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We calculate the lattice-driven in-plane (κ‖) and out-of-plane (κ⊥) thermal conductivities of
Bi2Se3 bulk, and of films of different thicknesses, using the Boltzmann equation with phonon scat-
tering times obtained from anharmonic third order density functional perturbation theory. We com-
pare our results with existing measurements of κ‖ on bulk samples and with our room-temperature
thermoreflectance measurements of κ⊥ on films of thickness (L) ranging from 18 nm to 191 nm.
Theoretical calculations compare favourably with the lattice component of the total thermal con-
ductivity, both for bulk and thin films, after subtraction of the electronic component. The latter
has been estimated from the Wiedemann-Franz law in n-doped samples. In the low T-limit the
theoretical in-plane lattice thermal conductivity of bulk Bi2Se3 agrees with previous measurements
by assuming the occurrence of intercalated Bi2 layer defects. The measured thermal conductivity
monotonically decreases by reducing L, its value is κ⊥ ≈ 0.39 ± 0.08 W/m·K for d = 18 nm and
κ⊥ = 0.68 ± 0.14 W/m·K for L = 191 nm. The decrease of room-temperature κ⊥ in Bi2Se3 thin
films as a function of sample thickness is due to the incoherent scattering of out-of-plane momentum
phonons with the film surface. Our work outlines the crucial role of sample thinning in reducing
the out-of-plane thermal conductivity.

I. INTRODUCTION

While the thermoelectric properties of
Bi2Te3 have been widely studied both for bulk
and thin films1, interest in the isostructural
topological insulator Bi2Se3 mostly focused on
its peculiar electronic structure and little is
known on its thermal properties. The main
reason is that its Seebeck coefficient is lower
than that of Bi2Te3 and its thermal conduc-
tivity is somewhat higher, leading to a worse
thermoelectric figure of merit ZT . Notwith-
standing that, the situation could be different
in Bi2Se3 thin films, where thermal conduc-
tivity could be reduced due to scattering with
sample borders.2 Little is known of the ther-
mal conductivity in this case.

Bi2Se3, similarly to Bi2Te3, has a lamel-
lar structure, consisting of sheets of covalently
bonded Se-Bi-Se-Bi-Se atoms that are held
together by weak interlayer van-der-Waals
bonds. This highly anisotropic crystal struc-
ture is reflected in anisotropic thermal and

electrical conductivity. Thermal conductivity
of bulk Bi2Se3 has been measured by several
authors. Navratil and coworkers3,4 measured
the thermoelectric properties and the in-plane
thermal conductivity in bulk Bi2Se3 and ex-
tracted the lattice contribution to κ‖ (lying in
the plane of the Bi2Se3 layers, perpendicular
to the [111] direction). They find values of the
order of 1.33 − 1.63 W/m·K at room temper-
ature. Furthermore, the authors found a drop
of κ‖ at low temperatures which they attribute
to the presence of charged Se vacancies.

There is a certain variance in experimental
values of κ: In Ref. 5 and for p-doped sam-
ples, the in-plane conductivity was found to
be of the order of 1.25 (W/m·K), however the
lattice contribution was not extracted. The
room-temperature total lattice and electronic
conductivity were also estimated in Ref. 6 and
found to be 2.83 W/m·K and 1.48 W/m·K,
respectively. More recently, the total in-
plane thermal conductivity was estimated to
be 3.5 W/m·K.7
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In this work we present a detailed theo-
retical and experimental investigation of the
thickness dependence of the out-of-plane ther-
mal conductivity κ⊥ for thin films grown by
molecular beam epitaxy and having a thick-
ness L between 18 and 191 nm. We find
that the out-of-plane thermal conductivity de-
creases monotonically with thickness. By us-
ing first-principles electronic structure calcu-
lations, we show that this is mostly due to the
suppression of long-wavelength phonon prop-
agating along the c-axis. Moreover we show
that the low temperature behaviour of the lat-
tice component of the thermal conducitivity
is mostly due to intercalated Bi2 layers and
not to Se vacancies, as suggested in previous
works.3,4

In Sec. II we present the experimental setup
and techniques used to grow and measure
the conductivity of thin films. In Sec. III
we review and extend the theory of phonon-
driven thermal transport in finite crystals.
We report in Sec. IVA the computational
details, in Sec. IVB the crystal geometry,
and in Sec. IVC we compute the electronic
contribution to thermal conductivity via the
Franz-Wiedemann law. In Sec. V we present
our results on electronic structure (Sec. VA),
phonon dispersion (Sec. VB), bulk ther-
mal conductivity (Sec. VC) and thin films
(Sec. VD).

