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ABSTRACT

Aims. We present the obliquity measurement, that is, the angle between the normal angle of the orbital plane and the stellar spin
axis, of the sub-Neptune planet HD 3167 c, which transits a bright nearby K0 star. We study the orbital architecture of this multi-planet
system to understand its dynamical history. We also place constraints on the obliquity of planet d based on the geometry of the planetary
system and the dynamical study of the system.
Methods. New observations obtained with HARPS-N at the Telescopio Nazionale Galileo (TNG) were employed for our analysis.
The sky-projected obliquity was measured using three different methods: the Rossiter-McLaughlin anomaly, Doppler tomography, and
reloaded Rossiter-McLaughlin techniques. We performed the stability analysis of the system and investigated the dynamical interactions
between the planets and the star.
Results. HD 3167 c is found to be nearly polar with sky-projected obliquity, λ = −97◦± 23◦. This misalignment of the orbit of planet c
with the spin axis of the host star is detected with 97% confidence. The analysis of the dynamics of this system yields coplanar orbits
of planets c and d. It also shows that it is unlikely that the currently observed system can generate this high obliquity for planets c
and d by itself. However, the polar orbits of planets c and d could be explained by the presence of an outer companion in the system.
Follow-up observations of the system are required to confirm such a long-period companion.

Key words. techniques: radial velocities – planets and satellites: fundamental parameters – planet–star interactions –
planets and satellites: individual: HD 3167

1. Introduction

Obliquity is defined as the angle between the normal angle of a
planetary orbit and the rotation axis of the planet host star. It is an
important probe for understanding the dynamical history of exo-
planetary systems. Solar system planets are nearly aligned and
have obliquities lower than 7◦, which might be a consequence
of their formation from the protoplanetary disk. However, this
is not the case for all exoplanetary systems. Various misaligned
systems, that is, λ % 30◦, including some retrograde (λ∼ 180◦,
e.g., Hébrard et al. 2008) or nearly polar (λ∼ 90◦, e.g., Triaud
et al. 2010) orbits have been discovered. These misaligned orbits
may result from Kozai migration and/or tidal friction (Nagasawa
et al. 2008; Fabrycky & Tremaine 2007; Guillochon et al. 2011;
Correia et al. 2011), where the close-in planets migrate as a result
of scattering or of early-on interaction between the magnetic star
and its disk (Lai et al. 2011), or the migration might be caused
later by elliptical tidal instability (Cébron et al. 2011). Another
possibility is that the star has been misaligned since the days
when the protoplanetary disk was present as a result of inhomo-
geneous accretion (Bate et al. 2010) or a stellar flyby (Batygin
2012).

Most of the obliquity measurements are available for sin-
gle hot Jupiters. Some of the smallest planets detected with a
Rossiter measurement are GJ 436 b (4.2 ± 0.2 R⊕) and HAT-P-
11 b (4.4 ± 0.1 R⊕), which are nearly polar (Bourrier et al. 2018;
Winn et al. 2010), and 55 Cnc e (1.94 ± 0.04 R⊕), which is also
misaligned (Bourrier & Hébrard 2014), although the latest result
has been questioned (López-Morales et al. 2014). Kepler 408 b
is the smallest planet with a misaligned orbit among all planets
that are known to have an obliquity measurement (Kamiaka et al.
2019). A few obliquity detections have been reported for multi-
planet systems such as KOI-94 and Kepler 30 (Hirano et al. 2012;
Albrecht et al. 2013; Sanchis-Ojeda et al. 2012), whose planets
have coplanar orbits that are aligned with the stellar rotation.

We study the multi-planet system hosted by HD 3167. This
system includes two transiting planets and one non-transiting
planet. Vanderburg et al. (2016) first reported the presence of two
small short-period transiting planets from photometry. The third
planet HD 3167 d was later discovered in the radial velocity (RV)
analysis by Christiansen et al. (2017). Gandolfi et al. (2017) found
evidence of two additional signals in the RV measurements of
HD 3167 with periods of 6.0 and 10.7 days. However, they were
unable to confirm the nature of these two signals. Furthermore,

A28, page 1 of 12
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/201935944
mailto:shweta.dalal@iap.fr
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 631, A28 (2019)

Christiansen et al. (2017) did not find any signal at 6 or 10.7 days.
The masses of the transiting planets were found to be 5.02 ±
0.38 M⊕ for HD 3167 b, a hot super-Earth, and 9.80+1.30

−1.24 M⊕
for HD 3167 c, a warm sub-Neptune. The non-transiting planet
HD 3167 d with a mass of at least 6.90 ± 0.71 M⊕ orbits the
star in 8.51 days. The two transiting planets have orbital peri-
ods of 0.96 days and 29.84 days and radii of 1.70 R⊕ and
3.01 R⊕, respectively. We measure the sky-projected obliquity
for HD 3167 c, whose larger radius makes it the most favorable
planet for the obliquity measurements. Because the period of
planet c is longer than that of planet b, the data sampling during
a given transit is three times better.

It is difficult to measure the true 3D obliquity, and most
methods only access the projection of the obliquity. The sky-
projected obliquity for a transiting exoplanet can be measured by
monitoring the stellar spectrum during planetary transits. Dur-
ing a transit, the partial occultation of the rotating stellar disk
causes asymmetric line profiles that can be detected using dif-
ferent methods such as the Rossiter-McLaughlin (RM) anomaly,
Doppler tomography, and the reloaded RM method. These meth-
ods use different approaches to retrieve the path of the planet
across the stellar disk. This allows us to quantify the system-
atic errors related to the data analysis method. The RM anomaly
takes into account that asymmetry in line profiles induces an
anomaly in the RV of the star (Queloz et al. 2000; Hébrard
et al. 2008). However, changes in the cross-correlation func-
tion (CCF) morphology are not analyzed. Doppler tomography
uses the spectral information present in the CCF of the star
rather than just their RV centroids. This method entails tracking
the full time-series of spectral CCF by modeling the additional
absorption line profiles that are superimposed on the stellar spec-
trum during the planet transit (e.g., Collier Cameron et al. 2010;
Bourrier et al. 2015; Crouzet et al. 2017). This model is then
subtracted from the CCFs, and the spectral signature of the light
blocked by the planet remains. Finally, the reloaded RM tech-
nique directly analyzes the local CCF that is occulted by the
planet to measure the sky-projected obliquity (e.g., Cegla et al.
2016a; Bourrier et al. 2017). It isolates the CCFs outside and dur-
ing the transit with no assumptions about the shape of the stellar
line profiles.

The amplitude of the RM anomaly is expected to be below
2 m s−1 for HD 3167 c. Detecting such a low-amplitude effect is
challenging, therefore we decided to determine the robustness
and significance of our results using the three different meth-
ods described above. The different methods have their respective
advantages and limitations. A combined analysis involving the
three complementary approaches therefore provides an obliquity
measurement that is more robust against systematic effects that
are due to the analysis method.

We measure the sky-projected obliquity of HD 3167 c using
the three methods and finally discuss the dynamics of the system.
This paper is structured as follows. We describe the spectro-
scopic observations during the transit in Sect. 2. The detection
of spectroscopic transit followed by the data analysis using the
RM anomaly, Doppler tomography, and the reloaded RM is pre-
sented in Sect. 3. We discuss the obliquity of planets b and d
from geometry in Sect. 4. We study the dynamics of the system
in Sect. 5 and explore the possible outer companion in Sect. 6.
Finally, we conclude in Sect. 7.

