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In a separable Hilbert space X, we study the linear evolution equation

where A is an accretive self-adjoint linear operator, B is a bounded linear operator on X, and p ∈ L 2 loc (0, +∞) is a bilinear control. We give sufficient conditions in order for the above control system to be locally controllable to the ground state solution, that is, the solution of the free equation (p ≡ 0) starting from the ground state of A. We also derive global controllability results in large time and discuss applications to parabolic equations in low space dimension.

Introduction

In a separable Hilbert space X, consider the control system    u (t) + Au(t) + p(t)Bu(t) = 0, t > 0 u(0) = u 0 .

(1)

where A : D(A) ⊂ X → X is a linear self-adjoint maximal accretive operator on X, B belongs to L(X), the space of all bounded linear operators on X, and p(t) is a scalar function representing a bilinear control.

In the recent paper [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF], we have studied the stabilizability of (1) along the ground state solution of the free equation (p ≡ 0). More precisely, denoting by {λ k } k∈N * the eigenvalues of A and by {ϕ k } k∈N * the corresponding eigenfunctions, we call ϕ 1 the ground state of A and ψ 1 (t) = e -λ 1 t ϕ 1 the ground state solution of the equation

u (t) + Au(t) = 0.
In [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF]Theorem 3.4], we have given sufficient conditions on A and B to ensure the superexponential stabilizability of (1) along ψ 1 : for all u 0 in some neighborhood of ϕ 1 there exists a control p ∈ L 2 loc ([0, +∞)) such that the corresponding solution u of (1) satisfies

||u(t) -ψ 1 (t)|| ≤ M e -(e ωt +λ 1 t) , ∀ t ≥ 0 (2) 
for some constants ω, M > 0. In the same paper, we have discussed several applications of the above result to parabolic operators. For instance, we have studied the stabilizability of the equation u t -u xx + p(t)µ(x)u = 0 with Dirichlet or Neumann boundary conditions, as well as the equation with variable coefficients u t -((1 + x) 2 u x ) x + p(t)Bu = 0, or n-dimensional problems with radial symmetry. In [START_REF] Cannarsa | Superexponential stabilizability of degenerate parabolic equations via bilinear control[END_REF], we have also shown how to recover superexponential stability for a class of degenerate parabolic operators, still applying the above abstract result.

In this paper, we address the related, more delicate, issue of the exact controllability of (1) to the ground state solution ψ 1 via a bilinear control. Such a property, that is obviously stronger than superexponential stabilizability, holds true in more restrictive settings than those considered in [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF]. Nevertheless, our new results, that we state below, apply to all the aforementioned examples of parabolic problems.

Theorem 1.1. Let A : D(A) ⊂ X → X be a densely defined linear operator such that (a) A is self-adjoint, (b) A is accretive: Ax, x ≥ 0, ∀ x ∈ D(A), (c) ∃ λ > 0, (λI + A) -1 : X → X is compact, [START_REF] Beauchard | Local controllability of a 1-D Schrödinger equation[END_REF] and suppose that there exists a constant α > 0 for which the eigenvalues of A fulfill the gap condition

λ k+1 -λ k ≥ α, ∀ k ∈ N * . (4) 
Let B : X → X be a bounded linear operator such that there exist b, q > 0 for which Bϕ 1 , ϕ 1 = 0, and

λ q k | Bϕ 1 , ϕ k | ≥ b ∀ k > 1. (5) 
Then, for any T > 0, there exists a constant R T > 0 such that, for any u 0 ∈ B R T (ϕ 1 ), there exists a control p ∈ L 2 (0, T ) for which system (1) is controllable to the ground state solution in time T . Furthermore, the following estimate holds

||p|| L 2 (0,T ) ≤ e -π 2 C K /T f e 2π 2 C K /(3T f ) -1 , (6) 
where

T f := min{T, T α }, T α := π 2 6 min 1, 1/α 2 (7)
and C K is a suitable positive constant.

The main idea of the proof consists of applying the stability estimates of [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] on a suitable sequence of time intervals of decreasing length T j , such that ∞ j=1 T j < ∞. Such a sequence, however, has to be suitably chosen in order to fit the error estimates that we take from [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF].

From the above local exact controllability property we deduce two global controllability results. In the first one, Theorem 1.2 below, we prove that all initial states lying in a suitable strip, i.e., satisfying | u 0 , ϕ 1 -1| < r 1 , can be steered to the ground state solution (see Figure 1). Moreover, we give a uniform estimate for the controllability time.

Theorem 1.2. Let A and B satisfy hypotheses (3), (4), and (5). Then there exists a constant r 1 > 0 such that for any R > 0 there exists T R > 0 such that for all u 0 ∈ X that satisfy

| u 0 , ϕ 1 -1| < r 1 , ||u 0 -u 0 , ϕ 1 ϕ 1 || ≤ R, (8) 
problem (1) is exactly controllable to the ground state solution ψ

1 (t) = e -λ 1 t ϕ 1 in time T R . ϕ 1 ψ 1 (T R ) R -R r 1 u 0
Figure 1: the colored region represents the set of initial conditions that can be steered to the ground state solution in time T R .

Our second global result, Theorem 1.3 below, ensures the exact controllability of all initial states u 0 ∈ X \ ϕ ⊥ 1 to the evolution of their orthogonal projection along the ground state solution defined by

φ 1 (t) = u 0 , ϕ 1 ψ 1 (t), ∀ t ≥ 0, (9) 
where ψ 1 is the ground state solution.

Theorem 1.3. Let A and B satisfy hypotheses (3), ( 4) and (5). Then, for any R > 0 there exists T R > 0 such that for all u 0 ∈ X satisfying

||u 0 -u 0 , ϕ 1 ϕ 1 || ≤ R| u 0 , ϕ 1 | (10) 
system (1) is exactly controllable to φ 1 , defined in [START_REF] Cannarsa | Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign[END_REF], in time T R .

