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ABSTRACT

Convection is often assumed to be controlled by the simultaneous environmental fields.But towhat extent does it

also remember its past behavior? This study proposes a new framework in which the memory of previous

convective-scale behavior, ‘‘microstate memory,’’ is distinguished from macrostate memory, and conducts nu-

merical experiments to reveal these memory types. A suite of idealized, cloud-resolving radiative–convective

equilibrium simulations in a 200-km square domain is performed with the Weather Research and Forecasting

(WRF)Model. Three deep convective cases are analyzed: unorganized, organized by low-levelwind shear, and self-

aggregated.The systematic responses to suddenhorizontal homogenizationof various fields, in various atmospheric

layers, designed to eliminate their specific microstructure, are compared in terms of precipitation change and time

of recovery to equilibrium. Results imply a substantial role for microstate memory. Across organization types,

microstructure inwater vapor and temperature has a larger and longer-lasting effect on convection than in winds or

hydrometeors. Microstructure in the subcloud layer or the shallow cloud layer has more impact than in the free

troposphere. The recovery time scale dramatically increases from unorganized (2–3 h) to organized cases (24 h or

more). Longer-time-scale adjustments also occur and appear to involve both small-scale structures and domain-

mean fields. These results indicate that most convective microstate memory is stored in low-level thermodynamic

structures, potentially involving coldpools andhot thermals. Thismemory appears strongly enhancedby convective

organization. Implications of these results for parameterizing convection are discussed.

1. Introduction

Understanding atmospheric moist convection is one of

the main challenges to advance models used for climate

projections, seasonal forecasts, and weather forecasts

(Jakob 2014). These atmospheric general circulation
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models (GCMs) have important shortcomings, andmany

of them are attributed to the convective parameteriza-

tions. GCMs rain too often and too little (Stephens et al.

2010). They tend to produce too much high cloud and too

little shallow cloud (Chepfer et al. 2008; Sherwood et al.

2013). They can even produce cloud and precipitation

responses to warming that have opposite signs (Stevens

and Bony 2013). They struggle to represent a realistic

diurnal cycle, although recent developments lead to im-

provements (Rio et al. 2009; Stratton and Stirling 2012;

Bechtold et al. 2014; Folkins et al. 2014). They struggle to

simulate the spatial organization of convection (Mapes

and Neale 2011; Rowe and Houze 2015; Tan et al. 2015)

and its temporal variability [e.g., Madden–Julian oscilla-

tion (MJO)] (Dai 2006; Waliser et al. 2009).

One prominent debate on convective parameteriza-

tion concerned the ‘‘quasi equilibrium’’ hypothesis,

which formed the basis for pioneering convective pa-

rameterizations (Arakawa and Schubert 1974; Arakawa

2004). Quasi equilibrium in this context means that

convection is in equilibrium with the large-scale forcing:

convective effects act to keep modifications of a closure

variable (e.g., convective available potential energy)

close to zero, compensating for large-scale processes.

This is likely to be more accurate on longer spatiotem-

poral scales (at least several hours or 1 day).

A similar but weaker and more fundamental assump-

tion that has receivedmuch less scrutiny is the ‘‘diagnostic

assumption’’, made in most convective parameterizations

[see subsections 5b and 5c in Arakawa (2004)], obser-

vational analyses (e.g., Masunaga 2012; Tan et al. 2013;

Davies et al. 2013a), and many modeling studies (e.g.,

Kuang 2010). For convection, this assumption states that

convective effects at a relatively large scale (and at time

t) can be diagnosed at all from the state variables at that

scale (and at the same time). Convective schemes that

involve a separate triggering of convection generally do

not assume quasi equilibrium (Emanuel 1991; Yano and

Plant 2012b), since a triggering condition must be met

before allowing convection to respond to the forcing.

However, they usually do diagnose both the triggering

and closure variables from the current gridscale state:

they still make the diagnostic assumption.

But it is far from clear that the diagnostic assumption is

justifiable. Many smaller-scale processes, which generally

have their own internal time scales, bring inertia to the

system. In a model for example, a diagnostic relationship

effectively assumes that all such time scales are no longer

than the model time step, which is typically of order

10min in GCMs. Yet the time for a single updraft to

penetrate the troposphere is longer than this. Moreover,

the current trend is for models to have finer grid spacing

and shorter time steps, so that this diagnostic assumption

is increasingly problematic. This problem is alreadypartly

discussed in Bougeault and Geleyn (1989).

In a model, to go beyond the diagnostic assumption,

one would need to add one or more prognostic variables

to carry information (‘‘memory’’) on the previous be-

havior of unresolved processes. If convection were to be

diagnosed by an equilibriumwith the large-scale forcing,

it would only be sensitive to the recent history of the

forcing. With a prognostic formulation, not only do we

have nonequilibrium convection, but convection is also

made sensitive to its own history.

A few examples of such schemes exist. To our knowl-

edge, the first was the scheme by Randall and Pan (1993)

or Pan and Randall (1998). Their prognostic variable is

the cumulus kinetic energy (CKE), whose source is taken

to be the product between the cloud work function and

the cloud-base mass flux. Other attempts to design a

prognostic closure chose a variety of variables to become

prognostic: convective vertical velocity and convective

area fraction (Chen and Bougeault 1993), probability of

undiluted updraft (Piriou et al. 2007), ‘‘ORG’’ variable

for the spatial organization of convection (Mapes and

Neale 2011), convective vertical velocity (Guérémy

2011), recent surface precipitation bucket (Willett and

Whitall 2017), cold pool thermodynamic and geometric

properties (Qian et al. 1998; Grandpeix and Lafore 2010;

Del Genio et al. 2015), and cold pools and mesoscale

organized flows (Park 2014). The sources feeding such

prognostic variables include precipitation evaporation,

buoyancy, surface precipitation, and downdraft mass flux

and associated cooling and moistening. Cloud spacing

could also be important (Cohen and Craig 2004).