2. Observations

We obtained the spectra of HD 3167 during the two transits of
planet c on 2016 October 1 and 2017 November 23 with the

spectrograph HARPS-N with a total of 35 observations and 24
observations, respectively. HARPS-N, which is located at the
3.58 m Telescopio Nazionale Galileo (TNG, La Palma, Spain),
is an echelle spectrograph that allows high-precision RV mea-
surements. Observations were taken with resolving power R =
115 000 with 15 min of exposure time. We used the spectrograph
with one fiber on the star and the second fiber on a thorium-argon
lamp so that the observation had high RV precision. The signal-
to-noise ratio (S/N) per pixel at 527 nm for the spectra taken
during the 2016 transit was 56–117 with an average S /N = 87.
The 2017 transit was observed in poor weather conditions with
S/N values ranging from 34 to 107 with an average S /N = 72.
We primarily worked with the 2016 transit data for the reasons
explained in Sect. 3.2.3.

The Data Reduction Software (DRS version 3.7) pipeline
was used to extract the HARPS-N spectra and to cross-correlate
them with numerical masks following the method described in
Baranne et al. (1996) and Pepe et al. (2002). The CCFs obtained
were fit by Gaussians to derive the RVs and their uncertainties.
We tested different numerical masks such as G2, K0, and K5
and also determined the effect of removing some low S/N spec-
tral orders to obtain the CCFs. These tests were performed to
improve the data dispersion after the Keplerian fit. The method
of fitting a Keplerian is discussed in detail in Sect. 3.1. Final RVs
were obtained from CCFs that we produced using the K5 mask
and removing the first 15 blue spectral orders with low S/N.

The resulting RVs with their uncertainties are listed in
Table 1 for the 2016 observations and in Table B.1 for the 2017
observations. The typical uncertainties were between 0.6 and
1.5 m s−1 with a mean value of 0.9 m s−1 for the 2016 data.
The stellar and planet parameters for HD 3167 that we used were
taken from Tables 1 and 5 of Christiansen et al. (2017), except
for the value of limb-darkening coefficient (ε), which was taken
from Gandolfi et al. (2017).

3. Analysis

3.1. Detection of a spectroscopic transit

Figure 1 displays the RV measurements of HD 3167 during the
2016 transit of planet c. The upper panel shows RVs along with
the best-fit RM model found from χ2 minimization (discussed in
Sect. 3.2), and the lower panel shows residual RVs after the fit.
The red dashed line is the Keplerian model for the orbital motion
of the three planets. During the transit, the deviation between
the Keplerian model and the observed RVs is caused by the RM
anomaly.

To separate the observation taken during the planet transit,
only RVs between the beginning of the ingress (T1) and end of
the egress (T4) were considered. The photometric values of mid-
transit (T0), period (P), and transit duration (T14) of HD 3167 c
along with their uncertainties were taken from Christiansen et al.
(2017). The total uncertainty of ∼16 min on T0, inferred from
the respective uncertainties of 15, 6, and 2 min on P, T1/T4,
and T0 from Christiansen et al. (2017), was taken into account in
determining the RVs outside the transit. Thirteen RVs (8 before
and 5 after the transit) lay outside the transit, while 18 RVs
were present inside the transit. Because of the uncertainty in the
observed T0, it was not clear whether the remaining 4 RVs were
present inside or outside the transit. In the following analysis,
T0 is fixed to the photometric value as the uncertainty on T0 is
negligible in our analysis, as shown in Sect. 3.2.2.

The 13 RVs outside the transit were not sufficient for an inde-
pendent Keplerian model for the three planets. We therefore took
the orbital parameters for the three planets to fit the Keplerian
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Table 1. Radial velocities of HD 3167 measured on 2016 October 1 with
HARPS-N.

BJD RV (m s−1) Uncertainty (m s−1)

57 663.38879 19 526.11 0.99
57 663.39881 19 525.6 0.89
57 663.4097 19 524.96 0.96
57 663.42026 19 525.43 0.86
57 663.43128 19 525.48 0.80
57 663.44191 19 527.08 0.89
57 663.45255 19 525.54 0.80
57 663.463 19 525.72 0.78
57 663.47382 19 526.8 0.69
57 663.48469 19 525.99 0.61
57 663.49535 19 528.41 0.65
57 663.5057 19 527.32 0.66
57 663.51666 19 528.51 0.69
57 663.52705 19 529.29 0.76
57 663.53812 19 528.75 0.71
57 663.54859 19 530.09 0.66
57 663.5594 19 529.57 0.71
57 663.56994 19 530.79 0.73
57 663.58084 19 529.89 0.74
57 663.59121 19 529.66 0.75
57 663.60227 19 531.37 0.78
57 663.61288 19 530.97 0.79
57 663.62363 19 529.69 0.83
57 663.63458 19 530.74 0.79
57 663.64483 19 533.16 0.83
57 663.65581 19 531.99 0.85
57 663.66643 19 530.85 0.77
57 663.67668 19 532.44 0.90
57 663.68756 19 532.86 1.01
57 663.69801 19 532.29 1.30
57 663.70995 19 530.61 1.23
57 663.7196 19 531.13 1.17
57 663.73065 19 532.3 1.16
57 663.74124 19 532.95 1.32
57 663.75162 19 532.51 1.49

from Table 5 of Christiansen et al. (2017) in Eq. (1) as

RV = γ +

3∑
i=1

Ki
[
cos(fi + ωi) + eicosωi

]
. (1)

Here Ki represents the RV semi-amplitude, the true anomaly
and eccentricity are denoted by fi and ei, respectively, and ωi is
the argument of periastron. Finally, a Keplerian model was fit
by minimizing the χ2 considering only one free parameter, that
is, the systemic velocity γ. The average of the residual RVs that
were taken outside the transit was found to be 0.11 ± 0.72 m s−1,
in agreement with the expected uncertainties.

After the Keplerian fit, we noted that the average of residual
RVs inside the transit was 1.17 ± 0.76 m s−1, showing an indica-
tion of an RM anomaly detection. We fit this using the RM model
in Sect. 3.2.2. According to Gaudi & Winn (2007), the expected
amplitude of the RM anomaly is 1.7 m s−1, which is within the
order of magnitude of the deviation from the Keplerian model
observed during the transit.

Furthermore, the slope that is visible in RVs within the obser-
vation time (8.7 h) was due to the short periodicity of HD 3167 b

Fig. 1. RV measurements of HD 3167 taken on 2016 October 1 as func-
tion of time. Upper panel: solid black circles represent the HARPS-N
data, the dashed red line indicates the Keplerian fit, and the solid green
line depicts the final best fit with the RM effect. Lower panel: black
solid circles are the residuals after subtracting the Keplerian, and green
solid circles are the residuals after subtracting the best-fit RM model.

(Pb = 0.96 day). To compute the mass of HD 3167 b, a Keplerian
in the RVs outside the transit was fit in which Kb was kept as
a free parameter. Kb was found to be 3.86 ± 0.35 m s−1, corre-
sponding to a planet mass of HD 3167 b of Mb = 5.45 ± 0.50 M⊕.
This is consistent with the measurements of Christiansen et al.
(2017) (Kb = 3.58 ± 0.26 m s−1, Mb = 5.02 ± 0.38 M⊕). Kb was
fixed to the more accurate measurement of Christiansen et al.
(2017) in the further analysis.

