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Abstract

In this text, we focus on a subset (called the set of tiny braids)
of factors of the Garside braid and generalize some known results
related to tiny braids. These generalized results, along with some
combinatorics, strengthen the existing relationship between this sub-
set and Fibonacci numbers. We also associate a commuting graph
with the subset and explore its fundamental identities, including its
order, diameter, girth and degree-related properties.
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1 Introduction

The monoid of positive n-braids B+n is defined in [3] as

B+n =

〈
σ1, σ2, · · · , σn−1 :

σi+1 σi σi+1 = σi σi+1 σi
σi σj = σj σi for |i− j| ≥ 2

〉
. (1)

In fact, a positive braid α is a class of words in the set of generators
{σ1, σ2, . . . , σn−1} :

1

σi

2 i i+ 1 n− 1 n

. . . . . .
H
HH�
�
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The monoid B+n canonically embedds in the braid group Bn, which is defined
by the same presentation as B+n , but considered as a presentation of a group.
The monoid B+n is embedded in B+n+1, and two braids α, β ∈ B+n commute

in B+n+1 if and only if α and β commute in B+n .
Three kinds of divisors of α ∈ B+n are defined as factors of α: (γ|α),

Div(α) = {γ ∈ B+n : there exist δ, ε ∈ B+n , α = δγε}; left divisors of α
(γ|Lα), DivL(α) = {γ ∈ B+n : there exists ε ∈ B+n , α = γε}; and right
divisors of α (γ|Rα), DivR(α) = {γ ∈ B+n : there exists δ ∈ B+n , α = δγ}.
Clearly, DivL(α) ∪DivR(α) ⊆ Div(α).
Let T Bn be the set of all positive braids in which a letter σi occurs at most
once (see [4]). Clearly, any word representing a braid in the set T Bn must
contain σi at most once. The set T Bn is a proper subset of Div(∆n), where

∆n = σ1(σ2σ1) · · · (σn−1σn−2 · · ·σ2σ1)

is the Garside braid (see [8]). The set Div(∆n) plays a vital role in the
solutions to the word and conjugacy problems given in [8]. In the solution
to the latter problem, the factors of the braid ∆n are used to generate
an invariant (called the summit set) of a conjugacy class. Note that in
the classical literature on braid theory, every factor of the Garside braid
is known as a simple braid, but in [4, 5], the elements from the set T Bn
are called simple braids. Previous articles [1, 2] follow the same naming
convention for the braids in T Bn. To avoid confusion, we call an element
from the set T Bn a tiny braid instead of a simple braid.

[5] shows that the number of elements in the set T Bn is a Fibonacci
number F2n−1, where (F0, F1, F2, F3, F4, F5 . . .) = (0, 1, 1, 2, 3, 5, . . .). For
further details regarding and the motivation behind defining the set T Bn,
see [4] or [5]. A subset of the centralizer of an element α ∈ T Bn is defined
in [2] as follows:

Cn(α) = {γ ∈ T Bn : αγ = γα}.

An element α ∈ T Bn is said to have a trivial tiny centralizer (in [2], the
set Cn(α) is called a simple centralizer) if

Cn(α) = {e, α}.

Let In be the set of all α ∈ T Bn that have a trivial tiny centralizer. In
the first part of this article, we discuss the different properties of tiny
centralizers and generalize a few of the results. Note that throughout this
article, we use letters h, i, j, k, l, m to denote positive integers (for further
details on braids, see [10]).

For graph G, we denote the set of vertices by V (G), the set of edges
by E(G), the degree of a vertex v ∈ V (G) by deg(v) and the number of
vertices (order) of a graph G by |V (G)|. Graph Kn denotes the complete
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graph on n vertices. The maximum value of the shortest distance between
any two vertices of G is called its diameter. Graph G is said to be connected
if a path exists between any two vertices of G. The girth of G, denoted
by girth(G), is the length of its shortest nontrivial cycle, if it exists. The
minimum and maximum degrees of a vertex in G are denoted by δ(G) and
∆(G), respectively. For further details on graph theory, see, e.g., [11].

The commuting graph Γ(H) associated with a finite subset H of group
G is a simple graph whose vertices are the elements of H \ {e}. An edge
exists between g and h if and only if gh = hg in G (see [6, 7, 9]).