While these efforts are important, they have not led to a

consensus on whether memory needs to be explicitly in-

cluded in models or how to do it. The current study is

intended to be a step toward establishing more generally

whether memory is important and how it might best be

represented.

We define convective memory as the dependence of

convective behavior on its own history, for given current

large-scale (i.e., external or ‘‘environmental’’) condi-

tions. This is broadly consistent with Davies et al. (2009)

who define it via cloud life cycles. By analogy with sta-

tistical physics, one can define a microstate (description

of all elementary units) and a macrostate (description of

the collective behavior) for convection. In accord with

this analogy, let l be a typical length scale of the system

{e.g., typical GCM grid spacing [O(100) km]}. We refer

to the state variable fluctuations below the scale l as the

microstate. The mean state at the scale l is referred to as

the macrostate. Finally, the atmospheric state at a scale

larger than l is referred to as the synoptic state. System

memory can reside at each of these three scales: we
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distinguish between microstate memory stored in mi-

crostate structures, macrostate memory stored in mac-

rostate structures, and synoptic state memory stored in

synoptic state structures (Fig. 1), although we do not

consider the synoptic-state memory further in this study.

When l becomes smaller, individual unit effects start

to be seen at the macrostate, and we would expect a

nonequilibrium description of the microstate to be in-

creasingly necessary to explain the macrostate. However,

the overall effect of resolution on microstate memory is

unclear since there are competing effects (cloud sample

size decreases, but so does the number of unresolved

processes). In contrast, reducing the time step clearly

makes memory more important.

Microstate memory can be more precisely defined in

terms of conditional probabilities. At each time t, let us

define a measure of the convective state C(l, t) and a

measure of the large-scale variables j(l, t). If convec-

tion had no microstate memory, the convective state

C(l, t0) would be conditionally independent from ear-

lier convectionC(l, t)" t, t0, given the large-scale state

j(l, t0).Microstate convectivememory is the dependence

of the PDF of C(l, t0) on its own history, for given envi-

ronmental conditions j(l, t0).

Though convective memory as defined above will

make convection more persistent, persistence alone

does not establish memory: even if C(l, t) shows per-

sistence, this could be due to persistence of j(l, t), itself

arising for whatever reason.

Nonetheless, since memory should contribute to

autocorrelation in time, convective memory may be

viewed as strongly related to organization of convec-

tion in time. Furthermore, spatial convective organi-

zation is widely recognized as a key aspect of convective

processes,more recently in simulations of self-aggregation

(Bony et al. 2015; Wing et al. 2017) but for many years in

studies motivated by observed organization where back-

groundwind shear plays an important role (e.g.,Moncrieff

1981; Rotunno et al. 1988). Thus, we want to investigate

the link between organization in time (memory) and or-

ganization in space (Davies 2008; Mapes and Neale 2011;

Moseley et al. 2016).

FIG. 1. Schematic of the three different types of memory that can emerge with respect to a

mesoscale l (which may be a finite model resolution, but also more generally any length scale).

Limited resolutionmay stem from theGCMgrid cell (equivalent to a full CRMdomain). Number 1

refers to synoptic statememory: it arises from processes that involve several GCMgrid cells (such as

synoptic-scale convergence/divergence, theHadley circulation, or convective instability of the second

kind). Number 2 refers to macrostate memory: it arises from processes that impact the local profiles

of a singleGCMgrid cell (i.e., themeanprofiles of the full CRMbox; e.g., themeanprofiles of specific

humidity and potential temperature). Number 3 refers to microstate memory: it arises from GCM

subgrid-scale processes (i.e., resolved CRM processes; e.g., rain evaporation, cold pools, secondary

triggering of convection by cold pools, cloud entrainment, and convergence under the cloud base).

Current GCMs resolve the synoptic-state memory through circulation, and the macrostate memory

through convective parameterization. However, they are generally blind to microstate memory.
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The approach for identifying convective memory pro-

posed here is based on the response of convection simu-

lated by a cloud-resolving model (CRM) for a domain

size l comparable to a typical global-model grid cell. We

first introduce the methods (section 2). We then present

results on the main variables and atmospheric layers

where convective memory resides, and we examine the

role of convective organization (section 3). Finally we

summarize the results and discuss potential consequences

for parameterization of convection (section 4).

2. Methods

a. The simulations

For simplicity, this study uses control simulations in

radiative–convective equilibrium (RCE). RCE provides a

test bed for assumptions about convection and memory: if

the assumptions are good, they should hold in RCE.

To assess convective memory in a wide range of sit-

uations, we conduct simulations of several convection

types:

d The ‘‘unorganized’’ case. It is run with fixed sea

surface temperature (SST), interactive surface fluxes,

and no wind shear. The convection is not organized.
d Unorganized case with fixed surface fluxes. Latent and

sensible surface fluxes are held uniform in space and

constant in time, to the average values in the RCE

state of the unorganized control run.
d Wind shear organized case. A wind, linearly varying

with height (uniform shear), is imposed between

heights of 0 and 4km, by a moderate relaxation

applied only to the domain-mean horizontal wind

value. The imposed wind profile is 0m s21 at the

surface, and 20ms21 at 4 km and above. This is similar

to what was used in some previous studies (Robe and

Emanuel 2001; Anber et al. 2014).
d Self-aggregated case. To get self-aggregation in the

model, it was necessary to choose different turbulence

and microphysics schemes (see section 2b).