II. EXPERIMENT

A. Thermal conductivity measurements

Thermal properties of thin films may be
obtained at room temperature using modu-
lated thermoreflectance microscopy8,9. In this
setup, a 532 nm Cobolt laser is focused on
the sample through a ×50 (0.5 NA) objective
microscope. The 532 nm laser is intensity-
modulated in a frequency range 100 Hz − 1
M Hz. Since the light penetration depth is
around 10 nm a large amount of heat is re-
leased in the thin film.

Surface temperature is then affected by heat
diffusion carried by thermal waves8,9. The
setup permits a spatial measurement of the
surface temperature around the pump beam

by a probe 488 nm Oxxius laser that is re-
flected on the heated surface. The variations
of the reflectivity (amplitude and phase) are
measured by a lock-in amplifier and are di-
rectly proportional to the modulated temper-
ature variation. Finally, the amplitude and
phase experimental data are fitted according
to a standard Fourier diffusion law to extract
the thermal parameters (thermal conductivity
k and /or thermal diffusivity D):

D = k/dC , (1)

where d is the sample density and C its specific
heat10–15.

B. Thin films growth

The growth of Bi2Se3 thin films were con-
ducted by Molecular Beam Epitaxy by follow-
ing the procedure given in Ref. 16. Flat (111)-
B GaAs buffer surfaces were prepared in the
III-V chamber and subsequently transferred to
a second chamber where Bi2Se3 thin films were
grown with thicknesses ranging from 18 nm up
to 190 nm. The crystalline quality, epitaxial
in-plane orientation, lattice parameter, crys-
talline structure of Bi2Se3 films were verified
by reflection high-energy electron diffraction
and x-ray diffraction.

III. THEORY

A. Scattering mechanisms in finite
crystals

The behaviour of lattice-driven thermal con-
ductivity as a function of temperature has a
typical shape which is mostly independent of
the material : at high temperature it decreases
as 1/T , at lower temperature it has a maxi-
mum, then going towards zero temperature it
decreases sharply to a finite value. The behav-
ior of the lattice thermal conductivity at high
temperature is determined by the anharmonic
phonon-phonon interactions17 with a contri-
bution from defects. In the low temperature
regime, named after Casimir who studied it
in the 1930’s18, thermal conductivity is not a
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FIG. 1. Possible scattering mechanisms in a slab-
shaped crystal. 1) Normal momentum-conserving
scattering (does not limit thermal transport). 2)
Umklapp scattering. Absorption by: 3) point de-
fects or isotopic disorder, or 4) rough “black” sur-
face, with black-body emission to maintain ther-
mal equilibrium. 5) Reflection by a rough “white”
surface. 6) Reflection by a smooth surface. 7)
Transmission through an intercalated surface.

bulk property but it depends on the sample
finite size.18

Theoretical studies of the Casimir regime
pre-date the possibility to study thermal
conductivity by numerically integrating the
phonon anharmonic properties18–20, the stan-
dard approach consists in modeling the sample
boundaries as black bodies that absorb a frac-
tion of the colliding phonons, reflect the rest,
and emit phonons to maintain thermal equi-
librium. These works use geometric calcula-
tions, valid in the linear regime where only the
acoustic phonons are taken into account, to
predict the low-temperature thermal conduc-
tivity, usually with a single free parameter: the
surface reflectivity. Invariably they assume a
simple geometry for the crystal, such as a long
cylinder or a long square parallelepiped with
a temperature gradient between its opposite
faces; in a shorter cylinder with polished faces
the model requires the inclusion of multiple
internal reflections20.

With the arrival of more powerful numer-
ical techniques, it has become more effective
to model the surface at the phonon level, as
a scattering probability. The probability of
scattering from the boundaries can be com-
bined with the probability of scattering due to
phonon-phonon interaction in accordance with

Matthiessen’s rule.21. This approach has been
used in more recent literature22 while keeping
the assumptions of the long cylindrical geom-
etry, not appropriate for application to thin
films, where a temperature gradient can be ap-
plied orthogonally to the film lateral extension.

