an element from the set T B n a tiny braid instead of a simple braid. [START_REF] Ashraf | Fibonacci numbers and positive braids[END_REF] shows that the number of elements in the set T B n is a Fibonacci number F 2n-1 , where (F 0 , F 1 , F 2 , F 3 , F 4 , F 5 . . .) = (0, 1, 1, 2, 3, 5, . . .). For further details regarding and the motivation behind defining the set T B n , see [START_REF] Ashraf | Simple braids[END_REF] or [START_REF] Ashraf | Fibonacci numbers and positive braids[END_REF]. A subset of the centralizer of an element α ∈ T B n is defined in [START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF] as follows:

C n (α) = {γ ∈ T B n : αγ = γα}.

An element α ∈ T B n is said to have a trivial tiny centralizer (in [START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF], the set C n (α) is called a simple centralizer) if

C n (α) = {e, α}.
Let I n be the set of all α ∈ T B n that have a trivial tiny centralizer. In the first part of this article, we discuss the different properties of tiny centralizers and generalize a few of the results. Note that throughout this article, we use letters h, i, j, k, l, m to denote positive integers (for further details on braids, see [START_REF] Kassel | Braid Groups. Grad. Texts in Math[END_REF]).

For graph G, we denote the set of vertices by V (G), the set of edges by E(G), the degree of a vertex v ∈ V (G) by deg(v) and the number of vertices (order) of a graph G by |V (G)|. Graph K n denotes the complete graph on n vertices. The maximum value of the shortest distance between any two vertices of G is called its diameter. Graph G is said to be connected if a path exists between any two vertices of G. The girth of G, denoted by girth(G), is the length of its shortest nontrivial cycle, if it exists. The minimum and maximum degrees of a vertex in G are denoted by δ(G) and ∆(G), respectively. For further details on graph theory, see, e.g., [START_REF] West | Introduction to Graph Theory[END_REF].

The commuting graph Γ(H) associated with a finite subset H of group G is a simple graph whose vertices are the elements of H \ {e}. An edge exists between g and h if and only if gh = hg in G (see [START_REF] Bates | Commuting involution graphs for symmetric groups[END_REF][START_REF] Bondy | The connectivity of commuting graphs[END_REF][START_REF] Iranmanesh | On the commuting graph associated with the sym-metric and alternating groups[END_REF]).

For n ≥ 4, we define a commuting graph Γ(T B n ) associated with the set T B n , the vertex set of which is the set

T B n \ (I n ∪ {e}); that is, V (Γ(T B n )) = T B n \ (I n ∪

{e}). An edge exists between two distinct vertices if and only if they commute in B +

n . In fact, the graph Γ(T B n ) defined here is the major component of the commuting graph defined in [START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF], where the vertex set is the entire set T B n . Graphs Γ(T B 4 ) = K 3 and Γ(T B 5 ) are shown in Figure 1. Fifty-two vertices exist in Γ(T B 6 ), and the graph

x 3 x 1 x 2 x 4 x 4 x 3 x 2 x 1 x 1 x 2 x 4 x 4 x 1 x 1 x 4 x 2 x 1 x 4 x 2 x 1 x 2 x 3 x 3 x 4 x 1 x 3 x 4 x 1 x 4x3 Figure 1: Γ(T B 5 )
structure becomes more complex for n ≥ 7.

In the second section of this article, we focus on the graphical aspect of this association and investigate some properties of the commuting graph Γ(T B n ), such as its order, connectedness, diameter, girth and degree-related results.

To develop our text, we need the following known results:

Theorem 1.1. [1] If α ∈ T B n with σ i |α for all 1 < i < n -1, then the tiny centralizer C n (α) = {e, α}. Lemma 1.2. [2] If α ∈ T B n and σ n-1 |α, then either σ n-1 | R α or σ n-1 | L α. Lemma 1.3. [2] If β(γ 1 γ 2 ) = (γ 1 γ 2 )β and βγ 1 = γ 1 β or βγ 2 = γ 2 β, then βγ 2 = γ 2 β or βγ 1 = γ 1 β, respectively. Lemma 1.4. [2] If β ∈ T B n-1 and α ∈ T B n such that σ n-2 |β and σ n-1 |α, then βα = αβ.

