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Abstract

In a separable Hilbert space X, we study the linear evolution equation

u′(t) + Au(t) + p(t)Bu(t) = 0,

where A is an accretive self-adjoint linear operator, B is a bounded linear operator on X,
and p ∈ L2

loc(0,+∞) is a bilinear control.
We give sufficient conditions in order for the above control system to be locally controllable

to the ground state solution, that is, the solution of the free equation (p ≡ 0) starting from
the ground state of A. We also derive global controllability results in large time and discuss
applications to parabolic equations in low space dimension.
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1. Introduction

In a separable Hilbert space X, consider the control system
u′(t) + Au(t) + p(t)Bu(t) = 0, t > 0

u(0) = u0.
(1)

where A : D(A) ⊂ X → X is a linear self-adjoint maximal accretive operator on X, B
belongs to L(X), the space of all bounded linear operators on X, and p(t) is a scalar function
representing a bilinear control.

In the recent paper [1], we have studied the stabilizability of (1) along the ground state
solution of the free equation (p ≡ 0). More precisely, denoting by {λk}k∈N∗ the eigenvalues
of A and by {ϕk}k∈N∗ the corresponding eigenfunctions, we call ϕ1 the ground state of A and
ψ1(t) = e−λ1tϕ1 the ground state solution of the equation

u′(t) + Au(t) = 0.

In [1, Theorem 3.4], we have given sufficient conditions on A and B to ensure the superex-
ponential stabilizability of (1) along ψ1: for all u0 in some neighborhood of ϕ1 there exists a
control p ∈ L2

loc([0,+∞)) such that the corresponding solution u of (1) satisfies

||u(t)− ψ1(t)|| ≤Me−(eωt+λ1t), ∀ t ≥ 0 (2)

for some constants ω,M > 0. In the same paper, we have discussed several applications of
the above result to parabolic operators. For instance, we have studied the stabilizability of
the equation

ut − uxx + p(t)µ(x)u = 0

with Dirichlet or Neumann boundary conditions, as well as the equation with variable coef-
ficients

ut − ((1 + x)2ux)x + p(t)Bu = 0,

or n-dimensional problems with radial symmetry. In [13], we have also shown how to recover
superexponential stability for a class of degenerate parabolic operators, still applying the
above abstract result.

In this paper, we address the related, more delicate, issue of the exact controllability of
(1) to the ground state solution ψ1 via a bilinear control. Such a property, that is obviously
stronger than superexponential stabilizability, holds true in more restrictive settings than
those considered in [1]. Nevertheless, our new results, that we state below, apply to all the
aforementioned examples of parabolic problems.

Theorem 1.1. Let A : D(A) ⊂ X → X be a densely defined linear operator such that

(a) A is self-adjoint,
(b) A is accretive: 〈Ax, x〉 ≥ 0, ∀x ∈ D(A),
(c) ∃ λ > 0, (λI + A)−1 : X → X is compact,

(3)
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and suppose that there exists a constant α > 0 for which the eigenvalues of A fulfill the gap
condition √

λk+1 −
√
λk ≥ α, ∀ k ∈ N∗. (4)

Let B : X → X be a bounded linear operator such that there exist b, q > 0 for which

〈Bϕ1, ϕ1〉 6= 0, and λqk|〈Bϕ1, ϕk〉| ≥ b ∀ k > 1. (5)

Then, for any T > 0, there exists a constant RT > 0 such that, for any u0 ∈ BRT
(ϕ1), there

exists a control p ∈ L2(0, T ) for which system (1) is controllable to the ground state solution
in time T . Furthermore, the following estimate holds

||p||L2(0,T ) ≤
e−π

2CK/Tf

e2π2CK/(3Tf ) − 1
, (6)

where

Tf := min{T, Tα}, Tα :=
π2

6
min

{
1, 1/α2

}
(7)

and CK is a suitable positive constant.

The main idea of the proof consists of applying the stability estimates of [1] on a suitable
sequence of time intervals of decreasing length Tj, such that

∑∞
j=1 Tj <∞. Such a sequence,

however, has to be suitably chosen in order to fit the error estimates that we take from [1].
From the above local exact controllability property we deduce two global controllability

results. In the first one, Theorem 1.2 below, we prove that all initial states lying in a suitable
strip, i.e., satisfying |〈u0, ϕ1〉 − 1| < r1, can be steered to the ground state solution (see
Figure 1). Moreover, we give a uniform estimate for the controllability time.