For n ≥ 4, we define a commuting graph Γ(T Bn) associated with the
set T Bn, the vertex set of which is the set T Bn \ (In ∪ {e}); that is,
V (Γ(T Bn)) = T Bn \ (In ∪ {e}). An edge exists between two distinct ver-
tices if and only if they commute in B+n . In fact, the graph Γ(T Bn) defined
here is the major component of the commuting graph defined in [2], where
the vertex set is the entire set T Bn. Graphs Γ(T B4) = K3 and Γ(T B5)
are shown in Figure 1. Fifty-two vertices exist in Γ(T B6), and the graph
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Figure 1: Γ(T B5)

structure becomes more complex for n ≥ 7.
In the second section of this article, we focus on the graphical as-

pect of this association and investigate some properties of the commut-
ing graph Γ(T Bn), such as its order, connectedness, diameter, girth and
degree-related results.

To develop our text, we need the following known results:

Theorem 1.1. [1] If α ∈ T Bn with σi|α for all 1 < i < n − 1, then the
tiny centralizer Cn(α) = {e, α}.
Lemma 1.2. [2] If α ∈ T Bn and σn−1|α, then either σn−1|Rα or σn−1|Lα.
Lemma 1.3. [2] If β(γ1γ2) = (γ1γ2)β and βγ1 = γ1β or βγ2 = γ2β, then
βγ2 = γ2β or βγ1 = γ1β, respectively.

Lemma 1.4. [2] If β ∈ T Bn−1 and α ∈ T Bn such that σn−2|β and σn−1|α,
then βα 6= αβ.
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2 Centralizer of Tiny Braids

We define a set T B(0,n) = T Bn. Generally,

T B(i,j) = {α ∈ T Bn : σk - α for all k ≤ i and k ≥ j}, i ≤ j < n.

Correspondingly, we define, for any α ∈ T Bn, the set C(i,j)(α) = {γ ∈
T B(i,j) : αγ = γα}.
We rewrite the following lemma from [2] using the above construction.

Lemma 2.1. [2] If β ∈ T Bi, i > 1 and σi−1|β, then γ ∈ Cn(β) if and only
if γ = γ1γ2, where γ1 ∈ Ci(β) and γ2 ∈ C(i,n)(β) = T B(i,n).

Now, consider the set C0(α) = {e} for any α ∈ T Bn, T B0 = {e} and
T B(n,n) = {e}. Due to the symmetric nature of σi and σn−i in set T Bn,
and using Lemma 2.1, we obtain the following result.

Lemma 2.2. If β ∈ T B(i,n) and σi+1|β, then γ ∈ Cn(β) if and only if
γ = γ1γ2, where γ1 ∈ Ci(β) = T Bi and γ2 ∈ C(i,n)(β).

Lemma 2.1 and Lemma 2.2 lead to the following result.

Theorem 2.3. For any β ∈ T Bn, if i + 1 = min{k : σk|β} and j − 1 =
max{k : σk|β} with i < j < n, then γ ∈ Cn(β) if and only if γ = γ1γ2γ3,
where γ1 ∈ T Bi, γ2 ∈ C(i,j)(β) and γ3 ∈ T B(j,n). This can be written
symbolically as

Cn(β) = T Bi × C(i,j)(β)× T B(j,n)

= {γ1γ2γ3 : γ1 ∈ T Bi, γ2 ∈ C(i,j)(β), γ3 ∈ T B(j,n)}.

Proof. Because β ∈ T Bj when σj−1|β, by Lemma 2.1, γ ∈ Cn(β) if and
only if γ = γ′γ3, where γ′ ∈ Cj(β) and γ3 ∈ C(j,n)(β) = T B(j,n). Addition-
ally, the given conditions indicate that β ∈ T B(i,j), with σi+1|β. Therefore,
by Lemma 2.2, γ′ ∈ Cj(β) if and only if γ′ = γ1γ2, where γ1 ∈ Ci(β) = T Bi
and γ2 ∈ C(i,j)(β).