In Fig. 1 we have schematically depicted the
possible scattering events responsible for lim-
iting lattice-driven energy flow, we will briefly
review them but for detailed discussion we
redirect the reader to Ref. 23. Mechanisms
(1) and (2) are the intrinsic scattering pro-
cesses: (1) is the “normal” (N) scattering, it
conserves momentum and does not limit ther-
mal conductivy. N scattering is only impor-
tant at very low temperature (a few K). (2)
The umklapp (U) process, which conserves
crystal momentum modulus the addition of a
reciprocal lattice vector, it is the main limit-
ing factor at high temperature and the preva-
lent intrinsic scattering mechanism. When
studying thermal conductivity in the single-
mode relaxation-time approximation (SMA),
it is assumed that U scattering is dominant
and that the scattered phonons are thermal-
ized, i.e. that on average they are scattered
toward the equilibrium thermal distribution.
This approximation is very robust and works
to within a few percent in a large range of tem-
peratures and materials.24

Diagram number (3) depicts the Rayleigh
scattering with a point defect, which could be
a vacancy25, a substitutional defect or isotopic
disorder21. Finally, events (4), (5) (6) and
(7) are possible interactions between a phonon
and the sample boundary: (4) is adsorption
and re-emission by the surface; (5) is inelas-
tic reflection by a “white” surface. We remark
that, as it has been shown in Ref. 20, events
(4) and (5) are equivalent from a thermal-
transport point of view, we will just use (4)
from here on. Further on, (6) is elastic reflec-
tion, where the momentum component parallel
to the surface is conserved but the orthogonal
component is inverted. Reflections can limit
thermal conductivity in the direction orthogo-
nal to the surface. Finally in (7) a phonon can
cross the boundary without scattering, this is
of course not possible if the sample is sus-
pended in vacuum, but can be the case if the
sample is composed by multiple mis-matched
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segments, or if it contains stacking defects.
In order to describe the interface, we intro-

duce three dimensionless parameters: the ab-
sorption fraction fa, the reflection fraction fr
and the transmission ft, these are the proba-
bilities that a phonon will undergo process (4),
(6) or (7) respectively when it collides with
the boundary. The condition fa + fr + ft = 1
holds. In general these parameters may de-
pend on phonon energy and its incidence an-
gle, they can be computed using molecular dy-
namics techniques26. A special limit case is a
very rough surface for which fa = 1.

B. Thermal transport in the single-mode
approximation

In the single mode approximation (SMA)
the thermal conductivity matrix is:

καβ =
~2

N0ΩkBT 2

∑
j

vα,jvβ,jω
2
jnj(nj + 1)τj

(2)

Where j is a composite index running over the
phonon wavevectors q in reciprocal space and
the phonon bands ν; N0 are the number of
q-points used to sample the Brillouin zone,
Ω is the unit-cell volume, kB is the Boltz-
mann constant and T is temperature. In-
side the sum, the composite index j stands
for the band index ν and the wavevector q;
then ωj = ων(q) is the phonon frequency,
vj = ∇qων(q) is the phonon group veloc-
ity; α and β are cartesian directions (x, y, z)
nj = n(ων(q)) is the Bose-Einstein distribu-
tion and τj is the phonon relaxation time, or
inverse full-width half-maximum27.

The SMA is accurate when umklapp or dis-
sipative scattering is dominant over "normal"
and elastic scattering, we have checked that
this is always the case in Bi2Se3 above 1 K:
above this temperature the exact solution of
the Boltzmann transport equation (BTE)23
only increase k by a couple percent. As the
SMA equation is much cheaper to compute,
easier to manipulate and has a more straight-
forward interpretation, we will use it exclu-
sively in the rest of the paper.

C. Thermal transport in thin film
crystals

In order to progress further we have to take
into account the real geometry of our sample.
In this paper we will consider two cases: (i) a
thin film of Bi2Se3 of thickness L along direc-
tion z and virtually infinite in the other two
directions with two very rough opposing sur-
faces; (ii) bulk Bi2Se3 intercalated with partial
planes of Bi2, which is a common kind of crys-
tal defect,16,28 at an average distance L.

In case (i) we consider a phonon emitted
from a surface that moves toward the oppo-
site surface with a z component of its group
velocity vz. After a time L/vz the phonon
will reach the other surface and be absorbed
with probability fa, which gives us the first
phonon scattering rate γ(1)a and the relaxation
time τ (0)a = fa

vz
L . If it is not absorbed (proba-

bility fr = 1−fa), the phonon will be reflected
back toward the initial surface with identical
speed and it will undergo a second absorp-
tion/reflection process, in the limit we obtain:

(τa)−1 = 2γa =fa
vz
L

∑
i=1,n

f i−1r =
vz
L

(
fa

1− fr

)
.

(3)

For boundary scattering, fa = 1 − fr conve-
niently cancels out giving τa = L

vz
, but we pre-

fer to leave eq. 3 in a general form to consider
more general cases. Furthermore, if a phonon
is reflected, its velocity component that is or-
thogonal to the surface will be inverted. We
can account for this possibility in eq. 2 renor-
malizing vz in the following way: a fraction fr
of the phonons will change the sign of vz, a
fraction of them will hit the opposite bound-
ary, be reflected a second time and change sign
again, and so on. The material is traversed in a
“flying” time τf = L/vz, during this time there
is a probability Px = τ/τf that the phonon
is scattered resetting the process, τ being its
total (intrinsic and extrinsic) relaxation time.
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This can be expressed as:

ṽz =
∑
i=0,∞

(−τf
τ
fr)

ivz = vz

(
1 +

τ

τf
fr

)−1
.