Notice that, denoting by θ the angle between the half-lines R + ϕ 1 and R + u 0 , condition [START_REF] Cannarsa | Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign[END_REF] 

is equivalent to | tan θ| ≤ R,
which defines a closed cone, say Q R , with vertex at 0 and axis equal to Rϕ 1 (see Figure 2). Therefore, Theorem 1.3 ensures a uniform controllability time for all initial conditions lying in Q R . We observe that, since R is any arbitrary positive constant, all initial conditions u 0 ∈ X \ ϕ ⊥ 1 can be steered to the corresponding projection to the ground state solution. Indeed, for any u 0 ∈ X \ ϕ ⊥ 1 , we define

R 0 := u 0 u 0 , ϕ 1 -ϕ 1 .
Then, for any R ≥ R 0 condition (10) is fulfilled: Finally, we would like to recall part of the huge literature on bilinear control of evolution equations, referring the reader to the references in [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] for more details. A seminal paper in this field is certainly the one by Ball J.M., Marsden J.E., Slemrod M. [START_REF] Ball | Controllability for distributed bilinear systems[END_REF], which establishes that system (1) is not controllable. More precisely, denoting by u(t; p, u 0 ) the unique solution of (1), the attainable set from u 0 defined by

1 | u 0 , ϕ 1 | ||u 0 -u 0 , ϕ 1 ϕ 1 || = R 0 ≤ R. θ θ ϕ 1 ϕ 1 φ 1 (T R ) φ1 (T R ) u 0 û0 Q R
S(u 0 ) = {u(t; p, u 0 ); t ≥ 0, p ∈ L r loc ([0, +∞), R), r > 1}
is shown in [START_REF] Ball | Controllability for distributed bilinear systems[END_REF] to have a dense complement. Among positive results, we would like to mention Beauchard K. [START_REF] Beauchard | Local controllability and non-controllability for a 1d wave equation with bilinear control[END_REF] for bilinear control of the wave equation and Beauchard K., Laurent C. [START_REF] Beauchard | Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control[END_REF] for the bilinear control of the Schrödinger equation (see also [START_REF] Beauchard | Local controllability of a 1-D Schrödinger equation[END_REF] for a first result on this topic). The local exact controllability results obtained in these papers rely on linearization around the ground state, the use of the inverse mapping Theorem, and a regularizing effect which takes place in both problems. The local exact controllability is proved for any positive time for the Schrödinger equation and for a sufficiently (optimal) large time for the wave equation. Both papers require the condition

Bϕ 1 , ϕ k = 0, ∀ k ≥ 1 ( 11 
)
to be satisfied, together with a suitable asymptotic behavior with respect to the eigenvalues. If ( 11) is violated then it has been first shown by Coron J.-M. [START_REF] Coron | On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well[END_REF], for a model describing a particle in a moving box, that there exists a minimal time for local exact controllability to hold. This model couples the Schrödinger equation with two ordinary differential equations modeling the speed and acceleration of the box (see also Beauchard K., Coron J.-M. [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF] for local exact controllability for large time). A further paper by Beauchard K., Morancey M. [START_REF] Beauchard | Local controllability of 1d Schrödinger equations with bilinear control and minimal time[END_REF] for the Schrödinger equation extends [START_REF] Beauchard | Local controllability of 1d linear and nonlinear Schrödinger equations with bilinear control[END_REF] to cases for which the above condition is violated, namely there exist integers k for which Bϕ 1 , ϕ k = 0. Under some additional assumptions, the authors prove that the system is locally exactly controllable in a sufficiently large time.

Another example of controllability to trajectories for nonlinear parabolic systems is studied in [START_REF] Fernández-Cara | Local exact controllability of the navier-stokes system[END_REF], where, however, additive controls are considered. In such an example, one can obtain controllability to free trajectories by Carleman estimate and inverse mapping arguments. Such a strategy seems hard to adapt to the current setting.

It is worth noting that the bilinear controls we use in this paper are just scalar functions of time. This fact explains why applications mainly concern problems in low space dimension. A stronger control action could be obtained by letting controls depend on time and space. We refer the reader to [START_REF] Cannarsa | Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign[END_REF][START_REF] Cannarsa | Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign[END_REF] for more on this subject.

This paper is organized as follows. In section 2, we have collected some preliminaries as well as results from [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] that we need for the proof of Theorem 1.1. Section 3 contains such a proof, while section 4 is devoted to examples of applications to parabolic problems.

Preliminaries

In this section we recall some results from [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] that are necessary for the construction of the proof of Theorem 1.1. First, fixed T > 0, consider the following bilinear control problem

   u (t) + Au(t) + p(t)Bu(t) + f (t) = 0, t ∈ [0, T ] u(0) = u 0 . ( 12 
)
We introduce the following notation:

||f || 2,0 := ||f || L 2 (0,T ;X) , ∀ f ∈ L 2 (0, T ; X) ||f || ∞,0 := ||f || C([0,T ];X) = sup t∈[0,T ] ||f (t)||, ∀ f ∈ C([0, T ]; X).
The well-posedness of ( 12) is ensured by the following Proposition.

Proposition 2.1. Let T > 0. If u 0 ∈ X, p ∈ L 2 (0, T ) and f ∈ L 2 (0, T ; X)
, then there exists a unique mild solution of (12), i.e. a function u ∈ C([0, T ]; X) such that the following equality holds for every t ∈ [0, T ],

u(t) = e -tA u 0 - t 0 e -(t-s)A [p(s)Bu(s) + f (s)]ds. ( 13 
)
Moreover, there exists a constant

C 1 (T ) > 0 such that ||u|| ∞,0 ≤ C 1 (T )(||u 0 || + ||f || 2,0 ). ( 14 
)
We refer to [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] for a proof of Proposition 2.1.