For any α ∈ T Bn, |Cn(α)| denotes the number of elements in the tiny
centralizer Cn(α). [5] shows that |T Bn| = F2n−1. Furthermore, |T B(j,n)| =
|T Bn−j | = F2(n−j)−1, as per our consideration, we take |T B0| = |{e}| =
F−1 = 1. As a consequence, we have the following corollary:

Corollary 2.4. For any β ∈ T Bn, if i + 1 = min{k : σk|β} and j − 1 =
max{k : σk|β}, with i < j < n, then

|Cn(β)| = |C(i,j)(β)|F2i−1F2(n−j)−1.
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Theorem 2.3 and Corollary 2.4 are generalizations of the previous results
found in [2], which were obtained only for the generators of B+n .

We define a segment set in set T Bn as

[σi, σi+j ] = {α ∈ T Bn : σk|α if and only if i ≤ k ≤ i+ j} .

The construction of these segments is significant for set T Bn. A complete
characterization of Cn(σi) is given in [2], which shows that γ ∈ Cn(σi) if
and only if σk - γ for any k satisfying |k − i| = 1. As a generalization, we
characterize the tiny centralizer Cn(α) for α ∈ [σi, σi+j ].

Theorem 2.5. If α ∈ [σl, σk] ⊂ T Bn, l ≤ k < n, then

Cn(α) = T Bl−1 × {e, α} × T B(k+1,n).

Moreover,
|Cn(α)| = 2F2l−3F2(n−k)−3.

Proof. Theorem 1.1 states that Cn(α) = {e, α} for any α ∈ [σ1, σn−1].
Therefore, for any α ∈ [σl, σk], we have C(l−1,k+1)(α) = {e, α} in the set
T B(l−1,k+1). By substituting i− 1 = l and j + 1 = k into Theorem 2.3, we
obtain

Cn(α) = T Bl−1 × {e, α} × T B(k+1,n).

Consequently, |Cn(α)| = |T Bl−1|×|{e, α}|×|T B(k+1,n)| = 2F2l−3F2(n−k)−3.

Let In = {α ∈ T Bn : Cn(α) = {e, α}}. Clearly, all non-identity
elements in the set T B2 = {e, σ1} belong to I2, and those in the set
T B3 = {e, σ1, σ2, σ1σ2, σ2σ1} belong to I3. In the following result, we
completely characterize the set In for n ≥ 4.

Theorem 2.6. For n ≥ 4, we have

In = [σ1, σn−1] t [σ1, σn−2] t [σ2, σn−1] t [σ2, σn−2]. (2)

Proof. Theorem 1.1 states that an element α ∈ T Bn \ {e} with σi|α for all
1 < i < n − 1 has a tiny centralizer Cn(α) = {e, α}. Therefore, α ∈ In.
If σi - α for some 1 < i < n − 1, then we can write α = α1α2 such that
α1 ∈ T Bi and α2 ∈ T B(i,n). Without loss of generality, if α1 = e, then
α = α2, which implies that σ1α = ασ1. Consequently, if neither α1 nor α2

is an identity, then α1α = αα1 and α2α = αα2. Hence, α 6∈ In. Lemma 1.2
gives the following:

In = {α ∈ T Bn : σi|α for all 1 < i < n− 1}
= {α ∈ T Bn : β|α for any one β ∈ [σ2, σn−2]}
= [σ2, σn−2] t [σ1, σn−2] t [σ2, σn−1] t [σ1, σn−1].
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Lemma 2.7. For n ≥ 2, in the set of tiny braids T Bn, we have |[σ1, σ1+j ]| =
|[σi, σi+j ]| = 2j . Moreover, |In| = 9× 2n−4 for any n ≥ 4.

Proof. Clearly, |[σ1, σ1+j ]| = |[σi, σi+j ]|. Furthermore, we use induction on
j to show that |[σ1, σ1+j ]| = 2j .
For j = 1, [σ1, σ2] = {σ1σ2, σ2σ1}; hence, |[σ1, σ2]| = 2. Let |[σ1, σj ]| =
2j−1. By Lemma 1.2, [σ1, σ1+j ] = σ1+j [σ1, σj ] t [σ1, σj ]σ1+j . Therefore,

|[σ1, σ1+j ]| = |σ1+j [σ1, σj ]|+|[σ1, σj ]σ1+j | = |[σ1, σj ]|+|[σ1, σj ]| = 2×2j−1 = 2j .