(4)

Again, we do not replace τf with 1−τa because
we want to keep this equation as general as
possible.

In case (ii), a bulk material intercalated with
planes, the reasoning is very similar, with the
caveat that 1 − fa = fr + ft, although for an
atom-thin intercalated layer we can safely as-
sume that fr is almost zero.

The final formula for κ becomes:

καβ =
~2

N0ΩkBT 2

∑
j

ṽα,j ṽ
tot
β,jω

2
jnj(nj + 1)τj

(5)

We obtain ṽ from eq. 4, and τ contains
all the scattering terms summed with the
Matthiessen’s rule:

τ tot =
(
τ−1ph−ph + τ−1a + ...

)−1
(6)

where additional scattering terms like point-
defect scattering, can be added. In the case
of Bi2Se3 we will see in Sec. VD the impact
that internally reflected phonon have on the
conductivity. We also underline that while
our sample are not free-standing in the experi-
ment, we assume that, on the time-scale of the
measurements, the transmission of heat from
Bi2Se3 to the GaAs substrate can be ignored.

IV. TECHNICAL DETAILS OF
FIRST-PRINCIPLES SIMULATIONS

A. Computational method

All calculations have been performed us-
ing the Quantum-ESPRESSO suite of
codes29,30, and in particular ph31 and d3q27

modules. D3q efficiently computes 3-body
anharmonic force constants from density
functional perturbation theory32–34 and the
"2n+1" theorem35,36. We also used the re-
lated Thermal2 codes23,27 to compute in-
trinsic phonon lifetime, scattering with iso-
topic defects21 and border effects and to com-
pute lattice-driven thermal conductivity in

the single-mode relaxation time approxima-
tion (RTA) and by solving iteratively the full
Peierls-Boltzmann17 transport equation via a
functional minimization23.

We used the generalized gradient approxi-
mation with the PBE37 parametrization. We
employed norm-conserving pseudopotentials
from the SG15-ONCV library38–40, which in-
clude scalar-relativistic effects, and custom
made pseudopotentials based on the SG15-
ONCV pseudisation parameters, but including
full-relativistic spin-orbit coupling (SOC). The
ph code includes SOC effects41, but the d3q
code does not, hence we always used scalar-
relativistic pseudopotentials for the third or-
der calculations.

We used a kinetic energy cutoff of 40 Ry for
the plane wave basis set, and we integrated
the electronic states of the Brillouin zone (BZ)
using a regular Monkhorst-Pack grid of 8×8×8
k-points, except when computing the effective
charges and static dielectric constant via linear
response, which only converged with a much
finer grid of 32× 32× 32 points.

The phonon-phonon interaction was inte-
grated using a very fine grid of 31 × 31 × 31
q-points, when computing the linewidth along
high-symmetry direction or the phonon spec-
tral weight. A coarser grid of 19 × 19 × 19
points was used when computing the ther-
mal conductivity. The SMA thermal Boltz-
mann equation was itself integrated over a
grid 19 × 19 × 19 q-points. All the grids
in this paragraph were shifted by a random
amount in order to improve convergence avoid-
ing symmetry-equivalent points. The finite
size effects of section III C where included in
the calculation of κ using an in-house Octave42
code available upon request.

B. Crystal structure

Bi2Se3 belongs to the tetradymite-type crys-
tal with a rhombohedral structure (point
group R3̄m, Wyckoff number 166). In the
rhombohedral unit cell there are three Se and
two Bi atoms. One Se atom is at the (1a)
site (0, 0, 0), the remaining Se and Bi atoms
are at the two-fold (2c) sites of coordinates
(u, u, u) and (−u,−u,−u), with one free pa-
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rameter for each species, which we indicate as
uSe and uBi respectively. Structural parame-
ters obtained from experimenatl measurement
and from ab-inition simulations are shown in
Tab. I. Both the scalar relativistic and the
fully relativistic PBE calculations give sub-
stantially expanded structures, both in a and
c, as is customary in this approximation. As
the gap is quite sensitive to the geometry, we
also calculate the gap using the experimental
volume. In all fully relativistic calculations the
gap is substantially overestimated, in agree-
ment with previous theoretical calculations.