Centralizer of Tiny Braids

We define a set T B (0,n) = T B n . Generally,

T B (i,j) = {α ∈ T B n : σ k α for all k ≤ i and k ≥ j}, i ≤ j < n.
Correspondingly, we define, for any α ∈ T B n , the set

C (i,j) (α) = {γ ∈ T B (i,j) : αγ = γα}.
We rewrite the following lemma from [START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF] using the above construction.

Lemma 2.1. [2] If β ∈ T B i , i > 1 and σ i-1 |β, then γ ∈ C n (β) if and only if γ = γ 1 γ 2 , where γ 1 ∈ C i (β) and γ 2 ∈ C (i,n) (β) = T B (i,n) .
Now, consider the set C 0 (α) = {e} for any α ∈ T B n , T B 0 = {e} and T B (n,n) = {e}. Due to the symmetric nature of σ i and σ n-i in set T B n , and using Lemma 2.1, we obtain the following result.

Lemma 2.2. If β ∈ T B (i,n) and σ i+1 |β, then γ ∈ C n (β) if and only if γ = γ 1 γ 2 , where γ 1 ∈ C i (β) = T B i and γ 2 ∈ C (i,n) (β).
Lemma 2.1 and Lemma 2.2 lead to the following result.

Theorem 2.3. For any β ∈ T B n , if i + 1 = min{k : σ k |β} and j -1 = max{k : σ k |β} with i < j < n, then γ ∈ C n (β) if and only if γ = γ 1 γ 2 γ 3 , where γ 1 ∈ T B i , γ 2 ∈ C (i,j) (β) and γ 3 ∈ T B (j,n) .
This can be written symbolically as

C n (β) = T B i × C (i,j) (β) × T B (j,n) = {γ 1 γ 2 γ 3 : γ 1 ∈ T B i , γ 2 ∈ C (i,j) (β), γ 3 ∈ T B (j,n) }.
Proof. Because β ∈ T B j when σ j-1 |β, by Lemma 2.1, γ ∈ C n (β) if and only if γ = γ γ 3 , where γ ∈ C j (β) and γ 3 ∈ C (j,n) (β) = T B (j,n) . Additionally, the given conditions indicate that β ∈ T B (i,j) , with σ i+1 |β. Therefore, by Lemma 2.2, γ ∈ C j (β) if and only if γ = γ 1 γ 2 , where

γ 1 ∈ C i (β) = T B i and γ 2 ∈ C (i,j) (β).
For any α ∈ T B n , |C n (α)| denotes the number of elements in the tiny centralizer C n (α). [START_REF] Ashraf | Fibonacci numbers and positive braids[END_REF] shows that

|T B n | = F 2n-1 . Furthermore, |T B (j,n) | = |T B n-j | = F 2(n-j)-1 , as per our consideration, we take |T B 0 | = |{e}| = F -1 = 1.
As a consequence, we have the following corollary:

Corollary 2.4. For any β ∈ T B n , if i + 1 = min{k : σ k |β} and j -1 = max{k : σ k |β}, with i < j < n, then |C n (β)| = |C (i,j) (β)|F 2i-1 F 2(n-j)-1 .
Theorem 2.3 and Corollary 2.4 are generalizations of the previous results found in [START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF], which were obtained only for the generators of B + n . We define a segment set in set T B n as

[σ i , σ i+j ] = {α ∈ T B n : σ k |α if and only if i ≤ k ≤ i + j} .
The construction of these segments is significant for set T B n . A complete characterization of C n (σ i ) is given in [START_REF] Ali | Centralizer of braids and Fibonacci numbers[END_REF], which shows that γ ∈ C n (σ i ) if and only if σ k γ for any k satisfying |k -i| = 1. As a generalization, we characterize the tiny centralizer