Our aim is to show the controllability of the following system

   u (t) + Au(t) + p(t)Bu(t) = 0, t ∈ [0, T ] u(0) = u 0 , (15) 
to the ground state solution ψ 1 = e -λ 1 t ϕ 1 , that is the solution of ( 15) when p = 0 and u 0 = ϕ 1 .

We first consider the case λ 1 = 0 and prove the controllability result to the corresponding ground state solution ψ 1 = ϕ 1 . Then, we recover the result also for the case λ 1 > 0.

Set v := u -ϕ 1 , then v is the solution of the following Cauchy problem

   v (t) + Av(t) + p(t)Bv(t) + p(t)Bϕ 1 = 0, t ∈ [0, T ] v(0) = v 0 = u 0 -ϕ 1 . (16) 
We observe that the controllability of u to ϕ 1 is equivalent to the null controllabiliy of [START_REF] Komornik | Fourier series in control theory[END_REF].

In order to prove this latter result, we consider the following linearized system

   v(t) + Av(t) + p(t)Bϕ 1 = 0, t ∈ [0, T ] v(0) = v 0 . (17) 
and we introduce the following constant

Λ T := k∈N * e -2λ k T e C√ λ k /α | Bϕ 1 , ϕ k | 2 1/2 . ( 18 
)
where α is the constant in (4). We observe that, thanks to assumption (5), Λ T converges for any T > 0. The next Proposition guarantees the null controllability of [START_REF] Lebedev | Special functions and their applications[END_REF] and furthermore it yields an estimate of the control p with respect to the initial condition v 0 .

Proposition 2.2. Let T > 0 and let A and B be such that (3), ( 4), (5) hold. Furthermore, assume that λ 1 = 0. Let v 0 ∈ X. Then, defining p ∈ L 2 (0, T ) by

p(t) = k∈N * v 0 , ϕ k Bϕ 1 , ϕ k σ k (t) ( 19 
)
where {σ k } k∈N * is the biorthogonal family to {e λ k t } k∈N * given by [12, Theorem 2.4], it holds that v(T ) = 0. Moreover, there exists a constant C α (T ) > 0 such that

||p|| L 2 (0,T ) ≤ C α (T )Λ T ||v 0 || (20)
where Λ T is defined in (18) and α is the constant in (4).

For the proof of Proposition 2.2 we refer to [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF].

Remark 2.3. The behavior of C α (•) with respect to its argument has been studied in [START_REF] Cannarsa | The cost of controlling weakly degenerate parabolic equations by boundary controls[END_REF] and is given by

C 2 α (T ) = C •    1 T + 1 T 2 α 2 e C/(T α 2 ) , T ≤ 1 α 2 Cα 2 , T ≥ 1 α 2 , (21) 
where C > 0 is a constant independent of T and α.

We now use the control p built in Proposition 2.2 also in the nonlinear system ( 16) and we give an estimate for the corresponding solution v.

Proposition 2.4. Let A and B satisfy hypotheses (3), ( 4), ( 5) and, furthermore, assume λ 1 = 0. Let p ∈ L 2 (0, T ) be defined by (19). Then, the solution v of (16) satisfies

sup t∈[0,T ] ||v(t)|| 2 ≤ e C 3 (T )Λ T ||v 0 ||+C B T (1 + C 4 (T )Λ 2 T )||v 0 || 2 (22)
where

C B ≥ 1 is the norm of the operator B, C 3 (T ) := 2 √ T C B C α (T ), and C 4 (T ) := C B C 2 α (T ).
For the proof of Proposition 2.4 we refer to [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF]. We introduce the function w(t) := v(t) -v(t) that satisfies the following Cauchy problem

   w (t) + Aw(t) + p(t)Bv(t) = 0, t ∈ [0, T ] w(0) = 0. (23) 
We define the function K on (0, ∞) by

K 2 (T ) := C B e 2C B √ T +(C B +1)T C 4 (T )Λ 2 T (1 + C 4 (T )Λ 2 T ). ( 24 
)
In the following Proposition we estimate how close we are able to steer v to 0 in time T by means of the control p defined in (19).

Proposition 2.5. Let A and B satisfy hypotheses (3), ( 4), [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF], and, furthermore, we assume λ 1 = 0. Let T > 0, p be defined by (19), and let v 0 ∈ X be such that

C α (T )Λ T ||v 0 || ≤ 1. ( 25 
)
Then, it holds that ||w(T

)|| = ||v(T )|| ≤ K(T )||v 0 || 2 . ( 26 
)
Proof. Observe that w ∈ C([0, T ]; X) is the mild solution of (23). Moreover w ∈ H 1 (0, T ; X)∩ L 2 (0, T ; D(A)) and thus w satisfies the equality

w (t) + Aw(t) + p(t)Bv(t) = 0 (27)
for almost every t ∈ [0, T ].