In each case, simulations are spun up to an RCE state

and then perturbed away from RCE to observe the

response.

The unorganized case leads to scattered (‘‘popcorn’’)

convective cells (Fig. 2). Overall, the mean RCE profiles

(see the online supplemental material) resemble those

obtained in previous studies (e.g., Romps 2011). They

also compare well with the humidity profiles obtained

from observations by radiosondes over the ocean, by Liu

et al. (1991). In the case with imposed wind shear, con-

vection creates elongated anvils parallel to the shear, with

only one or two large convective cores in the domain.

This creates a single large cold area near the surface, fed

by several downdrafts. In the self-aggregated case, con-

vection self-aggregates into a humid region surrounded

by extremely dry areas in about 20 days.

b. Model and setup

We use the Weather Research and Forecasting

(WRF) Model, version 3.6, in its Advanced Research

WRF (ARW) form (Skamarock et al. 2008; Wang

et al. 2014) and in its ‘‘idealized test’’ framework.

WRF-ARW dynamics solves the fully compressible,

Euler nonhydrostatic equations. We hereby present

3D simulations.

We use doubly periodic boundary conditions, and a

fixed SST of 302K (except in the fixed-surface-flux

case). The horizontal domain size is 202 3 202 points,

and the horizontal grid spacing is 1 km. The vertical grid

consists of 69 levels, going from the flat ocean surface up

to the model top, which is about 30 km. We use a

stretched vertical grid spacing: the vertical distance be-

tween two consecutive levels starts from 30m near the

surface, increases to 100m near the cloud base, stays at

400m in most of the free troposphere, reaches 500m

near the tropopause, and further increases to 2 km near

the model top. The Coriolis parameter f is set to zero.

In terms of dynamical options, we choose an implicit

gravity wave damping layer (sponge layer) for vertical

velocity in the top 5km of the model. We also use full

diffusion in physical space. A 3D prognostic equation

for turbulent kinetic energy (TKE) is used to calculate

turbulent eddy fluxes via a K coefficient based on TKE,

except for the self-aggregation case where the 3D

Smagorinsky turbulence scheme is used instead. The

influence of the turbulence scheme on self-aggregation

has been investigated by Tompkins and Semie (2017).

The physical parameterizations include the Yonsei Uni-

versity boundary layer scheme, and a revisedMM5 surface

layer scheme based on Monin–Obukhov theory for com-

putation of surface heat and moisture fluxes. There is no

need to impose a minimum wind for surface flux calcula-

tions in this scheme (Jiménez et al. 2012). No cumulus

parameterization is used. To be general, we choose a mi-

crophysical scheme with intermediate complexity and

allowing for unorganized convection for most of our sim-

ulations: the WRF single-moment 6-class microphysics

scheme (WSM6) (Hong and Lim 2006). We replace it by

theThompsonmicrophysics scheme for the self-aggregated

convection case, as tests showed that this scheme always

produces strong self-aggregation. However, we could not

use this latter scheme in all our cases, since it does not lead

to unorganized convection with the desired model config-

uration. Explaining the sensitivity of self-aggregation to

the microphysical scheme would require further study.
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Sensitivity tests confirmed that choosing a different mi-

crophysical scheme does not change memory significantly,

provided convective organization can be kept similar (see

the online supplemental material).

We use interactive radiation, with theRRTMGschemes

for both longwave (LW) and shortwave (SW) radiation.

For simplicity we remove the diurnal cycle by making the

cosine of the solar zenith angle constant at 0.8 (following

Cronin 2014), and by decreasing the solar constant to

544Wm22, applying the usual mean insolation calculation

to the equator rather than to the whole Earth (see the

online supplemental material).

c. Other simulation settings

For the spinup toRCE in the unorganized control run,

the initial profiles for temperature and water vapor are

chosen as the default initial sounding in the RCE test

case available in WRF v3.7.1. There is no initial wind

(even in the wind shear case). During initialization,

random temperature perturbations (white noise) of up

to 3-K amplitude are added in the first 2.5 km. These

initial profiles do not matter much since we only con-

sider the RCE state in the rest of the study.

The runs are performed for 80–100 days, with about

30 days of spinup time required to reach statistical RCE

as measured by the mean precipitable water (Tompkins

and Craig 1998). To be conservative we skip the first

2months of each control simulation before initiating any

experiments.

Following Held et al. (1993) and Wang and Sobel

(2011), a light nudging toward zero (or toward the

imposed shear, in the shear case) is imposed on the

domain-mean horizontal winds. We do not expect

the light nudging toward zero to significantly affect results.

d. Design of perturbation experiments

To reveal convective memory, we impose instanta-

neous changes to the WRF microstate without chang-

ing the macrostate. Our experiments use a very simple

kind of perturbation: horizontal averaging (hereby

called ‘‘homogenization’’) of a given subset of prog-

nostic state variables on model levels, at a selected

time step. Then the model is restarted from these partly

homogenized conditions with no other changes. We

compare the evolution of convection following per-

turbations of different prognostic variables (or sets of

variables) to that with no perturbation applied (con-

trol). We perturb all prognostic variables in WRF,

namely, potential temperature, water vapor mixing

ratio, hydrometeor mixing ratios, 3D winds, geo-

potential, column-integrated dry air mass, and TKE

(see Table 1).