By Equation (2), we obtain

|In| = |[σ1, σn−1] t [σ1, σn−2] t [σ2, σn−1] t [σ2, σn−2]|
= |[σ1, σn−1]|+ |[σ1, σn−2]|+ |[σ2, σn−1]|+ |[σ2, σn−2]|
= 2n−2 + 2n−3 + 2n−3 + 2n−4

= 4× 2n−4 + 2× 2n−4 + 2× 2n−4 + 2n−4 = 9× 2n−4.

For any α ∈ In ⊂ T Bn, |Cn(α)| = 2, and for every α 6∈ In, we have the
following result.

Theorem 2.8. For n ≥ 4, min
α6∈In

|Cn(α)| = 4 in T Bn.

Proof. Clearly, {e, α} ⊆ Cn(α) for every α ∈ T Bn. If α 6∈ In, then by
Lemma 2.6, σi - α for some 1 < i < n − 1; we can write α = α1α2 such
that α1 ∈ T Bi and α2 ∈ T B(i,n). Following the proof of Lemma 2.6, we
can see that either {e, α, σ1, σ1α} ⊆ Cn(α), {e, α, σn−1, σn−1α} ⊆ Cn(α)
or {e, α, α1, α2} ⊆ Cn(α). Therefore, |Cn(α)| ≥ 4 for all α ∈ T Bn \ In. To
obtain the required result, we need to prove the existence of an element β ∈
T Bn \ In with |Cn(β)| = 4. As n ≥ 4, we can consider β = σ1σ2 . . . σn−3 ∈
T Bn, where β ∈ [σ1, σn−3]. Hence, by Theorem 2.5,

Cn(β) = T B0 × {e, β} × T B(n−2,n) = {e, β, σn−1, βσn−1}.

Therefore, |Cn(β)| = |{e, σn−1, β, βσn−1}| = 4.

The shifting property of Fibonacci numbers, i.e., Fm+n−1 = FmFn +
Fm−1Fn−1, yields

FmFn ≤ Fm+n−1. (3)

This inequality enables us to find the maximum cardinality of Cn(α) for
α ∈ [σi, σi+j ].

Proposition 2.9. For all n > 3, |Cn(σ1)| = |Cn(σn−1)| = 2F2n−5, and
for any other α ∈ [σl, σk] ⊂ T Bn, l ≤ k < n, max

α∈T Bn

|Cn(α)| = 2F2n−7.
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Proof. For α = σ1 or α = σn−1, Theorem 2.5 yields |Cn(α)| = 2F2n−5.
For any other α ∈ [σl, σk] ⊂ T Bn, l ≤ k < n, Theorem 2.5 implies
|Cn(α)| = 2F2l−3F2(n−k)−3. By the Fibonacci number shifting property
given in (3) and because k − l ≥ 0, we obtain

|Cn(α)| ≤ 2F2l−3+2(n−k)−3−1 = 2F2(n−(k−l))−7 ≤ 2F2n−7.

3 Properties of the Commuting Graph Γ(T Bn)
The following characterization of the vertex set V (Γ(T Bn)) follows from
the definition of Γ(T Bn) still be deleted to avoid being too repetitive or
“wordy”. and the proof of Lemma 2.6.

Lemma 3.1. A vertex α ∈ V (Γ(T Bn)) if and only if σi - α for some
1 < i < n− 1 and α 6= e.

Lemma 2.7 enables us to find the number of vertices (order) of Γ(T Bn).

Theorem 3.2. The order of Γ(T Bn) is F2n−1 − 9× 2n−4 − 1.

Proof. By definition, V (Γ(T Bn)) = T Bn \ (In ∪ {e}) implies that

|V (Γ(T Bn))| = |T Bn| − |In| − 1 = F2n−1 − |In| − 1.

By Lemma 2.7, |V (Γ(T Bn))| = F2n−1 − 9× 2n−4 − 1.

Proposition 3.3. For n ≥ 4, Γ(T Bn) is connected.