We note that the sky-projected obliquity λ was defined as
the angle counted positive from the stellar spin axis toward the
orbital plane normal, both projected in the plane of the sky. The
sky-projected obliquity was fit using three different methods, as
described in the following sections.

3.2. Rossiter-McLaughlin anomaly

The model to fit the RM anomaly is presented in the following
section. We applied this model to fit both datasets to measure the
sky-projected obliquity.

3.2.1. Model

The method developed by Ohta et al. (2005) was implemented
to model the shape of the RM anomaly. These authors derived
approximate analytic formulae for the anomaly in RV curves,
considering the effect of stellar limb darkening. Following their
approach, we adopted a model with five free parameters: γ, λ,
the sky-projected stellar rotational velocity v sin i?, the orbital
inclination ip, and the ratio of orbital semi-major axis to stel-
lar radius a/R?. The values of the radius ratio rp/R?, P, T0 for
HD 3167 c were fixed to their photometric values (Christiansen
et al. 2017), and ε for HD 3167 was fixed to 0.54 (Gandolfi et al.
2017). The parameters ip and a/R? were kept free because their
values were poorly constrained from the photometry. Gaussian
priors were applied to ip and a/R? as obtained from photom-
etry (Christiansen et al. 2017). We adopted a value of v sin i?
as a Gaussian prior based on the spectroscopy analysis in
Christiansen et al. (2017) (v sin i? = 1.7 ± 1.1 kms−1). We per-
formed a grid search for the free parameters and computed χ2
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at each grid point. The contribution from the uncertainties of ip,
a/R?, and v sin i? was also added quadratically to χ2.

3.2.2. 2016 dataset

The data taken on 2016 October 1 are the best dataset for the
obliquity measurement in terms of data quality and transit sam-
pling. The 2016 data were fit with the Ohta model, and the
reduced χ2 with 30 degrees of freedom (n) for the best-fit model
(RM fit) was found to be 0.95. With the RM fit, the averages
of residuals inside and outside the transit were 0.01 ± 0.75 and
0.11 ± 0.72 m s−1, respectively. The uncertainties agree with the
expected uncertainties on the RVs (see Col. 3 of Table 1). The
best-fit value for each parameter corresponds to a minimum of
χ2. The 1σ error bars were determined for all five free param-
eters following the χ2 variation as described in Hébrard et al.
(2002). The best-fit values together with 1 σ error bars are listed
in Table 2. We measured λ = −92◦+11

−20, indicating a nearly polar
orbit.

The derived v sin i? (2.8+1.9
−1.3 kms−1) from the RM anomaly

suggested a 2 σ detection of the spectral transit. In order
to properly determine the significance of our RM detection,
we performed Fischer’s classical test. The two models consid-
ered for the test were a K (only Keplerian) fit and an RM
(Keplerian+RM) fit. The χ2 for the K and RM fits is 63.55 (n =
34) and 28.76 (n = 30), respectively. A significant improvement
was noted for the second model with F = 1.95 (p = 0.03) obtained
using an F-test. The improvement to the χ2 was attributed to the
RM anomaly detection with 97% confidence. We conclude that
the spectroscopic transit is significantly detected.

As a test, we applied a similar grid procedure without
the spectroscopic constraint on v sin i? from Christiansen et al.
(2017). We obtained λ = −91◦ +7

−16, which is within the 1 σ uncer-
tainty. The large v sin i? obtained here (4.8± 2.1 kms−1) did not
significantly affect the measurement of λ. Because the planetary
orbit was found to be polar and it transits near the center of the
star (b = 0.50 ± 0.32, Christiansen et al. 2017), the corresponding
RM anomaly shape did not place a strong constraint on v sin i?.
The v sin i? can be estimated more accurately using the Doppler
tomography technique in Sect. 3.3.

Furthermore, the effect of fixed parameters such as rp/R?, P,
T0, T14, and Kb on λ was investigated. When these fixed param-
eters were varied within their 1 σ uncertainty, λ was found to
remain within the 1 σ uncertainty derived above.

3.2.3. 2017 dataset

Here, we evaluate whether the lower-quality 2017 dataset agrees
with the results obtained above using the 2016 dataset. We first
determine the observations taken outside the 2017 transit using
the same method as explained in Sect. 3.1. After considering
uncertainty on T0, we found that only one RV measurement was
taken clearly outside the transit. The scarcity of data and poor
data sampling outside the transit and along with the low-quality
observations during 2017 transit prevented us from finding a
good model for a Keplerian and finally an independent value of
λ. Thus the RM model parameters were fixed to the best-fit val-
ues from the 2016 transit, and the model derived previously was
scaled to the RV level of this epoch. We also realized that during
the 2017 transit, HD 3167 b and HD 3167 c transited simultane-
ously. However, the expected amplitude of the RM anomaly from
HD 3167 b is 0.56 m s−1, which is small compared to the RM
signal from HD 3167 c and the RV measurement accuracy.

Fig. 2. RV measurement of HD 3167 taken on 2017 November 23
as a function of time. Upper panel: solid black circles represent the
HARPS-N data, the dashed red line indicates the Keplerian fit, and the
green line is the over plotted best-fit RM model from the 2016 transit.
The blue dotted line marks the transit ingress and egress of planet b.
The expected RM amplitude due to the transit of planet b is 0.6 m s−1.
Lower panel: residuals after the best-fit RM is subtracted.

Figure 2 shows the best-fit RM model from Sect. 3.2.2 dur-
ing the 2017 transit and the residuals after the best-fit RM was
subtracted. This fit shows that the 2017 dataset roughly agrees
with the results obtained from the RM anomaly fit for the 2016
observations; despite its lower quality, it did not invalidate the
results presented in Sect. 3.2.2. The residual average inside and
outside the transit was found to be 0.23 ± 1.29 m s−1, and 0.39 ±
1.66 m s−1, respectively. The obtained uncertainties were slightly
larger than the expected uncertainties on the RVs. The 2017
dataset presented short-term variations in the first half of the
transit that could not be due to RM or Keplerian effects. We
interpreted them as an artifact due to the bad weather condi-
tions. We achieved no significant improvement from fitting the
RM anomaly (F = 0.97, p = 0.44), therefore we considered the
spectroscopic transit to be not significantly detected in the 2017
data and did not considered it for further analysis.