Usually, CRM studies perturb the macrostate (the

forcing), and observe the time scale of the response

(Kuang 2010; Raymond and Herman 2011). The re-

covery in this case involves feedbacks between convec-

tion and macrostate, so could be slow because of long

macrostate memory, even in absence of microstate

memory (i.e., even if convection adjusts instantly to the

macrostate). To minimize this issue and reveal micro-

state memory instead, our homogenization perturba-

tions do not affect the macrostate, only the microstate.

FIG. 2. Snapshots of outgoing longwave radiation (OLR) in the domain, in the radiative–convective equilibrium state, toward day 80 or

81 of the control runs, for three convective types with different convective organization: (a) unorganized case; (b) wind shear organized

case, with the wind shear being positive and along the x axis; and (c) self-aggregated case.

MARCH 2019 COL I N ET AL . 951

Unauthenticated | Downloaded 08/31/21 03:07 PM UTC



The RCE state varies in time because of chaotic in-

ternal variability. Consequently, as in previous studies

(Cohen and Craig 2004), we ensure statistically signifi-

cant results by constructing ensembles, repeating each

experiment at 5–20 different restart times taken from

the RCE state reached by each convective case. Un-

certainty is then found to be very small.

3. Results

If convection were purely related to the macrostate

via a diagnostic relationship, it would resume as before

very rapidly. Here we therefore take the time required

for recovery as a measure of microstate memory. Also,

by eliminating particular microstate structures, homog-

enization should erase any corresponding microstate

memory, thus moving the system further away from

RCE. We therefore take the magnitude of this de-

parture as a second measure of microstate memory.

Here, convection intensity is quantified via domain-

averaged precipitation.

a. Convective organization and memory

Convective organization leads to a dramatic increase

in convective memory, particularly acute with self-

aggregation. The recovery time scale for water vapor

experiments is 1 h for unorganized convection, 6 h for

convection organized by wind shear, and more than 24h

for self-aggregated convection: convective organization

enhances memory by a factor of up to 25 (Fig. 3). Also,

in the self-aggregated case, precipitation remains zero

for 12 h after homogenizing, whereas in the unorganized

case, it does not even reach zero. With self-aggregation,

the precipitation response amplitude when homogeniz-

ing temperature (28mmday21) is about 8 times as large

as in the unorganized case (3.5mmday21). Sensitivity

tests confirmed that these memory changes are due to

organization, not to the choice of microphysical scheme

(see the online supplemental material).

To explain why organized convection shows so much

more memory, we can assess the domain-mean value of

convective available potential energy (CAPE) in the

equilibrium state of the different organization cases.

The CAPE is computed at each point pseudoadiabati-

cally by lifting the air parcel with the maximum equiv-

alent potential temperature in the first 3 km then

averaging horizontally. The average CAPE is highest in

the unorganized state (3200 J kg21), intermediate in the

case organized by wind shear (2350 J kg21), and lowest

in the self-aggregated case (750 J kg21). With more or-

ganized convection, the CAPE is smaller, so it takes

longer to regenerate locally the greater amount of con-

vective instability needed to restart convection from

scratch. This is likely to explain why it takes longer to

recover from homogenization.

Another explanation is that homogenization is a

stronger perturbation when there are stronger structures

to be homogenized. Self-aggregation generates very

large contrasts in humidity across the domain, and

therefore a large variance of atmospheric fields. Like-

wise, shear-organized convection has larger conversion

of horizontal momentum to vertical momentum, and

thus larger turbulence and associated variance.

b. In which variables is convective memory stored?

Preliminary experiments showed that geopotential,

column dry air mass, and subgrid TKE did not contrib-

ute to convective memory (see the online supplemental

material). Therefore, we focus our analysis on the role of

the other prognostic variables that could be important

for memory: winds, hydrometeors, water vapor, and

temperature.

The ‘‘single set’’ experiments (Fig. 3) show that the

amplitude of the precipitation response is larger when

temperature or water vapor are homogenized thanwhen

winds or hydrometeors are homogenized, indicating

that thermodynamic heterogeneities are more impor-

tant than wind and hydrometeor heterogeneities. In the

unorganized case (Fig. 4), temperature homogenization

leads to a recovery time scale of about 1.5 h, 1 h for water

vapor homogenization, and 1.5 h for wind homogeniza-

tion, while for the hydrometeors the recovery time scale

is about 20min. The response to homogenizing the hy-

drometeors has a large amplitude but rapid time scale,

indicating that while homogenizing the hydrometeors

impacts the precipitation initially, they are not impor-

tant for memory. These results are statistically robust

since the standard error of the mean around the en-

semble means is always very small.

In the shear-organized case (Fig. 5), water vapor still

carries the most memory and hydrometeors still play a

negligible role. But the winds become a more important

TABLE 1. List of variables averaged in the homogenization ex-

periments. The model is restarted from different combinations of

horizontally homogenized variables. The variables qc,qr ,qi,qs, and

qg refer to the mixing ratios of cloud liquid water, rain, ice, snow,

and graupel, respectively.

Symbol Variable

qy Water vapor mixing ratio

u Potential temperature

u 3D winds (u, y, w)

qcond All hydrometeors (qc,qr,qi,qs,qg)

PH Geopotential

MU Dry air mass in the vertical column

TKE Turbulent kinetic energy
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source of memory than temperature, probably because

the winds are what organizes the convection.