We multiply equation ( 27) by w(t) and we obtain 1 2

d dt ||w(t)|| 2 ≤ |p(t)|||Bv(t)||||w(t)|| ≤ 1 2 ||w(t)|| 2 + C 2 B 1 2 |p(t)| 2 ||v(t)|| 2 . (28) 
Therefore, applying Gronwall's inequality, taking the supremum over [0, T ] and using ( 22) and (20), we get sup

t∈[0,T ] ||w(t)|| 2 ≤ C 2 B e T ||p|| 2 L 2 (0,T ) sup t∈[0,T ] ||v(t)|| 2 ≤ C 2 B e C 3 (T )Λ T ||v 0 ||+C B T +T (1 + C 4 (T )Λ 2 T )||v 0 || 2 ||p|| 2 L 2 (0,T ) ≤ C 2 B C 2 α (T )Λ 2 T e C 3 (T )Λ T ||v 0 ||+(C B +1)T (1 + C 4 (T )Λ 2 T )||v 0 || 4 . (29) 
We can suppose, without loss of generality, that C α (T ) ≥ 1. Thus, thanks to (25), we obtain

sup t∈[0,T ] ||w(t)|| 2 ≤ C 2 B C 2 α (T )Λ 2 T e 2C B √ T +(C B +1)T (1 + C 4 (T )Λ 2 T )||v 0 || 4 that is equivalent to sup t∈[0,T ] ||w(t)|| 2 ≤ K(T ) 2 ||v 0 || 4 .
By the last inequality we infer that

||w(T )|| ≤ K(T )||v 0 || 2 . ( 30 
)
3. Proof of Theorem 1.1

Fixed 0 < T ≤ min {1, 1/α 2 }, we define the sequence {T j } j∈N * by

T j := T /j 2 , (31) 
and the time steps

τ n = n j=1 T j , ∀n ∈ N, (32) 
with the convention that 0 j=1 T j = 0. Notice that ∞ j=1 T j = π 2 6 T . The proof of our result relies on the construction of the solution v of ( 16) in consecutive intervals of the form [τ n , τ n+1 ] for which we are able to perform an iterate estimate of (26).

First, through the following Lemma, we study the behavior of the constant K(T ) with respect to T .

We define the function

G M (T ) := M T 2 e M/T ∞ k=1 e -2λ k T +M √ λ k | Bϕ 1 , ϕ k | 2 , 0 < T ≤ 1 ( 33 
)
where M is a positive constant.

Lemma 3.1. Let A : D(A) ⊂ X → X be such that (3) and (4) hold and B : X → X be such that (5) holds. Then, there exists a suitable positive constant C M such that

G M (T ) ≤ e C M /T , ∀ 0 < T ≤ 1. ( 34 
)
Proof. Thanks to assumption (5), we have that

G M (T ) = M T 2 e M/T ∞ k=1 e -2λ k T +M √ λ k | Bϕ 1 , ϕ k | 2 ≤ M T 2 e M/T e M 2 /(8T ) | Bϕ 1 , ϕ 1 | 2 + 1 b 2 ∞ k=2 λ 2q k e -λ k T e -λ k T +M √ λ k . (35) 
For any λ ≥ 0 we set

f (λ) = e -λT +M √ λ . The maximum value of f is attained at λ = M 2T 2 .
So, we can bound G M (T ) as follows

G M (T ) ≤ M T 2 e M/T e M 2 /(8T ) | Bϕ 1 , ϕ 1 | 2 + e M 2 /(4T ) b 2 ∞ k=1 λ 2q k e -λ k T . (36) 
Now, for any λ ≥ 0 we define the function g(λ) = λ 2q e -λT . Its derivative is given by

g (λ) = (2q -λT )λ 2q-1 e -λT
and therefore we deduce that

g(λ) is    increasing if 0 ≤ λ < (2q)/T decreasing if λ ≥ (2q)/T
and g has a maximum at λ = (2q)/T . We define the following index:

k 1 := k 1 (T ) = sup k ∈ N * : λ k ≤ 2q T
Note that k 1 (T ) goes to ∞ as T converges to 0. We can rewrite the sum in (36) as follows

∞ k=1 λ 2q k e -λ k T = k≤k 1 -1 λ 2q k e -λ k T + k 1 ≤k≤k 1 +1 λ 2q k e -λ k T + k≥k 1 +2 λ 2q k e -λ k T . ( 37 
)
For any k ≤ k 1 -1, we have

λ k+1 λ k λ 2q e -λT dλ ≥ (λ k+1 -λ k )λ 2q k e -λ k T ≥ α( λ 2 + λ 1 )λ 2q k e -λ k T (38)
and for any k ≥ k 1 + 2

λ k λ k-1 λ 2q e -λT dλ ≥ (λ k -λ k-1 )λ 2q k e -λ k T ≥ α( λ 2 + λ 1 )λ 2q k e -λ k T . (39) 
So, by using estimates (38) and ( 39), (37) becomes

∞ k=1 λ 2q k e -λ k T = 2 α( √ λ 2 + √ λ 1 ) ∞ 0 λ 2q e -λT dλ + k 1 ≤k≤k 1 +1 λ 2q k e -λ k T . (40) 
Furthermore, recalling that g has a maximum for λ = 2q/T , it holds that

k = k 1 , k 1 + 1 ⇒ λ 2q k e -λ k T ≤ (2q/T ) 2q e -2q . (41) 
Finally, the integral term of (40) can be rewritten as

∞ 0 λ 2q e -λT dλ = 1 T ∞ 0 s T 2q e -s ds = 1 T 1+2q ∞ 0 s 2q e -s ds = Γ(2q + 1) T 1+2q , (42) 
where by Γ(•) we indicate the Euler integral of the second kind. Therefore, we conclude from ( 41) and ( 42) that there exist two constants C q , C q,α > 0 such that

∞ k=1 λ 2q k e -λ k T ≤ C q T 2q + C α,q T 1+2q . ( 43 
)
We use this last bound to prove that there exists C M > 0 such that

G M (T ) ≤ M T 2 e M/T e M 2 /(8T ) | Bϕ 1 , ϕ 1 | 2 + e M 2 /(4T ) b 2 C q T 2q + C α,q T 1+2q ≤ e C M /T , 0 < T ≤ 1 as claimed.
Remark 3.2. We recall that K(•) is defined by