3.3. Doppler tomography

Here we present the obliquity measurement we performed on
the 2016 dataset using Doppler tomography in order to com-
pare it with the measurement from the RM anomaly technique
presented above. When a planet transits its host star, it blocks
different regions of the rotating stellar disk, which introduces
a Gaussian bump in the spectral lines of the star. This bump
can be tracked by inspecting the changes in the CCF, which
allows us to measure the obliquity. The stellar rotational speed
can also be obtained independent from the spectroscopic esti-
mate by Christiansen et al. (2017). The CCFs obtained from the
DRS with the K5 mask were used for this analysis (Sect. 2).
Following the approach of Collier Cameron et al. (2010), we con-
sidered a model of the stellar CCF, which is the convolution of
limb-darkened rotation profile with a Gaussian corresponding to
the intrinsic photospheric line profile and instrumental broaden-
ing. When the CCFs are fit by the model including the stellar
spectrum and the transit signature, some residual fixed patterns
appear that are constant throughout the whole night. These pat-
terns, also called “sidelobes” by Collier Cameron et al. (2010),
are produced by coincidental random alignments between some
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stellar lines and the lines in the mask when the mask is shifted to
calculate the CCFs. To remove these patterns, we assumed that
they do not vary during the night, and we averaged the resid-
uals of the out-of-transit CCFs after subtracting the best fit to
the CCFs that was calculated by considering the stellar spec-
trum alone. We made a tomographic model that depended on the
same parameters as the Keplerian plus RM model (Sect. 3.2),
and added the local line profile width, s (non rotating local
CCF width) expressed in units of the projected stellar rotational
velocity (Collier Cameron et al. 2010). The most critical free
parameters to fit the Gaussian bump were λ, v sin i?, γ, ip, a/R?,
and s. Other parameters such as P, rp/R?, T0, and ε were fixed
to the same values as were used for the RM fit.

The following merit function was used to fit the CCFs
following Bourrier et al. (2015),

χ2 =

nCCF∑
i

nµ∑
j

[
fi, j(model) − fi, j(obs)

σi

]2

+
∑

ap/R?,ip

[
xtomo − xphoto

σxphoto

]2

,

(2)

where fi, j is the flux at the velocity point j in the ith observed or
model CCFs. The error on the CCF estimate was assumed to be
constant over the full velocity range for a given CCF. To find the
errors σi in the CCF profiles, we first used the constant errors,
which are the dispersion of the residuals between the CCFs and
the best-fit model profiles. As the CCFs were obtained using
DRS pipeline with a velocity resolution of 0.25 km s−1 and the
spectra have a resolution of 7.5 km s−1, the residuals were found
to be strongly correlated. This led to an underestimation of
the error bars on the derived parameters. A similar analysis as
in Bourrier et al. (2015) was used to retrieve the uncorrelated
Gaussian component of the CCFs. The residual variance as
a function of data binning size (nbin) is well represented by
a quadratic harmonic combination of a white and red noise
component,

σ2(nbin) =

 nbin

σ2
Uncorr

2

+

 1
σ2

Corr

2−
1
2

, (3)

where σUncorr/
√

nbin is the intrinsic uncorrelated noise and σCorr
is the constant term characterizing the correlation between the
binned pixels. We adopted Gaussian priors for ip and a/R? from
photometry (Christiansen et al. 2017).

The planet transit was clearly detected in the CCF profiles,
as shown in Fig. 3. The v sin i? was found to be 2.1 ± 0.4 m s−1,
which is consistent with the estimate from spectroscopy
(v sin i? = 1.7 ± 1.1 kms−1). The sky-projected obliquity was
measured to be λ = −88◦ ± 15◦, which is in accordance with the
result from the RM analysis (see Sect. 3.2.2). Table 2 lists the
best-fit values together with 1 σ error bars.

We also performed a test to check the effect of the fixed
parameter T0 by varying it within 1 σ error bars. The value of λ
remained within the 1 σ uncertainty derived above.

3.4. Reloaded Rossiter-McLaughlin technique

We applied the reloaded RM technique (Cegla et al. 2016a;
Bourrier et al. 2018) to the HARPS-N observations of HD 3167 c.
CCFs computed with the K5 mask (Sect. 2) were first corrected
for the Keplerian motion of the star induced by the three planets
in the system (calculated with the properties from Christiansen
et al. 2017). The CCFs outside of the transit were co-added
to build a master-out CCF, whose continuum was normalized
to unity. The centroid of the master-out CCF, derived with a

Fig. 3. Maps of the time-series CCFs as a function of RV relative to
the star (in abscissa) and orbital phase (in ordinate). The dashed verti-
cal white lines are marked at ±v sin i?, and first and fourth contact of
transit is indicated by white diamonds. Upper panel: map of the transit
residuals after the model stellar profile was subtracted. The signature of
HD 3167 c is the moderately bright feature that is visible from ingress to
egress. Middle panel: transiting signature of HD 3167 c using the best-fit
model, obtained with λ = −88◦. Lower panel: overall residual map after
the model planet signature was subtracted.

Gaussian fit, was used to align the CCFs in the stellar rest frame.
The continuum of all CCFs was then scaled to reflect the plane-
tary disk absorption by HD 3167 c, using a light curve computed
with the batman package (Kreidberg 2015) and the properties
from Christiansen et al. (2017). Residual CCFs were obtained by
subtracting the scaled CCF from the master-out (Fig. 4).

No spurious features are observed in the residual CCFs out
of the transit. Within the transit, the residual RM spectrally and
spatially resolve the photosphere of the star along the transit
chord. The average stellar lines from the planet-occulted regions
are clearly detected and were fit with independent Gaussian
profiles to derive the local RVs of the stellar surface. We used
a Levenberg-Marquardt least-squares minimization, setting flux
errors on the residual CCFs to the standard deviation in their
continuum flux. Because the CCFs are oversampled in RV, we
kept one in four points to perform the fit. All average local stellar
lines were well fit with Gaussian profiles, and their contrast
was detected at more than 3 σ (using the criterion defined by
Allart et al. 2017). The local RV series was fit with the model
described in Cegla et al. (2016a) and Bourrier et al. (2017),
assuming solid-body rotation for the star. We sampled the
posterior distributions of v sin i? and λ using the Markov chain
Monte Carlo (MCMC) software emcee (Foreman-Mackey et al.
2013), assuming uniform priors. Best-fit values were set to the
medians of the distributions, with 1 σ uncertainties derived by
taking limits at 34.15% on either side of the median. The best-fit
model shown in Fig. 4 corresponds to v sin i? = 1.9 ± 0.3 km s−1

and λ = −112.5◦ +8.7
−8.5, which agrees at better than 1.4 σ with

the results obtained from the RM and Doppler tomography
(Sects. 3.2 and 3.3). The error bars on λ are small because ip
and a/R? were fixed in this particular analysis. However, when
ip, T0, and a/R? were varied within their 1 σ uncertainty, λ did
not vary significantly and remained within 1 σ uncertainty. The
best-fit values with their 1 σ uncertainties are listed in Table 2.

3.5. Comparison between the three methods

The most commonly used method to estimate sky-projected
obliquity using RV measurements is the analysis of the RM
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Table 2. Best-fit parameters using three methods.

Parameter (unit) RM fit Doppler tomography Reloaded RM Previously published values

λ (degrees) −92.0 +11
−20 −88 ± 15 −112.5 +8.7

−8.5 –

v sin i? (km s−1) 2.8 +1.9
−1.3 2.1 ± 0.4 1.9 ± 0.3 1.7 ± 1.1 (1)

γ (km s−1) 19.5310 +0.0003
−0.0002 19.530 ± 0.009 19.5286 ± 0.0062 –

ip (degrees) 89.5 +0.3
−1.2 88.91 ± 0.6 89.3 (?) 89.3 +0.5

−0.96 (1)

a/R? 43.3 +3.5
−16.0 36 +10

−7 40.323 (?) 40.323 +5.55
−12.62 (1)

Notes. (?)Fixed to their photometric value (Christiansen et al. 2017).
References. (1) Christiansen et al. (2017).