In the self-aggregated case (Fig. 6), there is a dramatic

increase in memory residing in the thermodynamic

variables: mostly water vapor (.24h), but also tem-

perature (;13h). The hydrometeors still do not store

any memory. With self-aggregation, water vapor and

temperature prevail bymore than an order ofmagnitude

over dynamics and microphysics for memory storage.

This is consistent with the fact that, in the self-aggregated

case, a strong contrast in humidity develops between wet

and dry subdomains, which does not develop nearly as

strongly with disorganized convection or wind shear or-

ganized convection.

The smaller memory storage of the dynamical vari-

ables (3D winds) compared to the thermodynamic

FIG. 3. Response of horizontally averaged precipitation rate after homogenization and model restart, for the control run and for

experiments on a single variable; colors indicate different experiments, and the legend indicates the variable homogenized in each ex-

periment (see Table 1). These are ensemble averages over 19 or 20 members. The panels represent experiments conducted on different

convective types: (a) unorganized convection, (b) convection organized by wind shear, and (c) self-aggregated convection. The peak

precipitation rate following homogenization of temperature in the self-aggregated case (off scale) is 32mmday21.

FIG. 4. Snapshots of the OLR response to various homogenization in the unorganized case.

(a) The control run, (b) water vapor homogenization, (c) potential temperature homogeni-

zation, and (d) water vapor and potential temperature homogenization. (top to bottom)

Times are at t 5 0, 1, and 3 h after homogenization.
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variables is confirmed by the ‘‘double set’’ experiments

(Fig. 7). In the unorganized case, homogenizing winds

and water vapor together has a similar impact as ho-

mogenizing water vapor only. Likewise for winds and

temperature together. However, homogenizing both

water vapor and potential temperature together leads

to a recovery time scale that is twice as long (2.5 h) as

when only one thermodynamic variable is homogenized

(;1 or 1.5 h).

In the wind shear organized case, the combination of

water vapor and temperature still carries more memory

than the combination between winds and either of the

thermodynamic variables. Homogenizing water vapor

and winds together leads to the same response as ho-

mogenizing water vapor only, while homogenizing both

temperature and winds leads to an intermediate re-

sponse more similar to wind only. These results show

that winds and temperature are important, but winds are

now the secondary storage of convective memory after

water vapor.

The self-aggregated case shows similar results in terms

of the relative importance of variables, but with much

greater memory overall. When both water vapor and

temperature are homogenized, the combined effect is

the largest of all experiments: precipitation remains zero

for about 18 h.

c. Moist static energy interpretation

In most experiments, precipitation is reduced after

homogenization. There is one exception, however, when

temperature is homogenized.

In most experiments the standard deviation of moist

static energy (MSE) near the surface (and to a lesser ex-

tent at 500hPa) is reduced in the first few hours after

homogenizing (Fig. 8). Also, the standard deviation of

MSE in the subcloud layer reacts earlier than precipitation

(see also Fig. 3a), which suggests causality. The standard

deviation of MSE is the most strongly reduced by ho-

mogenizing water vapor, and it is precisely the experiment

in which convection is the most strongly reduced. Con-

versely, homogenizing temperature leads to an increase in

the standard deviation of MSE instead of a decrease.

To explain this result, we note that raining locations are

associated with cold pools, which means they are usually

colder in the boundary layer than the nonconvective lo-

cations. When homogenizing temperature, the MSE of

wet convective areas thus becomes even higher than be-

fore homogenization, therefore, enhancing the standard

FIG. 5. As in Fig. 4, but for the wind shear organized case. (top to bottom) Times are at

t 5 0, 1, 3, and 6 h after homogenization.

954 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76

Unauthenticated | Downloaded 08/31/21 03:07 PM UTC



deviation of boundary layer MSE and intensifying con-

vection. So microscale MSE structures in the boundary

layer are the key for convective evolution here.

In the self-aggregated case, there is a short-term de-

crease in precipitation (;45min) when temperature is

homogenized, which is quickly superseded by the pre-

cipitation increase observed in the other cases (Fig. 3).

After homogenizing temperature in the self-aggregated

case, the cloudy area is not only much warmer in the

subcloud layer, but also slightly warmer in the shallow

cloud layer. This increases the saturated water vapor

mixing ratio, so that it becomes harder to create clouds:

cloud mixing ratio and rain mixing ratio slightly

decrease in the shallow cloud layer of the convective

region just after homogenizing.

Previously aggregated convection usually recovers to

another self-aggregated state after homogenization, but

not always (Fig. 6). If only water vapor or temperature is

homogenized, convection clearly recovers to an aggre-

gated state. However, if both are homogenized, it recovers

in a practically unorganized state, although slightly ag-

gregated, probably due to the persistence of wind (and

perhaps hydrometeors) structures. It is important to note

where aggregation recovers: at the original location when

temperature is homogenized, but in the opposite part of

the domain when water vapor is homogenized. This is

FIG. 6. As in Fig. 4, but for the self-aggregated case. (top to bottom) Times are at t5 0, 1, 3, 6,

12, and about 24 h after homogenization.
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consistent with themodifications of subcloud layerMSE in

convective and dry regions caused by homogenization:

self-aggregation occurs where the subcloud MSE is the

largest. The subcloud MSE gradients are primarily due to

humidity gradients, so that before homogenization, con-

vective areas have a higher MSE (higher humidity despite

lower temperature). This remains the case after tempera-

ture is homogenized, but it is inverted when water vapor is

homogenized.

d. Which layer of the atmosphere carries most
memory?