C n (α) for α ∈ [σ i , σ i+j ]. Theorem 2.5. If α ∈ [σ l , σ k ] ⊂ T B n , l ≤ k < n, then C n (α) = T B l-1 × {e, α} × T B (k+1,n) . Moreover, |C n (α)| = 2F 2l-3 F 2(n-k)-3 . Proof. Theorem 1.1 states that C n (α) = {e, α} for any α ∈ [σ 1 , σ n-1 ].
Therefore, for any α ∈ [σ l , σ k ], we have C (l-1,k+1) (α) = {e, α} in the set T B (l-1,k+1) . By substituting i -1 = l and j + 1 = k into Theorem 2.3, we obtain

C n (α) = T B l-1 × {e, α} × T B (k+1,n) . Consequently, |C n (α)| = |T B l-1 |×|{e, α}|×|T B (k+1,n) | = 2F 2l-3 F 2(n-k)-3 . Let I n = {α ∈ T B n : C n (α) = {e, α}}.
Clearly, all non-identity elements in the set T B 2 = {e, σ 1 } belong to I 2 , and those in the set T B 3 = {e, σ 1 , σ 2 , σ 1 σ 2 , σ 2 σ 1 } belong to I 3 . In the following result, we completely characterize the set I n for n ≥ 4.

Theorem 2.6. For n ≥ 4, we have

I n = [σ 1 , σ n-1 ] [σ 1 , σ n-2 ] [σ 2 , σ n-1 ] [σ 2 , σ n-2 ].
(2)

Proof. Theorem 1.1 states that an element α ∈ T B n \ {e} with σ i |α for all 1 < i < n -1 has a tiny centralizer C n (α) = {e, α}. Therefore, α ∈ I n .

If σ i α for some 1 < i < n -1, then we can write α = α 1 α 2 such that α 1 ∈ T B i and α 2 ∈ T B (i,n) . Without loss of generality, if α 1 = e, then α = α 2 , which implies that σ 1 α = ασ 1 . Consequently, if neither α 1 nor α 2 is an identity, then α 1 α = αα 1 and α 2 α = αα 2 . Hence, α ∈ I n . Lemma 1.2 gives the following:

I n = {α ∈ T B n : σ i |α for all 1 < i < n -1} = {α ∈ T B n : β|α for any one β ∈ [σ 2 , σ n-2 ]} = [σ 2 , σ n-2 ] [σ 1 , σ n-2 ] [σ 2 , σ n-1 ] [σ 1 , σ n-1 ].
Lemma 2.7. For n ≥ 2, in the set of tiny braids T B n , we have

|[σ 1 , σ 1+j ]| = |[σ i , σ i+j ]| = 2 j . Moreover, |I n | = 9 × 2 n-4 for any n ≥ 4. Proof. Clearly, |[σ 1 , σ 1+j ]| = |[σ i , σ i+j ]|. Furthermore, we use induction on j to show that |[σ 1 , σ 1+j ]| = 2 j . For j = 1, [σ 1 , σ 2 ] = {σ 1 σ 2 , σ 2 σ 1 }; hence, |[σ 1 , σ 2 ]| = 2. Let |[σ 1 , σ j ]| = 2 j-1 . By Lemma 1.2, [σ 1 , σ 1+j ] = σ 1+j [σ 1 , σ j ] [σ 1 , σ j ]σ 1+j . Therefore, |[σ 1 , σ 1+j ]| = |σ 1+j [σ 1 , σ j ]|+|[σ 1 , σ j ]σ 1+j | = |[σ 1 , σ j ]|+|[σ 1 , σ j ]| = 2×2 j-1 = 2 j .
By Equation ( 2), we obtain

|I n | = |[σ 1 , σ n-1 ] [σ 1 , σ n-2 ] [σ 2 , σ n-1 ] [σ 2 , σ n-2 ]| = |[σ 1 , σ n-1 ]| + |[σ 1 , σ n-2 ]| + |[σ 2 , σ n-1 ]| + |[σ 2 , σ n-2 ]| = 2 n-2 + 2 n-3 + 2 n-3 + 2 n-4 = 4 × 2 n-4 + 2 × 2 n-4 + 2 × 2 n-4 + 2 n-4 = 9 × 2 n-4 .
For any α ∈ I n ⊂ T B n , |C n (α)| = 2, and for every α ∈ I n , we have the following result. Proof. Clearly, {e, α} ⊆ C n (α) for every α ∈ T B n . If α ∈ I n , then by Lemma 2.6, σ i α for some 1 < i < n -1; we can write α = α 1 α 2 such that α 1 ∈ T B i and α 2 ∈ T B (i,n) . Following the proof of Lemma 2.6, we can see that either {e, α, σ 1 , σ 