K 2 (T ) := C 2 B e 2C B √ T +(C B +1)T C 2 α (T )Λ 2 T (1 + C B C 2 α (T )Λ 2 T ). For any 0 < T ≤ min {1, 1/α 2 }, C 2 α (•) is given by C 2 α (T ) = C 1 T + 1 T 2 α 2 e C/(α 2 T ) .
Thus, we have the following bound for K(•)

K(T ) 2 ≤ C 2 B e 2C B √ T +(C B +1)T G M (T ) (1 + C B G M (T )) , ( 44 
)
where G M (•) is defined by (33) and the subscribed M is given by M = C 1 + 1 α 2 . Thanks to Lemma 3.1, we infer that there exists a suitable constant

C K > 0 such that C K > C M and K(T ) ≤ e C K /T , ∀ T ∈ (0, 1]. ( 45 
)
In the following Proposition we prove that it is possible to iterate the construction of v in consecutive time intervals of the form [τ n-1 , τ n ]. Proposition 3.3. Let 0 < T ≤ min {1, 1/α 2 }, and consider the sequence (T j ) j∈N * defined by (31). Let v 0 ∈ X for which ||v 0 || < e -6C K /T , let A : D(A) ⊂ X → X be such that (3) and (4) hold and let B : X → X satisfies [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF]. Moreover, we assume that λ 1 = 0. Then, for every n ∈ N * , problem

   v (t) + Av(t) + p(t)Bv(t) + p(t)Bϕ 1 = 0, t ∈ [τ n-1 , τ n ] v (τ n-1 ) = v n-1 , ( 46 
)
where v n-1 is determined by induction from the previous steps, p ∈ L 2 (τ n-1 , τ n ) is given by

p(t) = ∞ k=1 v n-1 , ϕ k Bϕ 1 , ϕ k σ k (t -τ n-1 ), ( 47 
)
admits a unique mild solution v ∈ C ([τ n-1 , τ n ] , X) that satisfies ||v (τ n )|| ≤ e ( n j=1 2 n-j j 2 -2 n 6)C K /T , ( 48 
)
where the time steps {τ n } n∈N are defined by (32).

Proof. To prove the result, we proceed by induction on n. For n = 1, by Proposition 2.5, the hypothesis on v 0 and Remark 3.2, v it satisfies

||v(T )|| ≤ K(T )||v 0 || 2 ≤ e -11C K /T .
Now, suppose the statement is true for all indices k ≤ n -1, we show the validity for index n. Therefore, by inductive hypothesis, the solution v has been constructed in consecutive intervals until [τ n-2 , τ n-1 ] and it satisfies

||v (τ n-1 )|| ≤ e ( n-1 j=1 2 n-1-j j 2 -2 n-1 6)C K /T .
Hence,

C α (T n )Λ Tn ||v (τ n-1 )|| ≤ e C M n 2 /T e ( n-1 j=1 2 n-1-j j 2 -2 n-1 6)C K /T ≤ e (n 2 +(-(n-1) 2 -4(n-1)+2 n-1 6-6-2 n-1 6)C K /T = e -(2n+3)C K /T , (49) 
where we have used that C M < C K and the identity

n j=0 j 2 2 j = 2 -n (-n 2 -4n + 6(2 n -1)), n ≥ 0, ( 50 
)
which can be easily checked by induction. Consider problem (46) with v n-1 the solution built in the previous interval, evaluated at τ n-1 . By the change of variables s = t -τ n-1 , we shift (46) into the interval [0, T n ]. We introduce the functions ṽ(s) = v (s + τ n-1 ) and p(s) = p (s + τ n-1 ) and we rewrite (46) as

   ṽ (s) + Aṽ(s) + p(s)Bṽ(s) + p(s)Bϕ 1 = 0, s ∈ [0, T n ] ṽ(0) = v n-1 . (51) 
Proof of Theorem 1.1. We start the proof by considering the case in which λ 1 = 0. Let T > 0 and let T α and T f be defined by [START_REF] Beauchard | Local controllability of 1d Schrödinger equations with bilinear control and minimal time[END_REF]. We define T = 6 π 2 T f and R T := e -π 2 C K /T f . Observe that 0 < T ≤ 1 and we define the time steps {τ n } n∈N as in (32) with T j := T /j 2 . Fixed v 0 ∈ B R T (0), we apply (55) to obtain

||v (τ n )|| ≤ n j=1 K(T j ) 2 n-j ||v 0 || 2 n ≤ n j=1 e C K j 2 / T 2 n-j ||v 0 || 2 n = e C K 2 n / T n j=1 j 2 /2 j ||v 0 || 2 n ≤ e C K 2 n / T ∞ j=1 j 2 /2 j ||v 0 || 2 n ≤ e 6C K / T ||v 0 || 2 n (59) 
where we have used that ∞ j=1 j 2 /2 j = 6. We take the limit as n → ∞ of (59) and we get

u π 2 6 T -ϕ 1 = v π 2 6 T = ||v(T f )|| ≤ 0 (60) since ||v 0 || < e -π 2 C K /T f = e -6C K / T . This means that, we have built a control p ∈ L 2 loc ([0, ∞)), defined by p(t) =    ∞ n=0 p n (t)χ [τn,τ n+1 ] (t), t ∈ (0, T f ] , 0, t ∈ (T f , +∞) (61) 
where

p n (t) = ∞ k=1 v (τ n ) , ϕ k Bϕ 1 , ϕ k σ k (t -τ n ) , ∀n ∈ N, (62) 
such that the solution u of (1) reaches the ground state solution ϕ 1 in time T , and stays on it forever. Observe that, thanks to (20) and (49), we are able to yield a bound for the L 2 -norm of such a control:

||p|| 2 L 2 (0,T ) = ∞ n=0 ||p n || 2 L 2 (τn,τ n+1 ) ≤ ∞ n=0 C α (T n+1 )Λ T n+1 ||v (τ n )|| 2 ≤ ∞ n=0 e -2(2(n+1)+3)C K / T = e -6C K / T e 4C K / T -1 = e -π 2 C K /T f e 2π 2 C K /(3T f ) -1 (63)
Now we face the case λ 1 > 0. We define the operator