The results from section 3c suggest an important role for

the boundary layer. To go one step further, we carry out

experiments where we homogenize variables only in one

specific layer at a time: the subcloud layer [surface–940hPa

(;600m)], shallow cloud layer/midtroposphere (940–

700hPa), or free troposphere (700hPa–tropopause). Fol-

lowing the previous results, for these experiments we only

average the thermodynamic variables: water vapor and

temperature.

In the unorganized case, the precipitation recovery

time scale is largest when the subcloud layer is homoge-

nized (Fig. 9a). In contrast, the amplitude of the response

is almost zero when homogenizing the free troposphere.

Thus, memory mostly resides in the subcloud layer.

The shallow cloud layer appears to contribute as a

secondary storage of convective memory compared to

FIG. 7. Response of horizontally averaged precipitation rate after homogenization andmodel restart, for the control run and for experiments on

a double set of variables (dashed), compared to the single-variable temperature andhumidity results (solid).Different experiments are indicatedby

different colors (see legend and Table 1). These are ensemble averages over 19 or 20 members. The panels represent experiments conducted on

different convective types: (a) unorganized convection, (b) convection organized by wind shear, and (c) self-aggregated convection.

FIG. 8. Response of microscale structures, for different 3D experiments in the unorganized convection case. Different

experiments are indicated by different colors (see legend and Table 1). Both panels show ensemble averages for 19members.

(a) Sub-cloud-layer averageof thehorizontal standarddeviationofMSE. (b)Horizontal standarddeviationofMSEat 500hPa.
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the subcloud layer. The response time scale for ho-

mogenization of this layer is only 1 h, compared to the

2.5-h time scale for the subcloud layer.

The shallow cloud layer impacts precipitation on rel-

atively shorter time scales since homogenizing this layer

will directly impact clouds. The subcloud layer has a

longer lasting impact since it takes more time for the air

in the subcloud layer to generate updrafts, clouds, and

then precipitation.

In the case with wind shear, the relative role of the

shallow cloud layer is stronger than in the unorganized

case, but not as strong as in the self-aggregated case

(Fig. 9c).

In the self-aggregated case (Fig. 9), as in the two

other cases, most memory still comes from the lowest

two layers: the subcloud and shallow cloud layers. The

free troposphere (700hPa–tropopause) still plays a much

weaker role, although a little stronger than for the other

cases, since there are slightly stronger structures in the

free troposphere in the self-aggregated case (stronger

differences between the convective and the dry regions).

Themain difference is that thememory coming from the

subcloud layer is dominant in the unorganized case (by a

factor of 2 in recovery time scale), but it is the memory

coming from the shallow cloud layer that is dominant

with self-aggregation (also by a factor of about 2). In

comparison, the memory coming from these two low

layers is almost equivalent in the wind shear organized

case (the recovery time scales are the same).

e. Negligible role of surface fluxes

In section 3d we found that the sub-cloud-layer ther-

modynamical variables are the main source of convective

memory. Since this layer is in contact with the surface, it

raises the question of whether part of the long recovery

might be due to the surface fluxes (either to their average

or to their microscale fluctuations). We investigate this

using the fixed surface flux experiments (section 2a).

The results (see the online supplemental material) are

almost identical to those with fixed SST. With fixed

surface fluxes the amplitude of the response is very

slightly smaller, but otherwise, it is the same. We draw

two conclusions. First, surface flux heterogeneity is not a

source of microstate convective memory. Second, the

macrostate surface–flux feedback does not play a sig-

nificant role in helping the system regain its RCE state.

f. Secondary response: A microstate–macrostate
feedback

In some of our experiments, there is a longer-term

secondary response, which usually has the opposite sign

compared to the initial response. For example for un-

organized convection, see the experiment on u and qy
together in Fig. 9a (where there is a 24-h secondary re-

sponse time scale), or experiment on u (7-h time scale) or

winds (5-h time scale) in Fig. 3a. It appears that there is a

feedback between the microstate response and the mac-

rostate response. Systems in RCE have many modes of

variability, since they exhibit various natural oscillations

(Randall et al. 1994; Hu and Randall 1995; Yano and

Plant 2012a). The homogenization experiments seem ei-

ther to excite some particular modes of this dynamical

system, or to trigger a damped oscillatory response.

In most experiments in the unorganized case, most

variables recover to their RCE value after about 6 h.

This is not true for the one where both water vapor and

temperature are homogenized (Fig. 10), where the

precipitation response starts a longer-period oscillation

FIG. 9. Response of horizontally averaged precipitation rate after homogenization and model restart, for the control run and for

experiments on specific layers only: homogenization before the restart is conducted over different atmospheric layers: subcloud layer

(surface–940 hPa), midlayer (940–700 hPa), and high layer (700 hPa–tropopause). Different experiments are indicated by different colors

(see legend and Table 1). These are ensemble averages over 19 or 20 members. Different panels represent experiments conducted on

different convective types: (a) unorganized convection, (b) convection organized by wind shear, and (c) self-aggregated convection.

MARCH 2019 COL I N ET AL . 957

Unauthenticated | Downloaded 08/31/21 03:07 PM UTC



away from equilibrium at 7h, which peaks at 13 h. To

explain this, note that after 6 h, even though pre-

cipitation has recovered to its RCE value, CAPE has

not, showing that the macrostate after 6 h is different

from the macrostate in RCE.