1 α} ⊆ C n (α), {e, α, σ n-1 , σ n-1 α} ⊆ C n (α) or {e, α, α 1 , α 2 } ⊆ C n (α).
C n (β) = T B 0 × {e, β} × T B (n-2,n) = {e, β, σ n-1 , βσ n-1 }. Therefore, |C n (β)| = |{e, σ n-1 , β, βσ n-1 }| = 4.
The shifting property of Fibonacci numbers, i.e.,

F m+n-1 = F m F n + F m-1 F n-1 , yields F m F n ≤ F m+n-1 . (3) 
This inequality enables us to find the maximum cardinality of

C n (α) for α ∈ [σ i , σ i+j ]. Proposition 2.9. For all n > 3, |C n (σ 1 )| = |C n (σ n-1 )| = 2F 2n-5 ,

and for any other

α ∈ [σ l , σ k ] ⊂ T B n , l ≤ k < n, max α∈T Bn |C n (α)| = 2F 2n-7 . Proof. For α = σ 1 or α = σ n-1 , Theorem 2.5 yields |C n (α)| = 2F 2n-5 . For any other α ∈ [σ l , σ k ] ⊂ T B n , l ≤ k < n, Theorem 2.5 implies |C n (α)| = 2F 2l-3 F 2(n-k)-3
. By the Fibonacci number shifting property given in (3) and because k -l ≥ 0, we obtain

|C n (α)| ≤ 2F 2l-3+2(n-k)-3-1 = 2F 2(n-(k-l))-7 ≤ 2F 2n-7 .
3 Properties of the Commuting Graph Γ(T B n )

The following characterization of the vertex set V (Γ(T B n )) follows from the definition of Γ(T B n ) still be deleted to avoid being too repetitive or "wordy". and the proof of Lemma 2.6.

Lemma 3.1. A vertex α ∈ V (Γ(T B n )) if and only if σ i α for some 1 < i < n -1 and α = e.

Lemma 2.7 enables us to find the number of vertices (order) of Γ(T B n ).

Theorem 3.2. The order of

Γ(T B n ) is F 2n-1 -9 × 2 n-4 -1. Proof. By definition, V (Γ(T B n )) = T B n \ (I n ∪ {e}) implies that |V (Γ(T B n ))| = |T B n | -|I n | -1 = F 2n-1 -|I n | -1. By Lemma 2.7, |V (Γ(T B n ))| = F 2n-1 -9 × 2 n-4 -1. Proposition 3.3. For n ≥ 4, Γ(T B n ) is connected.
Proof. Consider two vertices α, β ∈ V (Γ(T B n )). By Lemma 3.1, σ i α for some 1 < i < n -1. Hence, we can write α = α 1 α 2 such that α 1 ∈ T B i and α 2 ∈ T B (i,n) . Similarly, σ j β for some 1 < j < n -1. Hence, β = β 1 β 2 such that β 1 ∈ T B j and β 2 ∈ T B (j,n) . We must consider two cases. Case 1: If none of α 1 , α 2 , β 1 β 2 is the identity, then for i ≤ j, the path ((α, α 1 ), (α 1 , β 2 ), (β 2 , β)) exists, while for i > j, the path ((α, α 2 ), (α 2 , β 1 ), (β 1 , β)) exists.

Case 2: Without loss of generality, we suppose that α 1 = e, which implies that α = α 2 . Consider β 2 = e; then, we have the path ((α, σ 1 ), (σ 1 , β 2 ), (β 2 , β)) .

If β 2 = e, then β = β 1 , and we have the path ((α, σ 1 ), (σ 1 , σ n-1 ), (σ n-1 , β)) .