A 1 := A -λ 1 I.
It is possible to check that A 1 satisfies (3) and moreover it has the same eigenfuctions, {ϕ k } k∈N * , of A, while the eigenvalues are given by

µ k = λ k -λ 1 , ∀k ∈ N * . (64) 
In particular, µ 1 = 0 and furthermore, {µ k } k∈N * satisfy the same gap condition (4) fulfilled by {λ k } k∈N * . We define the function z(t) = e λ 1 t u(t), where u is the solution of (1). Then, z solves the following problem

   z (t) + A 1 z(t) + p(t)Bz(t) = 0, t > 0, z(0) = u 0 . (65) 
For any T > 0, we define T f as in [START_REF] Beauchard | Local controllability of 1d Schrödinger equations with bilinear control and minimal time[END_REF] and the constant R T := e -π 2 C K /T f . We deduce from the previous analysis that, if u 0 ∈ B R T (ϕ 1 ), then there exists a control p ∈ L 2 ([0, +∞)) that steers the solution z to the ground state solution ϕ 1 in time T f ≤ T . This implies the exact controllability of u to the ground state solution ψ 1 (t) = e -λ 1 t ϕ 1 : indeed,

||u (T f ) -ψ 1 (T f )|| = e -λ1T f z (T f ) -e -λ1T f ϕ 1 = e -λ1T f ||z (T f ) -ϕ 1 || = 0.
This concludes the proof of our Theorem.

Remark 3.5. We observe that, from (63), it follows that ||p|| L 2 (0,T f ) → 0 as T f → 0. This fact is not surprising because as T f approaches 0, also the size of the neighborhood where the initial condition can be chosen goes to zero.

Proof of Theorems 1.2 and 1.3

Before proving Theorem 1.2, let us show a preliminary result that demonstrates the statement in the case of a strictly accretive operator. Lemma 4.1. Let A and B satisfy hypotheses (3), ( 4) and [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF]. Furthermore, we assume λ 1 = 0. Then, there exists a constant r 1 > 0 such that for any R > 0 there exists T R > 0 such that for all v 0 ∈ X that satisfy

| v 0 , ϕ 1 | < r 1 , ||v 0 -v 0 , ϕ 1 ϕ 1 || ≤ R, (66) problem (16) is null controllable in time T R .
Proof. First step. We fix T = 1. Thanks to Theorem 1.1, there exists a constant r 1 > 0 such that if ||u 1 (0) -ϕ 1 || < √ 2r 1 then there exists a control p 1 ∈ L 2 (0, 1) for which the solution u 1 of (1) on [0, 1] with p replaced by p 1 , satisfies u 1 (1) = ϕ 1 . We set v 1 = u 1 -ϕ 1 on [0, 1]. We deduce that if ||v 1 (0)|| < √ 2r 1 then there exists a control p 1 ∈ L 2 (0, 1) for which the solution v 1 of ( 16) on [0, 1] with p replaced by p 1 , satisfies v 1 (1) = 0.

Applications

In this section we present some examples of parabolic equations for which Theorem 1.1 can be applied. The hypotheses (3)-( 5) have been verified in [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] and [START_REF] Cannarsa | Superexponential stabilizability of degenerate parabolic equations via bilinear control[END_REF], to which we refer for more details. Furthermore, we observe that also the global results Theorem 1.2 and Theorem 1.3 can be applied to any example.

Diffusion equation with Dirichlet boundary conditions

Let I = (0, 1) and X = L 2 (0, 1). Consider the following problem

           u t (t, x) -u xx (t, x) + p(t)µ(x)u(t, x) = 0 x ∈ I, t > 0 u(t, 0) = 0, u(t, 1) = 0, t > 0 u(0, x) = u 0 (x) x ∈ I. (70) 
We denote by A the operator defined by

D(A) = H 2 ∩ H 1 0 (I), Aϕ = - d 2 ϕ dx 2 .
and it can be checked that A satisfies (3). We indicate by {λ k } k∈N * and {ϕ k } k∈N * the families of eigenvalues and eigenfunctions of A, respectively:

λ k = (kπ) 2 , ϕ k (x) = √ 2 sin(kπx), ∀k ∈ N * .
It is easy to see that (4) holds true:

λ k+1 -λ k = π, ∀k ∈ N * . Let B : X → X be the operator Bϕ = µϕ with µ ∈ H 3 (I) such that µ (1) ± µ (0) = 0 and µϕ 1 , ϕ k = 0 ∀k ∈ N * . (71) 
Then, there exists b > 0 such that

λ 3/2 k | µϕ 1 , ϕ k | ≥ b, ∀k ∈ N * .
For instance, a suitable function that satisfies (71) is µ(x) = x 2 , for which b = 2π 2 -3 6π 2 . For any T > 0, we define T f as in [START_REF] Beauchard | Local controllability of 1d Schrödinger equations with bilinear control and minimal time[END_REF]. Then, there exists a constant R T f > 0 such that the solution u of (70), with u 0 ∈ B R T f (ϕ 1 ), reaches the ground state solution ψ 1 (t, x) = √ 2 sin(πx)e -π 2 t in time T f and stays on it forever.