Bi2Se3 thin films measured here had thick-
nesses between 18 nm and 191 nm. The
stack of 2 Bi and 3 Se atoms (one Q-layer)
is 0.984 nm thick, which means that even for
the thinnest slab we have 18 or 19 Q-layers.

C. Electronic contribution to thermal
conductivity

Commercially available bulk Bi2Se3 sam-
ples, and our epitaxial Bi2Se3 thin film sam-
ples, are always doped to a certain extent by
the presence of vacancies and imperfect stoi-
chiometry. For this reason, even if the perfect
material is a small gap insulator, we expect
to measure a certain amount of electron/hole
driven thermal and electric transport. Al-
though there is no simple way to isolate the
electronic contribution to thermal transport
(ke), we can estimate it from electric conduc-
tivity.

Mobility (µ), doping and electrical resistiv-
ity (ρ‖) of most of the thin films have been
measured by conventional Hall bar measure-
ments performed in the plane perpendicular
to the trigonal axis, c, of Bi2Se3 thin films.

It turns out that, at 300 K our thin films
are n-doped and present a metallic behav-
ior with a carrier concentration between 1 −
2 · 1019 cm−3, µ ∼ 300 − 400 cm2/V·s and
ρ‖ ∼ 1−1.5 m2·cm. A coarse evaluation of the
electronic contribution to the in-plane ther-
mal conductivity, ke,‖, can be given by using
the Wiedemann-Franz law ke,‖ = LT/ρ‖, with
L ranging between3 2 and 2.2 · 10−8 V2K−2.
Consequently, ke,‖ at 300 K ranges between
0.4− 0.7 W/m·K.

Concerning the out-of-plane resistivity
term, ρ⊥, a rough estimation can be given
by ρ⊥ ∼ 3.5ρ‖ since such a ratio is found in
bulk Bi2Se347 leading to ke,⊥ between 0.1 −
0.2 W/m·K. It is worthwhile to be reported
that ρ‖ measurements performed in very thin
Bi2Se3 samples (9 QL) give a slight lowering
of the resistivity (0.7 m2·cm), which may be
caused by ke,⊥ slightly increasing at very low
thickness.

V. RESULTS AND DISCUSSION

A. Electronic structure

Before delving in the calculation of the vi-
brational properties, we have taken care to ver-
ify that the approximations used to deal with
the ab-initio problem are valid. A few poten-
tial difficulties have to be accounted for: the
first is that Bi2Se3 is a small gap semiconduc-
tor, special care is needed in order to prevent
the gap from closing. The gap magnitude de-
pends both on the kind of local- or semi-local-
exchange and correlation kernels and on the
lattice geometry used. In any case, the Kohn-
Sham single particle gap is not guaranteed to
be correct, as it is not a ground-state prop-
erty. However, if its character is different from
the experimental one it can indicate the the
employed approximation is non suitable. The
optical gap of, Bi2Se3 has been measured ex-
perimentally as being direct and 200± 5 meV
wide44.

Another diffulty is the treatment of the
inter-layer Van der Waals bond; these bonds
are usually underestimated by standard local
density approaches. However it is usually pos-
sible to improve the match of vibrational fre-
quencies by using the experimental lattice pa-
rameters. For this reason, we have simulated
the electronic structure using the experimen-
tally measured lattice parameter and the the-
oretically calculated values. In both cases we
optimize the internal degrees of freedom to
avoid unstable phonons.

In Fig. 2 we plot the electronic band struc-
ture, in a range of a few eV around the Fermi
energy. We note that the band structure is
very similar except for the case where relativis-
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TABLE I. Structural parameters of bulk Bi2Se3 : lattice parameters, a, c, unit cell
volume V , lattice positions of Se and Bi, uSe, uBi, and the bulk band gap. Experi-
mental data (Ref. 44) is given, and compared with the scalar relativistic (SR) and fully
relativistic (SOC) calculations of this work where theoretically determined or experi-
mentally determined lattice parameters were used as model input. Last row: results
from literature DFT simulation.

structure a (Å) c (Å) V (Å3) uSe uBi gap (meV)
Experimental: 4.138 28.64 422.8 - - 200±5

approximation structure a (Å) c (Å) V (Å3) uSe uBi gap (meV)
this paper:

SR theoretical 4.198 30.12 459.6 0.217 0.398 471
SOC theoretical 4.211 29.76 457.0 0.215 0.399 373
SR experimentala 4.138 28.64 422.8 0.211 0.400 183
SOC experimentala 4.138 28.64 422.8 0.209 0.401 333/444b

DFT simulations in literature:
SOC/vasp experimental43 4.138 28.64 422.8 - - 320

a Lattice parameters from Ref. 45 as in 43, also compatible with Ref. 46.
b Indirect/direct gap.