Fig. 4. Upper panel: map of the residual CCF series as a function of
orbital phase (in abscissa) and RV in the stellar rest frame (in ordi-
nate). Colors indicate flux values. The four vertical dashed black lines
show the times of transit contacts. The in-transit residual CCFs cor-
respond to the average stellar line profiles from the regions that are
occulted by HD 3167 c across the stellar disk. The solid black line
is the best-fit model to the local RVs of the planet-occulted regions
(λ = −112.5◦), assuming solid-body rotation for the star (v sin i? =
1.89 km s−1). Lower panel: RVs of the stellar surface regions occulted by
the planet (blue points), best fit with the solid black line (same as in the
upper panel). The gray area corresponds to the 1 σ envelope of the best
fit, derived from the MCMC posterior distributions. The dashed red line
shows a model obtained with the same stellar rotational velocity, but an
aligned orbit (λ = 0◦). This highlights the large orbital misalignment of
HD 3167 c.

anomaly. However, the RM method does not exploit the full spec-
tral CCF. In some extreme cases, the classical RM method can
introduce large biases in the sky-projected obliquity because of
asymmetries in the local stellar line profile or variations in its
shape across the transit chord (Cegla et al. 2016b). The Doppler
tomography method is less affected than the RM anomaly
method because it explores the full information in the CCF. How-
ever, a bias in the obliquity measurements can also be introduced
by assuming a constant, symmetric line profile and ignoring the
effects of the differential rotation. Results from the reloaded
RM technique suggest that the bias is not significant here. The

reloaded RM technique does not make prior assumptions of the
local stellar line profiles and allows a clean and direct extrac-
tion of the stellar surface RVs along the transit chord. This
results in an improved precision on the obliquity, albeit under the
assumption that the transit light-curve parameters (in particular
the impact parameter and the ratio of the planet-to-star radius)
are known to a good enough precision to be fixed. In the present
case, we might thus be underestimating the uncertainties on λ
with this method.

The sky-projected obliquities measured by all three methods
agree to better than 1.4 σ. This confirms that the spectroscopic
transit in the 2016 data is significantly detected and suggests
that the corresponding obliquity measurement is not reached
by strong systematics that would be due to the method. Com-
bining the λ values from all three methods, we estimated the
sky-projected obliquity for HD 3167 c to be λ = −97◦ ± 23◦,
after taking into account both the systematic and statistical
errors. We adopted this conservative value in our final obliquity
measurement.

As discussed in Sect. 3.2.2, the stellar rotation speed was
poorly constrained by the RM method. However, the v sin i?
more accurately measured from Doppler tomography and the
reloaded RM technique was consistent with the measurements
of Christiansen et al. (2017). The v sin i? from three methods was
also found to be within 1 σ. Furthermore, the two photometric
parameters a/R? and ip also agreed within their uncertainties
for the RM and Doppler tomography methods. The systemic
velocity γ is slightly different in each case because a different
definition was employed in each method.

4. Obliquity of planets b and d from geometry

The spectroscopic transit observations gave constraints only
on the obliquity of planet c. Although planet b is also transiting,
the low amplitude for the RM signal during the transit precludes
measuring its obliquity with the present data. However, because
both planets b and c are transiting planets, the mutual inclination
can be constrained.

We denote by u0 the unit vector along the line of sight
directed toward Earth and u1 a unit vector perpendicular to u0,
that is, in the plane of the sky (see Fig. 5). The orbital planes
of planets b and c are characterized by the perpendicular unit
vectors ub and uc. The inclination of their orbits, ib and ic, is
constrained to be ib = 83.4◦+4.6

−7.7 and ic = 89.3◦ +0.5
−0.96 (Christiansen

et al. 2017). For a planet k (here k stands for either b or d), we
define φk as the angle between u1 and the projection of uk on
the plane of the sky (this is equivalent to the longitude of the
ascending node in the plane of the sky). With these definitions,
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Fig. 5. Pictorial representation of the reference angles and the unit
vectors. uS corresponds to the direction of the stellar spin.

Fig. 6. Probability distribution of the mutual inclination between the
planets b and c (solid line). For comparison, the dotted line shows the
probability distribution when neither planet transits.

the mutual inclination between the planets b and c, ibc, is given
by

cos ibc = cos ib cos ic + sin ib sin ic cos(φb − φc). (4)

With cos ib and cos ic uniformly distributed within their 1 σ
error bars and assuming that φb and φc are uniformly distributed
between 0 and 2π, we calculated the probability distribution of
ibc (Fig. 6). The probability distribution was found to be close to
a uniform distribution, except that it is low for ibc below 10◦ and
above 170◦. Based on geometry, no information on the obliquity
of planet b can therefore be derived from our measurement of
the obliquity of planet c. We note that in the case of two non-
transiting planets, the probability distribution of ibc would peak
around 90◦, as shown by the dotted line in Fig. 6.

Planet d would transit if the condition

idc ≤ arctan
(

R?

ad

)
− (90 − ic) (5)

were fulfilled, where R? is the stellar radius and ad is the semi-
major axis of planet d. Because planet d does not transit, the
mutual inclination between planets c and d must be at least 2.3◦.

As a result, the obliquity of planets b and d cannot be con-
strained well from the geometry of the planetary system alone.
We place constraints on the obliquity of planet d from the
dynamics of the planetary system in Sect. 5.

5. Dynamics

We study the dynamics of the system to investigate the interac-
tions between planets and stellar spin which could explain the
polar orbit of planet c. We also perform the Hill stability anal-
ysis to set bounds on the obliquity of planet d in the following
section.

5.1. Planet mutual inclinations

While the available observations were unable to geometrically
constrain the mutual inclination of the planets, a bound is given
by the stability analysis of the system. Short-period planets with
an aligned orbit such as KELT-24 b and WASP-152 b (Rodriguez
et al. 2019; Santerne et al. 2016), or with an misaligned orbit such
as Kepler-408 b and GJ436 b (Kamiaka et al. 2019; Bourrier
et al. 2018) have been detected. The obliquity distribution of
short-period planets is not clear. However, because planet b is
close to the star, its orbit is most likely circular and its incli-
nation is governed by the interaction with the star, as shown in
Appendix A.2. The exact inclination of planet b is not important
from a dynamical point of view, and it is safe to neglect the influ-
ence of planet b when the stability of the system is investigated.
We focus here on the outer pair of planets to constrain the sys-
tem and study the simplified system that is only composed of the
star and the two outer planets. Our goal is to determine the max-
imum mutual inclination between planets d and c such that the
outer pair remains Hill-stable (Petit et al. 2018; Marchal & Bozis
1982). We first created 106 realizations of the HD 3167 system
by drawing from the best fit of masses, eccentricities, and semi-
major axis distributions given by Christiansen et al. (2017). To
each of these copies of the system, we set the mutual inclination
between planets c and d with uniformly spaced values of between
0◦ and 90◦.