This secondary response should not influence our re-

sults on microstate memory too much since it is of

smaller amplitude, and we are focusing on the first part

of the response. We discuss a potential way to prevent

interactions between the microstate and macrostate in

section 3h.

g. Summary, discussion, and hints on processes

Our results show that in all three convective organi-

zation types, water vapor is the primary storage of

memory, followed by temperature (especially in the

unorganized case) and then wind (especially in the case

organized by wind shear). There is thus a dominant

‘‘water vapor memory.’’ Moreover, memory is mostly

stored at low levels. These results resonate with Stirling

and Petch (2004) who showed in a 2D setup that the

diurnal cycle of unorganized convection is most strongly

affected by microscale variability of relative humidity in

the boundary layer, and with Davies (2008) and Davies

et al. (2013b). The importance of water vapor for con-

vective memory is also consistent with its importance in

self-aggregation (Tompkins 2001b).

We conclude that convective memory mostly resides

in low-level thermodynamics, which provides hints

about the processes involved. Cold pools and thermals

are strong intrinsic thermodynamical microstate struc-

tures at low levels, and therefore good candidates for

FIG. 10. Response after homogenization of variables given by the legend (colors, see Table 1) and model restart, on longer time scale

(24 h), for unorganized convection. These are ensemble averages over 19 members. The response of different variables is presented:

(a) horizontal average of precipitation rate, (b) horizontal average of CAPE, (c) horizontal average of MSE at 500 hPa, (d) standard

deviation ofMSE at 500 hPa, (e) horizontal average of the total wind at 500 hPa, and (f) standard deviation of the total wind at 500 hPa. As

shown by the legend, the lines show the control run (black); single-set homogenization experiments on water vapor (green), potential

temperature (red), winds (dark blue), hydrometeors (orange); and a double-set homogenization experiment on water vapor and potential

temperature together (dashed cyan). The total wind is computed as the amplitude of the 3D wind vector. The standard deviation of the

total wind is very similar to the convective kinetic energy (CKE). Convective available potential energy (CAPE) and moist static energy

(MSE) are also indicated. Note that here CKE refers to the CKE defined at each point by the velocities resolved by the CRM, which is

different from the parameterized subgrid TKE used by the CRM.

958 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76

Unauthenticated | Downloaded 08/31/21 03:07 PM UTC



processes leading to microstate memory. This is sup-

ported by the key role of cold pools in convective or-

ganization (Tompkins 2001a). This inference tends to

support the development of prognostic cold pool

schemes, which have been shown to bringmemory to the

system Del Genio et al. (2015). Further study of the

controlling processes for memory would be helpful.

The dominant horizontal scales for memory were not

investigated here, but it can be inferred from previous

studies. Stirling and Petch (2004) showed that horizontal

scales larger than 10km have the largest influence on

subsequent convection in an experiment representing

the typical diurnal cycle. Similarly, Davies et al. (2013b)

demonstrated that horizontal scales of 5–20km are the

most important for the memory. This is consistent with

the typical 10–20-km scale of the cold pools simulated in

the unorganized case.

h. General caveats

In this study, feedbacks from the macrostate onto

convection are not forbidden during convective re-

covery to RCE. Domain-mean temperature, humidity,

and CAPE are allowed to vary with time, so the mac-

rostate is not held fixed (Fig. 10). Thus, recovery of the

microstate to homogenization involves interaction with

the macrostate (e.g., increase of CAPE). So the re-

sponses measured here partly include macrostate

memory. However, we conjecture that macrostate

feedbacks affect all perturbations similarly, and on

longer time scales, so that comparing the recoveries

should still be valid. This conjecture is consistent with

results by Davies et al. (2013b). Significant work would

be required to completely get rid of the macrostate

feedbacks, which calls for further study. A method to

achieve this would be either to impose the macrostate

or to statistically remove the effect of macrostate

variations.

By changing the microphysical scheme, we strongly

modified the convective organization in space. We

confirmed that the dramatic change in memory is due to

the change in organization, not just to the change in

microphysical scheme, by evaluating the memory with

the Thompson microphysics scheme but a very small

domain that forces a relatively unorganized state. The

results show that memory is similar to the unorganized

case with WSM6 microphysics (see the online supple-

mental material).

Homogenization is a very strong perturbation to the

microstate. So one could argue that our experiments

may overestimate recovery times compared to, for ex-

ample, replacing the convective microstate with a non-

convective one. We expect that the relative importance

of the different sources of memory found in this simple

approach, under different degrees of organization,

would hold in more realistic approaches, although it will

need to be tested in future work.

This study is performed in RCE, so there is no ex-

ternally imposed large-scale forcing. This may limit the

generality of our results. It would be interesting to check

whether the results hold in an idealized atmosphere that

undergoes a large-scale upward vertical velocity, rep-

resenting the trough of a large-scale wave, and leading to

higher precipitation rate. But even if RCE may neglect

part of the complexity of the real atmosphere, it is still a

useful framework to look at convection–circulation

feedbacks.

We have analyzed the memory of tropical convection

only. Potentially, the wind shear experiments may partly

capture behaviors of synoptic weather systems in the

extratropics.