Theoretical lattice parameter:
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FIG. 2. Calculated electronic band structure of bulk Bi2Se3. In the first row: using each method’s
respective calculated theoretical lattice parameter; second row: experimental lattice parameter. First
column: scalar relativistic (SR), second column: fully relativistic (SOC), third column: comparison
SR/SOC close to the Fermi energy.
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FIG. 3. Experimental16 Raman spectrum com-
pared with theoretical calculations. The vertical
lines indicate the theoretical harmonic phonon fre-
quencies SR (orange) or with SOC (blue) at the
experimental lattice parameter.

tic effects are included in conjunction with the
experimental lattice parameter (Figure 2b).
When using the theoretical lattice parameter,
(values give in Table I) the gap is of 471 meV
in the scalar relativistic case and it decreases
to 373 meV in the fully relativistic calculation.
Conversely, if we use the experimental volume
and optimize the internal coordinates, the gap
is smaller for the scalar relativistic calculation
183 meV (Fig. 2c) while in the fully relativis-
tic case the indirect gap is at 333 meV and the
direct gap at 444 meV (Fig. 2d).

B. Phonon dispersion

The phonon dispersion does not change dra-
matically with the different choices of SOC
treatment, however we do observe a global,
relatively constant, rescaling of the frequen-
cies which can be associated with the differ-
ence in the unit cell volume. When not includ-
ing SOC, if the theoretical lattice parameter is
used, the phonon dispersion exhibits negative
frequencies. However, when using the exper-
imental lattice parameters, which correspond
to a 5% smaller unit cell volume, this insta-
bility is removed. Furthermore, if SOC is in-
cluded, both theoretical and experimental lat-
tice parameters yield stable phonons, as long
as the internal degrees of freedom are properly
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FIG. 4. Detail of the longitudinal-acoustic phonon
dispersion along the [111] direction (parallel to
the c axis), showing how the effect of the lattice
parameter. We plot four cases: at experimental
lattice parameter without SOC (black solid) and
with SOC (blue dash); at the relaxed theoretical
lattice parameter: without SOC (green dot) and
with SOC (orange dash-dot)

relaxed. Because inter-planes binding is medi-
ated by Van der Waals forces, which usually
over-estimate the bond length in the PBE ap-
proximation, we expect that the modes that
change the inter-layer distance to be too soft.
For this reason, we show in Fig. 4 the phonon
band that is more sensitive to a change in lat-
tice parameter, it is the longitudinal acoustic
(LA) mode along the [111] direction which,
in the trigonal geometry, is orthogonal to the
planes of Bi or Se.

We have compared the phonon frequencies
at the Γ point with available data from in-
frared and Raman spectroscopy, in order to
establish which method gives a closer match
to the phonon frequencies. These comparisons
are summarized in table II. We note that using
the experimental lattice parameter gives a con-
sistently better match for the Raman active
modes than using the theoretical one, hence
we will focus on the former. The SR calcula-
tions slightly under-estimate the phonon fre-
quencies, while with the inclusion of SOC the
theoretical frequencies tend to over-estimate
the measured ones. SOC is more accurate
for the highest optical bands, but less so for
the low-energy bands; as the latter are more
important for thermal transport, due to the
Bose-Einstein factor of eq. 2, we expect that
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FIG. 5. Phonon dispersion with (orange fullline)
and without (blue dash-dot line) long-range LO-
TO splitting mediated by effective charges. These
simulations use the experimental lattice parame-
ters, PBE, SR.

not including SOC may give a better match
for the value of κ. We verified that our cal-
culations at the theoretical lattice parameter
agree with those of Ref. 48.

1. Effective charges and LO-TO splitting

Even high-quality Bi2Se3 single crystals are
doped by a relatively large amount (1018 −
1019 e/cm3) of lattice defects. Below we will
see that this doping has no significant effect
on the electronic structure nor on the ge-
ometry of the crystal, but it is sufficient to
effectively screen long-range/small-wavevector
splitting of longitudinal and transverse optical
modes (LO-TO splitting). In figure 5 we have
plotted the phonon dispersion with and with-
out the LO-TO splitting. We can see that a
couple of modes are particularly affected. If
we number the modes in order of increasing
energy, these are the modes 8 and 9 where the
atoms move in the plane perpendicular to [111]
with Se ions going in the direction opposite to
that of Bi ions. These modes are degenerate
without LO-TO at an energy of 87 cm−1, but
the mode which is aligned with the q-vector
jumps to 130 cm−1 when long-range effects are
included. When coming from the [111] direc-
tion itself, along the Γ-T line, the two modes
remain degenerate, because the q wavevector
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FIG. 6. Phonon dispersion, the width of the lines
is proportional to their intrinsic linewidth, a differ-
ent prefactor was used before and after the phonon
gap to improve readability: 2 for the first 6 bands,
6 for the following 9 bands.

is parallel to the polarisation.