Proof. Consider two vertices α, β ∈ V (Γ(T Bn)). By Lemma 3.1, σi - α for
some 1 < i < n−1. Hence, we can write α = α1α2 such that α1 ∈ T Bi and
α2 ∈ T B(i,n). Similarly, σj - β for some 1 < j < n − 1. Hence, β = β1β2
such that β1 ∈ T Bj and β2 ∈ T B(j,n). We must consider two cases.
Case 1: If none of α1, α2, β1β2 is the identity, then for i ≤ j, the path
((α, α1), (α1, β2), (β2, β)) exists, while for i > j, the path ((α, α2), (α2, β1), (β1, β))
exists.
Case 2: Without loss of generality, we suppose that α1 = e, which implies
that α = α2. Consider β2 6= e; then, we have the path ((α, σ1), (σ1, β2), (β2, β)) .
If β2 = e, then β = β1, and we have the path ((α, σ1), (σ1, σn−1), (σn−1, β)) .
Consequently, Γ(T Bn) is connected.

Since Γ(T B4) = K3,, the diameter of Γ(T B4) is 1. For n ≥ 5, we have
the following result.

Theorem 3.4. For any n ≥ 5, the diameter of Γ(T Bn) is 3.
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Proof. The proof of Proposition 3.3 shows that Γ(T Bn) has a diameter
≤ 3. To show that it is exactly 3, we show the existence of a path
of length 3 between two vertices of Γ(T Bn). Since n ≥ 5, we consider
α = σ2σ3 . . . σn−3, β = σ3σ4 . . . σn−2 ∈ V (Γ(T Bn)), where, in fact, α ∈
[σ2, σn−3] and β ∈ [σ3, σn−2]. Therefore, by Theorem 2.5,

Cn(α) = T B1 × {e, α} × T B(n−2,n) = {e, α, σn−1, ασn−1}

and Cn(β) = T B2 × {e, β} × T B(n−1,n) = {e, β, σ1, σ1β}.
Clearly, the most likely shortest path between α and β is
((α, σn−1), (σn−1, σ1), (σ1, γ)).

Theorem 3.5. For α ∈ V (Γ(T Bn)), n ≥ 4, K3 is a subgraph of Γ(T Bn)
such that α ∈ V (K3). Moreover, girth(Γ(T Bn)) = 3.

Proof. By Lemma 3.1, σi - α for some 1 < i < n − 1. We can write
α = α1α2 such that α1 ∈ T Bi and α2 ∈ T B(i,n). If α1 = e, then α =
α2 ∈ V (K3) = {α, σ1, σ1α}; a similar existence can be shown for α2 = e.
If neither α1 nor α2 is an identity, then α ∈ V (K3) = {α, α1, α2}. Clearly,
girth(Γ(T Bn)) = 3.

Based on the definition of the vertices of Γ(T Bn), the identity element
{e} and element α ∈ V (Γ(T Bn)) themselves do not contribute to the degree
of α, which gives deg(α) = |Cn(α)| − 2. This motivates us to discuss the
degree-related properties of the commuting graph as a consequence of the
results obtained in the previous section.

Proposition 3.6. For α ∈ [σl, σk] ⊂ T Bn, l ≤ k < n, n ≥ 4, we have

deg(α) = 2(F2l−3F2(n−k)−3)− 2.

Proof. It follows from Theorem 2.5.

Recall that (Fk) is the Fibonacci sequence and that F−1 = 1. Moreover,
if deg(α) = 0, then α 6∈ V (Γ(T Bn)).
By setting l = k in Proposition 3.6, we obtain the following result.

Corollary 3.7. For σk ∈ T Bn, n ≥ 4, we have

deg(σk) = 2(F2k−3F2(n−k)−3)− 2.

The following Corollaries are obtained from Theorem 2.8 and Proposi-
tion 2.9, respectively.

Corollary 3.8. For n ≥ 4, the minimum degree δ(Γ(T Bn)) = 2.

Corollary 3.9. For any n ≥ 4, deg(σ1) = deg(σn−1) = 2F2n−5 − 2, and
for any other α ∈ [σl, σk] ⊂ T Bn, l ≤ k < n, max(deg(α)) = 2F2n−7 − 2.
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4 Open Problems

The following questions related to Γ(T Bn) remain to be explored.

Question 4.1. What is the number of edges (size) of Γ(T Bn)?

The degree of a certain class of vertices is discussed in Proposition 3.6.

Question 4.2. What is the degree of a general vertex in Γ(T Bn)?

Proposition 3.6 shows that the degree of each α ∈ [σi, σj ] ⊂ T Bn is
even in Γ(T Bn).

Question 4.3. Is the degree of each vertex even in Γ(T Bn)?
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