Diffusion equation with Neumann boundary conditions

Let I = (0, 1), X = L 2 (I) and consider the Cauchy problem

           u t (t, x) -u xx (t, x) + p(t)µ(x)u(t, x) = 0 x ∈ I, t > 0 u x (t, 0) = 0, u x (t, 1) = 0, t > 0 u(0, x) = u 0 (x). x ∈ I. (72) 
The operator A, defined by

D(A) = {ϕ ∈ H 2 (0, 1) : ϕ (0) = 0, ϕ (1) = 0}, Aϕ = - d 2 ϕ dx 2
satisfies (3) and has the following eigenvalues and eigenfunctions

λ 0 = 0, ϕ 0 = 1 λ k = (kπ) 2 , ϕ k (x) = √ 2 cos(kπx), ∀k ≥ 1.
Thus, the gap condition ( 4) is fulfilled with α = π. The ground state solution is just the stationary function ψ 0 (x) = ϕ 0 (x) = 1. We define B : X → X as the multiplication operator by a function µ ∈ H 2 (I), Bϕ = µϕ, such that µ (1) ± µ (0) = 0 and µ, ϕ k = 0 ∀k ∈ N.

It can be proved that, there exists b > 0 such that

λ k | µϕ 0 , ϕ k | ≥ b, ∀k ∈ N * . (74) 
For example, µ(x) = x 2 satisfies (74) with b = 2 √ 2. Therefore, equation ( 72) is controllable to the ground state solution ψ 1 = 1 in any time T > 0 as long as u 0 ∈ B R T (1), with R T > 0 a suitable constant.

Variable coefficient parabolic equation

Let I = (0, 1), X = L 2 (I) and consider the problem

           u t (t, x) -((1 + x) 2 u x (t, x)) x + p(t)µ(x)u(t, x) = 0 x ∈ I, t > 0 u(t, 0) = 0, u(t, 1) = 0, t > 0 u(0, x) = u 0 (x) x ∈ I. (75) 
We denote by A : D(A) ⊂ X → X the following operator

D(A) = H 2 ∩ H 1 0 (I), Aϕ = -((1 + x) 2 ϕ x ) x .
It can be checked that A satisfies (3) and that the eigenvalues and eigenfunctions have the following expression

λ k = 1 4 + kπ ln 2 2 , ϕ k = 2 ln 2
(1 + x) -1/2 sin kπ ln 2 ln(1 + x) .

Degenerate parabolic equation

In this last section we want to address an example of a control problem for a degenerate evolution equation of the form It is possible to prove that A satisfies (3) (see, for instance [START_REF] Campiti | Degenerate self-adjoint evolution equations on the unit interval[END_REF]) and furthermore, if we denote by {λ k } k∈N * the eigenvalues and by {ϕ k } k∈N * the corresponding eigenfunctions, it turns out that the gap condition (4) is fulfilled with α = 7 16 π (see [START_REF] Komornik | Fourier series in control theory[END_REF], page 135). If γ ∈ [1, 3/2), problem (81) is called strong degenerate and the corresponding weighted Sobolev space are described as follows: given I = (0, 1) and X = L 2 (I), we define In this case the operator A : D(A) ⊂ X → X is defined by

                   u t -(x γ u x
            
∀u ∈ D(A), Au := -(x γ u x ) x , D(A) := u ∈ H 1 γ,0 (I) : x γ u x ∈ H 1 (I) = {u ∈ X : u is absolutely continuous in (0,1] , x γ u ∈ H 1 0 (I), x γ u x ∈ H 1 (I) and (x γ u x )(0) = 0} and it has been proved that (3) holds true (see, for instance [START_REF] Cannarsa | Carleman estimate for a class of degenerate parabolic operators[END_REF]) and that (4) is satisfied for α = π 2 (see [START_REF] Komornik | Fourier series in control theory[END_REF]). For all γ ∈ [0, 3/2), we define the linear operator B : X → X by Bu(t, x) = x 2-γ u(t, x) and in [START_REF] Cannarsa | Superexponential stabilizability of degenerate parabolic equations via bilinear control[END_REF] we have proved that there exists a constant b > 0 such that

λ 3/2 k | Bϕ 1 , ϕ k | ≥ b ∀k ∈ N * .
Finally, by applying Theorem 1.1, we ensure the exact controllability of problem (81) to the ground state solution, for both weakly and strongly degenerate problems.

Figure 2 :

 2 Figure 2: fixed any R > 0, the set of initial conditions exactly controllable in time T R to their projection along the ground state solution is indicated by the colored cone Q R .

  ) x + p(t)x 2-γ u = 0, (t, x) ∈ (0, +∞) × (0, 1)u x ) (t, 0) = 0, if γ ∈ [1, 3/2), u(0, x) = u 0 (x). (81)where γ ∈ [0, 3/2) describes the degeneracy magnitude, for which Theorem 1.1 applies.If γ ∈ [0, 1) problem (81) is called weakly degenerate and the natural spaces for the well-posedness are the following weighted Sobolev spaces. Let I = (0, 1) and X = L 2 (I), we defineH 1 γ (I) = u ∈ X : u is absolutely continuous on [0, 1], x γ/2 u x ∈ X H 1 γ,0 (I) = u ∈ H 1 γ (I) : u(0) = 0, u(1) = 0 H 2 γ (I) = u ∈ H 1 γ (I) : x γ u x ∈ H 1 (I) .We denote by A : D(A) ⊂ X → X the linear degenerate second order operator    ∀u ∈ D(A), Au := -(x γ u x ) x , D(A) := {u ∈ H 1 γ,0 (I), x γ u x ∈ H 1 (I)}.(82)

H 1 γ

 1 (I) = u ∈ X : u is absolutely continuous on (0, 1], x γ/2 u x ∈ X H 1 γ,0 (I) := u ∈ H 1 γ (I) : u(1) = 0 , H 2 γ (I) = u ∈ H 1 γ (I) : x γ u x ∈ H 1 (I) .
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From (49) it follows that C α (T n )Λ Tn ||v(τ n-1 )|| < 1 and thus we can apply Proposition 2.5 to problem (51), obtaining

We shift back the problem into the original interval [τ n-1 , τ n ] and we get

By inductive hypothesis, we can estimate ||v (τ n )|| as follows

Proposition 3.4. Let 0 < T ≤ min {1, 1/α 2 } and consider the sequence (T j ) j∈N * defined by (31). Let v 0 ∈ X be such that ||v 0 || < e -6C K /T , let A : D(A) ⊂ X → X be such that (3) and (4) hold and let B : X → X satisfies (5). Let p ∈ L 2 (τ n-1 , τ n ) be defined by (47). Moreover, we assume that λ 1 = 0. Then, the solution of (46) satisfies

for all n ∈ N * .