C. Thermal transport in bulk

We have initially studied the phonon-driven
thermal conductivity in the bulk phase as ex-
perimental data is available with good preci-
sion in a wide range of temperature. In par-
ticular we have taken as reference the data of
Navratil and coworkers3, where they estimate
the fraction of lattice-driven and electron-
driven transport.

In Fig. 7 we plot the experimental data of
the in-plane thermal conductivity κ‖ measured
in Ref. 3, side by side with calculations from
2 K up to 400 K, in the RTA (we checked that
the exact inversion of the Boltzmann trans-
port equation yield practically identical val-
ues). As it can be seen, the room temperature
behaviour of the lattice contribution to κ‖ is
in perfect agreement with our calculation of
the intrinsic thermal conductivity. This agree-
ment is possible thanks to the inclusion of lat-
tice defects in the model as explained in the
rest of this section.

Below 20 K, κ‖ is limited by extrinsic scat-
tering processes such as the scattering with
sample borders, with the isotopes or/and with
lattice defects. As Navratil et al. used a large
mono-crystal, and isotopical effects are negli-
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TABLE II. Phonons frequency at Γ, comparison of experimental data and calcu-
lations.

experiments:
IR active (E‖c) Raman active

Symmetry Eu Eu A2u A2u Eg A1g Eg A1g

Ref. 49 (50 K)a 61 134 − − − − − −
Ref. 49 (300 K)a 65 129 − − − 72 131.5 174.5
Ref. 16 − − − − 39 74 135 177

simulations harmonic level:
SR theo. 76.2-123.8 129.7 143.4 161.2 38.3 61.8 130.5 171.5
SOC theo. 64.7-111.2 123.6 135.6 154.7 38.7 63.3 121.6 166.3
SR exp.b 87.8-129.8 134.2 145.2 166.4 45.6 75.6 139.7 180.1
SOC exp.b 78.0-123.0 128.5 138.0 162.3 40.2 73.6 132.2 173.6

a Infrared peak position are at 50 K and 300 K respectively.
b Lattice parameters from Ref. 45
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FIG. 7. In plane (i.e. orthogonal to c axis) κ measured by Navratil3 (rounds) compared to simulations
including the effect of Se vacancies (left) and Bi2 layers intercalations (right) defects on κ, excess Bi2 is
expressed as average inter-plane distance and as ppm.

.

gibles in Bi2Se3,50 only lattice defects can ex-
plain the low temperature behaviour.

According to literature,28 two kind of de-
fects are common in Bi2Se3 crystals: point-
defect vacancies of Se, and Bi2 partial-layer
intercalation. Each Selenium vacancy con-
tributes around two charges to the total dop-
ing, which means that at a doping concentra-
tion of around 1018 − 1019 e/cm3 the frac-
tion of missing Se atoms is of order 100 −
1000 ppm. We have simulated this defect con-
centration using an effective Rayleigh point-
scattering model, and found that it is far too
low to explain the low-temperature drop in

thermal conductivity. Even taking an unreal-
istically high point-defect concentration, such
as 50 000 ppm (5%), the correct curve shape
at low temperature is not reproduced.

On the other hand, if we assume the pres-
ence of Bi2 partial layers, we can include it in
the simulation using Sparavigna-Casimir scat-
tering theory, i.e. including a scattering time
which is proportional to the ratio between the
phonon mean free path and the sample size.
We tuned the average inter-defect distance to
fit the temperature of maximum κ, around
10 K. The theoretical position of the maximum
is a better fitting parameter than its absolute
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FIG. 8. Best description of the thermal conduc-
tivity with Ref. 3 is obtained assuming around 100
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vacancies.

value, as the latter is very difficult to converge
at low temperature in simulations. Notwith-
standing that, the calculation reproduces the
absolute value quite well, which strengthens
the validity of our assumption. In Fig 8, the
best agreement is found when the average dis-
tance between Bi2 planes is fixed at 5 µm.
Comparing this value to the size of the unit cell
along c gives a concentration of excess Bismuth
of around 100 ppm, and considering that each
additional Bi atom provides three charges, this
is compatible with the measured doping con-
centration.