We assumed that the orbit of planet b is in the invariant plane,
that is, the plane perpendicular to the angular momentum vector
of the whole system1. As a result, we computed the inclinations
ic and id with respect to the invariant plane because the projection
of the angular momentum onto the invariant plane gives
Gc sin(ic) = Gd sin(id), (6)

where Gk = mk

√
GMS ak(1 − e2

k) is the norm of the angular
momentum of planet k. Then, we computed the total angular
momentum deficit (AMD, Laskar 1997) of the system

C =
∑

k=b,c,d

mk

√
GMsak

(
1 −

√
1 − e2

k cos(ik)
)
, (7)

and we determined whether the pair d–c is Hill-stable. To do
so, we compared the AMD to the Hill-critical AMD of the pair
(Eq. (30), Petit et al. 2018). We plot in Fig. 7 the proportion of the
Hill-stable system binned by mutual inclination idc. We also plot
the proportion of the Hill-stable pair for a system with circular
orbit.
1 We assumed that planet b is within the invariant plane in order to be
able to compute the AMD as a function of the mutual inclination idc.
Nevertheless, the actual planet b’s inclination has little influence on the
stability of the pair d–c.
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Fig. 7. Probability of the pair d–c to be Hill-stable as a function of the
mutual inclination of d and c, assuming planet b is within the invariant
plane. The masses, semi-major axes, and eccentricity are drawn from
the best-fit distribution (Christiansen et al. 2017). The dashed curve
corresponds to a system where every planet is on a circular orbit.

We observe that for an inclination idc below 21◦, the system
is almost certainly Hill-stable. This means that for any orbital
configuration and masses that are compatible with the observa-
tional constraints, the system will be long-lived with this low
mutual inclination. We emphasize that long-lived configurations
with higher mutual inclination than 21◦ exist. Christiansen et al.
(2017) gave the example of Kozai-Lidov oscillations with ini-
tial mutual inclinations of up to 65◦. However, the choice of
initial conditions is fine-tuned because of the circular orbits (a
configuration that is rather unlikely for such dynamically excited
systems).

When we assume that the stellar spin is aligned with the
total angular momentum of the planets, the planet obliquity cor-
responds to the planet inclination with respect to the invariant
plane. When we assume idc < 21◦, the maximum obliquity of
planet c is about 9◦. Even if the mutual inclination idc = 65◦,
the obliquity only reaches 32◦. Thus, the observed polar orbit
shows that the stellar spin cannot be aligned with the angular
momentum of the planet.

From Sect. 4 and the previous paragraphs, we deduce that
the most likely value for idc is between 2.3◦ and 21◦. Because the
mutual inclination of planets c and d is low, we can conclude that
planet d is also nearly polar.

5.2. Interactions of planets and stellar spin

Because the system’s eccentricities and mutual inclinations are
most likely low to moderate, we considered the interaction
between the stellar spin and the planetary system. In particular,
we investigated whether the motion of the planets can effectively
tilt the star up to an inclination that could explain the polar orbit
of planets c and d. The currently known estimate of Christiansen
et al. (2017) of the stellar rotation period is 27.2± 7 days, but the
period may have slowed down by a factor 10 (Bouvier 2013). In
order to investigate the evolution of the obliquity that could have
occurred in earlier stages in the life of the system, we studied the
planet-star interaction as a function of the stellar rotation period.

To do so, we applied the framework of the integrable three-
vector problem to the star and the angular momenta of planets d
and c (Boué & Laskar 2006; Boué & Fabrycky 2014; Correia
2015). This model gives both the qualitative and quantitative
behavior of the evolution of three vectors that represent different
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Fig. 8. Characteristic frequencies defined in Eq. (A.5) as a function of
stellar period. The current estimated stellar rotation period is marked
with a vertical dashed line. The two terms νd/c and νc/d are merged into
a single curve νdc because they are almost equal.

angular momenta directions uS, ud, and uc under their mutual
interactions. We describe the model in Appendix A.

As shown in Boué & Fabrycky (2014), the mutual interac-
tions of the three vectors can be described by comparing the
different characteristic frequencies2 of the system νd/S, νS/d, νd/c,
and νc/d with the expressions given in Eq. (A.5). The frequency
ν j/k represents the relative influence of the body j over the
motion of uk. In other words, if νk/ j � ν j/k, u j is almost con-
stant while uk precesses around. We here neglect the interactions
between the star and planet c versus the interaction between
the star and planet d because they are smaller by two orders of
magnitude.

Because it is coupled with the star, planet b acts as a bulge
on the star that enhances the coupling between the orbits of the
outer planets and the star (see Appendix A.2). We limit our study
to the configuration where the strongest coupling occurs, that is,
when the orbit of planet b lies within the stellar equatorial plane.
The influence of planet b modifies the characteristic frequencies
νd/S and νS/d, as we show in Appendix A.2. The model is valid
in the secular approximation if the eccentricities of planets d and
c remain low such that Gd and Gc are constant. Boué & Laskar
(2006) showed that the motion is quasi-periodic. It is possible to
give the maximum spin-orbit angle of planet c as a function of
the initial inclination of planet d.

Using the classification of Boué & Fabrycky (2014), we can
determine the maximum misalignment between uS and uc as a
function of the initial inclination between uS and ud. We plot the
frequencies (cf. Eq. (A.5)) as a function of the stellar rotation
period in Fig. 8. We merged the curves that represent νd/c and
νc/d into νdc because the two terms are almost equal.

We are in a regime where (νd/c ∼ νc/d) � (νd/S, νS/d) and the
orbital frequencies dominate the interactions with the star. For
the shorter periods we have (νd/c ∼ νc/d ∼ νS/d) � νd/S. Nonethe-
less, in both cases the dynamics are purely orbital, however,
meaning that the star acts as a point mass and is never cou-
pled with the orbits of the outer planets. It is not possible for
planets c and d to reach a high mutual inclination with the stel-
lar spin axis starting from almost coplanar orbits or an even

2 The characteristic frequencies designate the coupling parameters
between the different vectors, as explained in Appendix A. They have
the dimension of a frequency, but are not properly speaking the frequen-
cies of the system. Here, we use the terminology introduced in Boué &
Fabrycky (2014).
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moderate inclination. When planet b is misaligned with the star,
it is even harder for the planets to tilt the star.

We conclude that even if the star has had a shorter period in
the past, it is unlikely that the currently observed system can by
itself generate such a high obliquity for planets c and d. How-
ever, high initial obliquities are almost conserved, which means
that the observed polar orbits are possible under the assumptions
made, even though they are not explained by this scenario.

5.3. System tilt due to an unseen companion

We now assume that while the system only presents moderate
inclinations, a distant companion on an inclined orbit exists.
We consider the configurations that can cause the system to be
tilted with respect to the star. Once again, we used the frame-
work of Boué & Fabrycky (2014). We considered the vectors
uS, u, and u′ that give the direction of the stellar spin axis S,
the total angular momentum of the planetary system G, and
the angular momentum of the companion G′, respectively. The
outer companion is described by its mass m′, its semi-major
axis a′, its semi-minor axis b′ = a′

√
1 − e′2, and its initial

inclination I0 with respect to the rest of the system, which is
assumed to be nearly coplanar or to have moderate inclinations.
Moreover, we assumed that G is initially aligned with S, while
the companion is highly inclined with respect to the planetary
system, that is to say, I0 is larger than 45◦ up to 90◦. According
to Boué & Fabrycky (2014), all interactions between planets
cancel out because we only consider the dynamics of their total
angular momentum G.