Proof. We prove formula (55) by induction on n. The case n = 1 follows from Proposition 2.5, thanks to the assumption ||v 0 || < e -6C K /T . Now, suppose the formula holds for all the indices less than or equal to n -1. We prove it for n as follows. We consider problem (46) and in order to shift it in the interval [0, T n ], we introduce the variable s = t -τ n-1 as before and the functions ṽ(s) = v (s + τ n-1 ) and p(s) = p (s + τ n-1 ). Thus, (46) can be rewritten as

By Proposition 3.3, it holds that C α (T n )Λ Tn ||v n-1 || ≤ 1 and hence, we can apply Proposition 2.5 considering as final time T n (instead of T ), obtaining that

Finally, by inductive hypothesis, we conclude that

that is equivalent to formula (55).

We are now ready to prove our main result.

Second step. Let v 0 ∈ X be the initial condition of ( 16). We decompose v 0 as follows

and in the time interval [0, t R ] we take the control p ≡ 0. Then, for all t ∈ [0, t R ], we have that

In particular, for t = t R , it holds that ||v(t R )|| 2 < 2r 2 1 . Now, we define T R := t R + 1 and set v 1 (0) = v(t R ). Thanks to the first step of the proof, there exists a control p 1 ∈ L 2 (0, 1), such that v 1 (1) = 0, where v 1 is the solution of ( 16) on [0, 1] with p replaced by p 1 .

Then 16) in the time interval (t R , T R ] with the control p 1 (t -t R ) that steers the solution v to 0 at T R .

Proof (of Theorem 1.2). We start with the case λ 1 = 0. Let u 0 ∈ X that satisfies [START_REF] Campiti | Degenerate self-adjoint evolution equations on the unit interval[END_REF]. Set v(t) := u(t) -ϕ 1 , then v satisfies ( 16) and moreover v 0 := v(0) = u 0 -ϕ 0 fulfills (66). Thus, by Lemma 4.1, problem (1) is exactly controllable to the ground state solution ψ 1 ≡ ϕ 1 in time T R . Now, we consider the case λ 1 > 0. As in the proof of Theorem 1.1, we introduce the variable z(t) = e λ 1 t u(t) that solves problem (65). For such a system, since the first eigenvalue of A 1 is equal 0, we have the exact controllability to ϕ 1 in time T R . Namely z(T R ) = ϕ 1 , that is equivalent to the exact controllability of u to ψ 1 :

The proof is thus complete.

The proof of Theorem 1.3 easily follows from Theorem (1.2).

Proof (of Theorem 1.3). Suppose that γ := u 0 , ϕ 1 = 0. We decompose u 0 as

where ζ1 := ζ 1 /γ. We apply Theorem 1.2 to (69) to deduce the existence of T R > 0 such that ũ(T R ) = ψ 1 (T R ). Therefore, the solution of (1) with initial condition u 0 ∈ X that do not vanish along the direction ϕ 1 can be exactly controlled in time T R to the trajectory u 0 , ϕ 1 ψ 1 (•).

Note that if u 0 ∈ X satisfies both u 0 ∈ ϕ ⊥ 1 and ( 10), then we have trivially that u 0 ≡ 0. We then choose p ≡ 0, so that the solution of (1) remains constantly equal to φ 1 ≡ 0. Furthermore, {λ k } k∈N * verifies the gap condition (4) with α = π/ ln 2.

We define the operator B : X → X by Bϕ = µϕ, where µ ∈ H 2 (I) is such that 2µ (1) ± µ (0) = 0, and µϕ 1 , ϕ k = 0 ∀k ∈ N * .

Hence, thanks to (76), ( 5) is fulfilled with q = 3/2. An example of a suitable function µ that satisfies (76) is µ(x) = x, see [START_REF] Alabau-Boussouira | Superexponential stabilizability of evolution equations of parabolic type via bilinear control[END_REF] for the verification. Thus, from Theorem 1.1, we deduce that, for any T > 0, system (75) is controllable to the ground state solution if the initial condition u 0 is close enough to ϕ 1 .

Diffusion equation in a 3D ball with radial data

In this example, we study the controllability of an evolution equation in the three dimensional unit ball B 3 for radial data. The bilinear control problem is the following

where the Laplacian in polar coordinates for radial data is given by the following expression

The function µ is a radial function as well in the space H 3 r (B 3 ), where the spaces H k r (B 3 ) are defined as follows

).

The domain of the Dirichlet Laplacian

). We observe that A satisfies hypothesis (3). We denote by {λ k } k∈N * and {ϕ k } k∈N * the families of eigenvalues and eigenvectors of A, Aϕ k = λ k ϕ k , namely Then, it can be proved that

with b a positive constant. For instance, µ(x) = x 2 verifies (79) and ( 80) with b = 2π 2 -3 6π 2 . Therefore, by applying Theorem 1.1, we conclude that for any T > 0, the exists a suitable constant R T > 0 such that, if u 0 ∈ B R T (ϕ 1 ), problem (77) is exactly controllable to the ground state ψ 1 in time T .