We note that the effect of Selenium vacan-
cies and Bismuth partial layer intercalation
is qualitatively different: a increasing concen-
tration of Selenium vacancies causes a global
reduction of κ, on the other hand increas-
ing the frequency of Bismuth partial layer
intercalation moves the maximum of κ to-
ward higher temperatures, without changing
its high-T value. If we combine the two type
of defects, Selenium vacancy has virtually no
effect up to 100 ppm, when its starts consid-
erably reducing the value of κ at higher T. As
a consequence, the best match remains a con-
centration of around 100 ppm Bismuth partial
layer intercalation with 100 ppm or less Sele-
nium vacancy, which is compatible with the
high n-type concentration (' 1019 cm−3) of
the bulk material measured.

Thermal conductivity:
Thickness Total (measured) Lattice (estimated)

(nm) (W/m·K) (W/m·K)
18 0.39 0.19
30 0.52 0.32
53 0.53 0.33
105 0.56 0.36
191 0.68 0.48

TABLE III. Out-of-plane thermal conductivity of
Bi2Se3, the experimental error bar can be evalu-
ated to 20%.
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FIG. 9. Thermal conductivity in thin films as a
function of sample thickness L at 300 K. Exper-
imental data: lattice thermal conductivity, it has
to be compared with κ out-of-plane axis (dashed
line). Blue thick line use our theory of Casimir
scattering, while red lines use the Hellmann51

method of cutting-off phonons.

D. Thermal transport in thin films

Thermoreflectance measurements provide
the total out-of-plane (κ⊥) thermal conduc-
tivity which is the sum of the electronic and
lattice contributions. As described in sec-
tion IVC, we estimate the lattice contribution
after measuring the in-plane electronic con-
ductivity of thin films and estimating the out-
of-plane electronic conductivity from the mea-
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sured conductance anisotropy of bulk Bi2Se3.

Transport measurements performed attest
that our thin films are n doped and present
a metallic behavior with a carrier’s concen-
tration bracketed by 1 − 2 × 1019 cm−3, µ ∼
300 − 400 cm2/V·s and ρ‖ ∼ 1 − 1.15 mΩ·cm
at room temperature.

Thus a coarse evaluation of the electronic
contribution to the in-plane conductivity kel,‖
can be given using the Wiedmann-Franz law
kel,‖ = LT/ρ‖ with L the Lorentz number,
ranging between 2 and 2.210−8 V2K−2. Con-
sequently kel,‖ is bracketed between 0.4 −
0.7 W/m·K.

In table III we report the measured val-
ues for the total and lattice thermal conduc-
tivity, obtained by subtraction the estimated
electronic contribution. In Fig. 9, we com-
pare the measured lattice thermal conductiv-
ity with the simulations. The agreement is
within the experimental errorbar. Including
internal reflection effects (dashed line in the
figure) does improve the accordance but is not
sufficient to explain completely the discrep-
ancy for the smallest slab. This may indicate
that a simple Casimir model is not sufficient
for such a thin sample, a more detailed de-
scription of the interaction of phonon with the
surface, including q and ω dependance could
improve the accordance. Finally, also the pen-
etration depth of laser in the sample (around
10 nm) could play a role for the thinnest slabs,
although there is no simple way to include it
in the simulation.

We have also tested the approach of
Hellmann51 (red lines of Fig. 9), which con-
sists in cutting off completely the contibution
of phonons that have mean free path τv larger
than the sample dimension. The behaviour is
relatively similar, but with a scale factor of the
slab thickness with predicted κ that turns out
considerably larger for the smaller samples.

VI. CONCLUSIONS

We calculate the phonon-component in-
plane (κ‖) and out-of-plane (κ⊥) thermal con-
ductivities of Bi2Se3 bulk and films with dif-
ferent thicknesses by using the Boltzmann
equation with phonon scattering times ob-
tained from anharmonic third order density
functional perturbation theory. Our results
agree with existing measurements on bulk
samples3,4 and with our room-temperature
thermoreflectance measurements of κ⊥ on
films of thickness ranging from 18 nm to 191
nm.

The calculated thermal conductivity of bulk
Bi2Se3 is in excellent agreement with the ex-
perimental data of Ref.3 at all temperatures.
While the high temperature limit (e. g. room
temperature) is essentially determined by the
intrinsic thermal conductivity, the low tem-
perature regime, in the past attributed to Se
vacancy, can be very well accounted for by
assuming ≈ 100 ppm Bismuth insertion and
≈ 100 ppm of Se vacancies. In contrast, Se
vacancies alone do not explain the low-T be-
haviour of the conductivity.

In thin films, we find that the thermal
conductivity measured at room temperature,
monotonically decreases with reducing film
thickness L. We can attribute this reduc-
tion to incoherent scattering of out-of-plane
momentum phonons with the film upper and
lower surfaces. Our work outlines the crucial
role of sample thinning in reducing the out-of-
plane thermal conductivity.
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