As in the previous part, we can compare the different char-
acteristics frequencies of the system νpla/S, νS/pla, νcomp/pla, and
νpla/comp of expression given in Eqs. (A.6) and (A.7). The com-
panion effectively tilts the planetary system as a single body if
its influence on planet c is weaker than the interaction between
planets d and c. In the other case, planet c will enter Lidov-Kozai
oscillations, which can lead to the destabilization of the system
through the interactions with planet d. Boué & Fabrycky (2014)
reported the limit at which the outer companion starts to perturb
the planetary system and excites the outer planet through Kozai-
Lidov cycles. They explained that if the coefficient βKL is defined
as

βKL =
m′

md

(
ac

ad

)2 (ac

b′

)3
(8)

and verifies βKL � 1, the companion’s influence does not perturb
the system and tilts it as a whole.

We plot in Fig. 9 the frequencies νpla/S, νS/pla, νcomp/pla, and
νpla/comp as a function of βKL and observe different regimes. In
the first regime, we have βKL < 0.1 and νpla/comp � νcomp/pla �
νS/pla. The influence of the companion is too weak to change
the obliquity of the planetary system. For βKL > 1, we have
(νpla/comp ∼ νcomp/pla) � νS/pla, in which regime the system obliq-
uity can reach I0. However, the companion destabilizes the orbit
of planet c, which can lead to an increase in eccentricity and
mutual inclination between the planets. For 0.1 . βKL . 1, we
remark that νpla/S � (νpla/comp ∼ νcomp/pla ∼ νS/pla). According to
Boué & Fabrycky’s classification, the maximum possible incli-
nation between the star and the planet, that is, their obliquity, is
almost twice I0 for I0 . 80◦. In this regime, an unseen compan-
ion can explain the observed polar orbits of HD 3167 c and d.

We conclude that some stable configurations with an addi-
tional outer companion may explain the high obliquity of planets
c and d. We further discuss the possible presence of outer com-
panion signals in the existing RV data in Sect. 6. Accurate
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Fig. 9. Characteristic frequencies defined in Eq. (A.6) as a function of
βKL (see Eq. (8)). For βKL > 1, the outer companion can destabilize the
observed system.

measurement of the eccentricities of planets d and c will also
help to constrain this scenario better.

6. Outer companion

To find the possible signatures of an outer companion, we per-
formed two different tests on the RV data from Christiansen et al.
(2017), which cover a span of five months. First we obtained the
residual RV after we removed the Keplerian signal caused by the
three planets. In the analysis performed by Christiansen et al.
(2017), the linear drift was fixed to 0 m s−1yr−1 before the Kep-
lerian was fit. However, we detected a linear drift of about 7.6 ±
1.6 m s−1yr−1 in the residual velocities. When we assume a cir-
cular orbit for the outer companion, this linear drift corresponds
to a period of at least 350 days and a mass of at least 0.1 MJup. A
body like this has a βKL ' 0.08, which makes it unlikely that it
is able to incline planets c and d with respect to the star.

Second, we generated the periodogram of the RV before and
after we removed the known periodic signals of the three planets
using the Lomb-Scargle method, as shown in Fig. 10. In addition
to the detected planets, two other peaks at 11 days and 78 days
were found at a false-alarm probability (FAP) higher than 0.1%
in the Fourier power. The peak at 11 days was an alias caused
by the concentration of the sampling around lunar cycles, as
explained in Christiansen et al. (2017). In the lower panel of
Fig. 10, no peak at 11 days was detected, but the peak at 78 days
was persistent in both periodograms. The peak around 20 days
in the lower panel may be caused by stellar rotation, and the
peak around one day was an alias due to data sampling. When
we assume a circular orbit with a period of 78 days, this corre-
sponds to a mass of at least 0.03 MJup for the outer companion,
which gives βKL ' 0.5. This potential outer companion might
explain the high obliquity of HD 3167 c if its initial inclination I0
was high enough.

We found possible indications of an additional outer com-
panion in the system. Additional RV observations of HD 3167 on
a long time span are necessary to conclusively establish its pres-
ence and determine its orbital characteristics, and thus confirm
(or refute) our hypothesis.

7. Conclusion

We used new observations obtained with HARPS-N to measure
the obliquity of a sub-Neptune in a multi-planetary system. The
three different methods we applied on this challenging dataset
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Fig. 10. Upper panel: Lomb-Scragle periodogram of the RV of HD 3167
taken from Christiansen et al. (2017). The black dashed line represents
the false-alarm probability at 0.1%, and the three vertical red dashed
lines correspond to the periods of the three planets that are currently
detected around HD 3167. Lower panel: Lomb-Scragle periodogram of
the RV data after the three known periodic signals are removed.

agree, which means that the sky-projected obliquity we mea-
sured is reliable. We report a nearly polar orbit for the HD 3167 c
with λ∼−97◦ ± 23◦. The measurements of λ from RM anomaly,
Doppler tomography, and reloaded RM technique agree at bet-
ter than 1.4 σ standard deviation with this value. The v sin i?
from the three methods also agree within their uncertainties. To
our knowledge, we are the first to apply these three methods and
compared them to the spectroscopic observation of a planetary
transit.

These observations are a valuable addition to the known
planetary obliquity sample, extending it further beyond hot
Jupiters. Several small-radius multi-planet systems with aligned
spin-orbits such as Kepler 30 (Sanchis-Ojeda et al. 2012) and
with a misaligned spin-orbit such as Kepler 56 (Huber et al.
2013) have been reported. Additionally, single small exoplanets
with high-obliquity measurement such as Kepler 408 (Kamiaka
et al. 2019) and GJ436 (Bourrier et al. 2018) have also been
reported. Some of the misalignments might be explained by the
presence of an outer companion in the system. One particularly
interesting planetary system is Kepler 56, in which two of its
transiting planets are misaligned with respect to the rotation
axis of their host star. This misalignment was explained by the
presence of a massive non-transiting companion in the system
(Huber et al. 2013). A third planet in the Kepler 56 system was
later discovered by Otor et al. (2016). This supported the finding
of Huber et al. (2013). Similarly, the misalignment in HAT-P-11
b may be explained by the presence of HAT-P-11 c (Yee et al.
2018).

Our dynamical analysis of the system HD 3167 places con-
straints on the obliquity of planet d. We cannot determine the
obliquity of planet b with the current data and information about
the system. The Hill-stability criterion shows that the orbits of
planets c and d are nearly coplanar, so that both planets are in
nearly polar orbits. The interactions of the planets with the stel-
lar spin cannot satisfactorily explain the polar orbits of planets c
and d. We postulate that an additional unseen companion exists
in the system. This might explain the polar orbits of planets c and
d. Indications for additional outer companions are present in the
available RV dataset. Continued RV measurements of HD 3167

on a longer time span might reveal the outer companion and
confirm our speculation.
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Appendix A: Details on the three-vector model

A.1. Generic three-vector problem

The three-vector problem (Boué & Laskar 2006; Boué &
Fabrycky 2014) studies the evolution of the direction of three
angular momenta that are represented by the unit vectors uk for
k = 1, 2, 3 in equations

du1

dt
= −ν2/1(u1 · u2) u2 × u1 − ν3/1(u1 · u3) u3 × u1

du2

dt
= −ν1/2(u1 · u2) u1 × u2 − ν3/2(u2 · u3) u3 × u2 (A.1)

du3

dt
= −ν1/3(u1 · u3) u1 × u3 − ν2/3(u2 · u3) u2 × u3.