Convective memory as considered in this study in-

cludes convection but also the resolved turbulence, since

the homogenization technique acts on the whole mi-

crostate, independently from whether the microstate

structures are more on convective length scales or on

turbulent length scales.

i. Implications for parameterizations

Overall, our results suggest that some of the previous

studies have chosen reasonable memory storage through

thermodynamic variables (e.g., precipitation evapora-

tion, cold pools), even though some other studies may

have given too much memory role to the dynamical

variables (e.g., convective vertical velocity, subgrid-scale

TKE or CKE) or to the microphysics. Even though these

dynamical variables are likely to be ultimately controlled

by the thermodynamic structures, they do not appear to

be the main storage of memory themselves. Choosing

precipitation as the storage of memory is probably not

ideal, as there is no memory in the hydrometeors, even

though precipitation is also controlled by many thermo-

dynamic conditions. The use of precipitation evaporation

might be relevant, as it strongly depends on the relative

humidity of the subcloud-layer, which is a thermody-

namical variable.

Still, few studies have directly chosen water vapor and

temperature as a memory storage, apart from studies us-

ing cold pool thermodynamic profiles (Qian et al. 1998;

Grandpeix and Lafore 2010; Park 2014; Del Genio et al.

2015). Hopefully this study will trigger more parameteri-

zation development based on these direct thermodynamic

variables, for example, by a prognostic representation of

the unresolved boundary layer thermodynamic structures

(e.g., via spatial variance of water vapor and temperature,

or of moist static energy). Finally, our results may

help choose the prognostic variable in order to build a
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convective parameterization with memory in an implicit

way such as Mapes and Neale (2011).

For example, Del Genio et al. (2015) improved the

representation of the Madden–Julian oscillation (MJO)

by adding memory, which resides in prognostic cold

pools. Their best MJO is simulated when the scheme has

memory, but too much memory also degrades the MJO:

what is needed is the right amount of memory.

4. Conclusions

This study introduces a framework to clarify previous

discussions about convective memory, and uses CRM

simulations to explore where it comes from. The new

framework distinguishes at least two types of convective

memory. Convection can remember its previous states

through the impact of earlier convection on the current

macrostate (large-scale state averaged on a scalel such as

the local grid column in a GCM), which can feed back

onto convection. This type of memory can in principle be

captured by a GCM with an accurate diagnostic convec-

tion scheme (one that predicts convective effects based

on the currentmacrostate).However, convection can also

remember its previous state via persistence of the mi-

crostate itself, which is not resolved at the scale l. Such

microstate memory will not be captured by a convective

scheme unless the parent model carries additional prog-

nostic variables representing the microstate. To the ex-

tent that a given macrostate can be associated with a

range of microstates, and that the microstate influences

convection, then the microstate represents an additional

degree of freedom for the convection that should be

taken into account by convective parameterizations.

We show that microstate memory is indeed present,

and is highly enhanced by convective organization: the

amount ofmicrostatememory is related to themagnitude

of spatial inhomogeneities. Self-aggregated convection

has the most memory, wind shear organized convection has

intermediate memory, and unorganized convection has the

least. Yet, even in the unorganized case, recovery of the

RCE state after a microstate perturbation can require sev-

eral hours, which is much longer than a GCM time step

(;10–20min).When convection is organized, such recovery

can take longer than the diurnal time scale (24h) in some

cases. This finding strongly supports efforts to add prog-

nostic variables (i.e., memory) into parameterizations. It

also indicates that the degree of memory is very sensitive to

the degree of spatial organization, so that a scheme cap-

turing one may also capture the other.

The main sources of microstate memory are found to

be water vapor, then temperature, and then winds. But

the importance of winds increases with wind shear. The

memory mostly comes from the lowest part of the

atmosphere: the subcloud layer and the shallow cloud

layer (up to 700 hPa). For unorganized convection the

subcloud layer is the most important, while the shallow

cloud layer dominates for wind shear organization and

even more clearly for self-aggregation.

This suggests memory comes from processes that con-

tribute to the spatial variance of low-level moist static

energy (MSE) and/or make convection sensitive to it. This

includes cold pools, hot thermals, andother rain-associated

thermodynamic processes such as rain evaporation, and

supports parameterizations coupling convection to these

processes. Further study intended to specifically discrimi-

nate between processes that lead to convective memory

would be helpful.

Physically, the persistence of microscale structures

matters for convection since convection tends to localize

on the maxima of subcloud layer MSE. Also, cold pools

and local moistening by detrainment in the shallow

cloud layer are microstate elements that favor nearby

subsequent convection, increasing microstate memory.

To further understand the origins of microstate con-

vective memory and to test how robust the results are,

subsequent investigations could experiment with different

kinds of perturbations, and assess the sensitivity to various

model choices. In particular, we could use perturbations

with spatial filtering to determine the scale of the struc-

tures storing memory. We could also test the sensitivity

to a large-scale vertical velocity forcing. Moreover, it is

unclear whether the large-scale vertical velocity, a mac-

rostate variable, could indirectly capture the past micro-

state (and if so, to what extent and by which mechanism).

The study focuses on microstate memory: at this stage,

we have not provided insight on sources of macrostate and

synoptic state memory. Presumably, free-tropospheric wa-

ter vapor could play an important role in the macrostate

memory (Tompkins 2001b), as well as higher-tropospheric

temperature (Raymond and Herman 2011), and this could

be further clarified by expanding methods such as Kuang

(2010) via introducing time lag.Anoverall target forGCMs

could be to better represent these three types of memory,

which all contribute to spatiotemporal variations of con-

vection and precipitation (e.g., diurnal cycle, precipitation

frequency).

Finally, this study reveals the link between memory

and organization, which suggests that improved repre-

sentation of convective memory might improve con-

vective organization (Tobin et al. 2013), such as the

Madden–Julian oscillation, or monsoons.
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