Consequently, Γ(T B n ) is connected.

Since Γ(T B 4 ) = K 3 ,, the diameter of Γ(T B 4 ) is 1. For n ≥ 5, we have the following result. Theorem 3.4. For any n ≥ 5, the diameter of Γ(T B n ) is 3.

Proof. The proof of Proposition 3.3 shows that Γ(T B n ) has a diameter ≤ 3. To show that it is exactly 3, we show the existence of a path of length 3 between two vertices of Γ(T B n ). Since n ≥ 5, we consider

α = σ 2 σ 3 . . . σ n-3 , β = σ 3 σ 4 . . . σ n-2 ∈ V (Γ(T B n )), where, in fact, α ∈ [σ 2 , σ n-3 ] and β ∈ [σ 3 , σ n-2 ]. Therefore, by Theorem 2.5, C n (α) = T B 1 × {e, α} × T B (n-2,n) = {e, α, σ n-1 , ασ n-1 } and C n (β) = T B 2 × {e, β} × T B (n-1,n) = {e, β, σ 1 , σ 1 β}.
Clearly, the most likely shortest path between α and β is ((α, σ n-1 ), (σ n-1 , σ 1 ), (σ 1 , γ)).

Theorem 3.5. For α ∈ V (Γ(T B n )), n ≥ 4, K 3 is a subgraph of Γ(T B n ) such that α ∈ V (K 3 ). Moreover, girth(Γ(T B n )) = 3.
Proof. By Lemma 3.1, σ i α for some 1 < i < n -1. We can write α = α 1 α 2 such that α 1 ∈ T B i and α 2 ∈ T B (i,n) . If α 1 = e, then α = α 2 ∈ V (K 3 ) = {α, σ 1 , σ 1 α}; a similar existence can be shown for α 2 = e. If neither α 1 nor α 2 is an identity, then α ∈ V (K 3 ) = {α, α 1 , α 2 }. Clearly, girth(Γ(T B n )) = 3.

Based on the definition of the vertices of Γ(T B n ), the identity element {e} and element α ∈ V (Γ(T B n )) themselves do not contribute to the degree of α, which gives deg(α) = |C n (α)| -2. This motivates us to discuss the degree-related properties of the commuting graph as a consequence of the results obtained in the previous section. Recall that (F k ) is the Fibonacci sequence and that F -1 = 1. Moreover, if deg(α) = 0, then α ∈ V (Γ(T B n )). By setting l = k in Proposition 3.6, we obtain the following result. The following Corollaries are obtained from Theorem 2.8 and Proposition 2.9, respectively. 

Theorem 2 . 8 .

 28 For n ≥ 4, min α ∈In |C n (α)| = 4 in T B n .

  Therefore, |C n (α)| ≥ 4 for all α ∈ T B n \ I n . To obtain the required result, we need to prove the existence of an element β ∈ T B n \ I n with |C n (β)| = 4. As n ≥ 4, we can consider β = σ 1 σ 2 . . . σ n-3 ∈ T B n , where β ∈ [σ 1 , σ n-3 ]. Hence, by Theorem 2.5,

Proposition 3 . 6 .

 36 For α ∈ [σ l , σ k ] ⊂ T B n , l ≤ k < n, n ≥ 4, we have deg(α) = 2(F 2l-3 F 2(n-k)-3 ) -2.Proof. It follows from Theorem 2.5.

Corollary 3 . 7 .

 37 For σ k ∈ T B n , n ≥ 4, we have deg(σ k ) = 2(F 2k-3 F 2(n-k)-3 ) -2.

Corollary 3 . 8 .Corollary 3 . 9 .

 3839 For n ≥ 4, the minimum degree δ(Γ(T B n )) = 2. For any n ≥ 4, deg(σ 1 ) = deg(σ n-1 ) = 2F 2n-5 -2, and for any other α ∈ [σ l , σ k ] ⊂ T B n , l ≤ k < n, max(deg(α)) = 2F 2n-7 -2.

Open Problems

The following questions related to Γ(T B n ) remain to be explored.