The constants νk/ j are called the characteristic frequencies
and represent the relative influence of the body k over the evolu-
tion of j. Their expression depends on the considered problem.
The three-vector problem is integrable (Boué & Laskar 2006),
and the solution is quasi-periodic with two different frequencies.
Given an initial state where two vectors are aligned and a third is
misaligned, it is possible to compute the maximum inclination
between the two initially aligned vectors as a function of the
initial inclination with the third (Boué & Fabrycky 2014). The
maximum inclination depends on the characteristic frequencies,
and the different cases have been classified in Sect. 5.3 of
Boué & Fabrycky (2014).

A.2. Influence of planet b

In Sects. 5.1 and 5.2, we claimed that the inclination dynamics
of planet b are most likely governed by the star and only influ-
ence planets d and c through a modification of the planet–star
coupling. We present here the justification for this assumption as
well as details on the expressions of the coupling constants.

We first focus on the three-vector problem (uS,ub, and ud).
For now, we neglect the effect of planet c because we focus
on the dynamics of planet b. Following Boué & Laskar (2006)
and Boué & Fabrycky (2014), the characteristic frequencies that
appear in Eq. (A.1) are expressed as

νb/S =
αSb

S
, νd/S =

αSd

S
, νb/d =

βbd

Gd
,

νS/b =
αSb

Gb
, νS/d =

αSd

Gd
, νd/b =

βbd

Gb
, (A.2)

where Gk is the angular momentum of planet k, S = CSωS is the
angular momentum of the stellar rotation, with CS the stellar
moment of inertia and

αS j =
3
2
GMSm jJ2R2

?

a3
j

,

β jk =
1
4
Gm jmka j

a2
k

b(1)
3/2

(
a j

ak

)
. (A.3)

Here αS j represents the coupling between the star and planet
j, and β jk is the Laplace-Lagrange coupling between planets j
and k (we assume a j < ak). We also define

J2 =
k2ω

2
SR3

?

3GMS
, (A.4)
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Fig. A.1. Characteristic frequencies defined in Eq. (A.2) as a func-
tion of the stellar period. The current stellar rotation period is marked
with a vertical dashed line. νb/S dominates for most of the considered
frequencies.

the gravitational quadrupole coefficient (Lambeck 1988), where
k2 is the second fluid Love number of the star and ωS is the stel-
lar rotation speed. For the numerical values of k2 and CS, we
use Landin et al. (2009). For a star of mass 0.85 M�, we have
k2 = 0.018 and CS/(MSR2

?) = 0.10.
Independently of the stellar rotation speed, we have

αSd/αSb ≤ 0.04. We therefore neglect the terms depending on
αSd in this analysis. As a result, we can directly apply the results
of the analysis reported by Boué & Fabrycky (2014), with the
four characteristic frequencies νb/S, νS/b, νb/d, and νd/b.

We plot the frequencies νk/ j as a function of the stellar
period in Fig. A.1. We average the frequencies in each point by
randomly drawing the orbital elements from the best fit.

For the considered range of the stellar revolution period, νS/b

dominates all other frequencies, and it becomes comparable to
νd/b for the current rotation rate. Using the regime classification
of Boué & Fabrycky (2014), we can determine the maximum
misalignment between uS and ub as a function of the initial
inclination between uS and ud.

For a faster-rotating star (i.e., a younger star), we have
νS/b � (νb/S, νd/b, νb/d), in which regime no significant mis-
alignment of planet b can be achieved. As a result, planet
b is completely coupled with the star and remains within its
equator even if the other planets are mutually inclined. The cur-
rent rotation rate leads to the so-called Laplace regime where
(νS/b ∼ νd/b) � (νb/S, νb/d), in which the plane of planet b oscil-
lates between the stellar equatorial plane and the plane of planet
d. However, if the initial mutual inclination between planet b and
the stellar equator is low, planet b remains close to the stellar
equator.

We simplify the problem by considering that planet b is
coupled to the star and modifies the stellar precession coupling
constant αSk for planets d and c. The modification of the cou-
pling constant can be found in Boué & Laskar (2006, Eq. (129))3.
While the expression was derived for a planet in the presence of
a satellite, it remains valid in our case. The expression is a gen-
eralization of the approximations for close satellites (Tremaine
1991) and far satellites (d’Alembert 1749). We denote with α̃Sk
the modified coupling constant to include the effect of planet b
when it is considered as a bulge on the star.

3 This equation gives the value of α̃Sk/S , but it is straightforward to
compute α̃Sk from it.
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A.3. Coupling constants for the interactions of the
planet with the star

In Sect. 5.2 we considered the three vectors uS, ud, and uc. The
coupling frequencies that appear in Eq. (A.1) for this particular
problem are given by

νd/S =
α̃Sd

S
, νc/S =

α̃Sc

S
, νd/c =

βdc

Gc
,

νS/d =
α̃Sb

Gd
, νS/c =

α̃Sc

Gc
, νc/d =

βdc

Gd
, (A.5)

where βbd is defined in Eq. (A.3) and α̃Sk is the coupling between
the star and planet k, modified to take the influence of planet b
into account, as explained in Appendix A.2. We also simplified
Eqs. (A.1) by neglecting α̃Sc over α̃Sd because α̃Sc/α̃Sd < 0.05
independently of the stellar rotation period.

A.4. Coupling constants for the problem with a companion

The characteristic frequencies that govern the evolution of the
inclination of the planets under the influence of an outer com-
panion as explained in Sect. 5.3 are given by

νpla/S =
α

S
, νpla/comp =

Γ

G′
,

νS/pla =
α

G
, νcomp/pla =

Γ

G
, (A.6)

where

α =
∑

j=b,c,d

3
2
GMSm jJ2R2

?

a3
j

Γ =
∑

j=b,c,d

3
4

Gm′m ja2
j

b′3
. (A.7)

We neglect the interaction between the star and the com-
panion and as a result disregard the corresponding characteristic
frequencies.

Appendix B: Radial velocity data

Table B.1. Radial velocities measured on 2017 November 23 with
HARPS-N.

BJD RV (m s−1) Uncertainty (m s−1)

58 081.30053 19 534.14 1.79
58 081.31183 19 534.61 1.22
58 081.3213 19 534.61 2.02
58 081.34556 19 532.9 0.88
58 081.35606 19 536.62 0.84
58 081.36645 19 534.57 0.91
58 081.3777 19 538.11 0.99
58 081.38814 19 536.84 0.83
58 081.3992 19 536.02 0.79
58 081.40971 19 534.7 0.81
58 081.42024 19 535.33 0.97
58 081.43089 19 533.49 1.11
58 081.44223 19 532.18 0.95
58 081.45276 19 533.73 0.87
58 081.46325 19 533.37 0.89
58 081.47383 19 532.98 0.83
58 081.48465 19 532.62 0.71
58 081.49539 19 533.53 0.66
58 081.5059 19 531.55 0.77
58 081.51666 19 530.46 1.16
58 081.52598 19 530.48 1.45
58 081.53888 19 532.69 2.33
58 081.54778 19 530.42 1.85
58 081.55897 19 527.89 2.72
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