Theorem 1.2. Let A and B satisfy hypotheses (3), (4), and (5). Then there exists a constant
r1 > 0 such that for any R > 0 there exists TR > 0 such that for all u0 ∈ X that satisfy

|〈u0, ϕ1〉 − 1| < r1,

||u0 − 〈u0, ϕ1〉ϕ1|| ≤ R,
(8)

problem (1) is exactly controllable to the ground state solution ψ1(t) = e−λ1tϕ1 in time TR.
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Figure 1: the colored region represents the set of initial conditions that can be steered to the ground state
solution in time TR.

Our second global result, Theorem 1.3 below, ensures the exact controllability of all initial
states u0 ∈ X \ ϕ⊥1 to the evolution of their orthogonal projection along the ground state
solution defined by

φ1(t) = 〈u0, ϕ1〉ψ1(t), ∀ t ≥ 0, (9)

where ψ1 is the ground state solution.

Theorem 1.3. Let A and B satisfy hypotheses (3), (4) and (5). Then, for any R > 0 there
exists TR > 0 such that for all u0 ∈ X satisfying

||u0 − 〈u0, ϕ1〉ϕ1|| ≤ R|〈u0, ϕ1〉| (10)

system (1) is exactly controllable to φ1, defined in (9), in time TR.

Notice that, denoting by θ the angle between the half-lines R+ϕ1 and R+u0, condition
(10) is equivalent to

| tan θ| ≤ R,

which defines a closed cone, say QR, with vertex at 0 and axis equal to Rϕ1 (see Figure 2).
Therefore, Theorem 1.3 ensures a uniform controllability time for all initial conditions lying
in QR. We observe that, since R is any arbitrary positive constant, all initial conditions
u0 ∈ X \ ϕ⊥1 can be steered to the corresponding projection to the ground state solution.
Indeed, for any u0 ∈ X \ ϕ⊥1 , we define

R0 :=

∣∣∣∣∣∣∣∣ u0

〈u0, ϕ1〉
− ϕ1

∣∣∣∣∣∣∣∣ .
Then, for any R ≥ R0 condition (10) is fulfilled:

1

|〈u0, ϕ1〉|
||u0 − 〈u0, ϕ1〉ϕ1|| = R0 ≤ R.
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Figure 2: fixed any R > 0, the set of initial conditions exactly controllable in time TR to their projection
along the ground state solution is indicated by the colored cone QR.

Finally, we would like to recall part of the huge literature on bilinear control of evolution
equations, referring the reader to the references in [1] for more details. A seminal paper in
this field is certainly the one by Ball J.M., Marsden J.E., Slemrod M. [2], which establishes
that system (1) is not controllable. More precisely, denoting by u(t; p, u0) the unique solution
of (1), the attainable set from u0 defined by

S(u0) = {u(t; p, u0); t ≥ 0, p ∈ Lrloc([0,+∞),R), r > 1}

is shown in [2] to have a dense complement.
Among positive results, we would like to mention Beauchard K. [4] for bilinear control of

the wave equation and Beauchard K., Laurent C. [6] for the bilinear control of the Schrödinger
equation (see also [3] for a first result on this topic). The local exact controllability results
obtained in these papers rely on linearization around the ground state, the use of the inverse
mapping Theorem, and a regularizing effect which takes place in both problems. The local
exact controllability is proved for any positive time for the Schrödinger equation and for a
sufficiently (optimal) large time for the wave equation. Both papers require the condition

〈Bϕ1, ϕk〉 6= 0,∀ k ≥ 1 (11)

to be satisfied, together with a suitable asymptotic behavior with respect to the eigenvalues.
If (11) is violated then it has been first shown by Coron J.-M. [14], for a model describing

a particle in a moving box, that there exists a minimal time for local exact controllability to
hold. This model couples the Schrödinger equation with two ordinary differential equations
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modeling the speed and acceleration of the box (see also Beauchard K., Coron J.-M. [5] for
local exact controllability for large time). A further paper by Beauchard K., Morancey M. [7]
for the Schrödinger equation extends [6] to cases for which the above condition is violated,
namely there exist integers k for which 〈Bϕ1, ϕk〉 = 0. Under some additional assumptions,
the authors prove that the system is locally exactly controllable in a sufficiently large time.

Another example of controllability to trajectories for nonlinear parabolic systems is stud-
ied in [15], where, however, additive controls are considered. In such an example, one can
obtain controllability to free trajectories by Carleman estimate and inverse mapping argu-
ments. Such a strategy seems hard to adapt to the current setting.

It is worth noting that the bilinear controls we use in this paper are just scalar functions of
time. This fact explains why applications mainly concern problems in low space dimension.
A stronger control action could be obtained by letting controls depend on time and space.
We refer the reader to [10, 9] for more on this subject.

This paper is organized as follows. In section 2, we have collected some preliminaries as
well as results from [1] that we need for the proof of Theorem 1.1. Section 3 contains such a
proof, while section 4 is devoted to examples of applications to parabolic problems.

2. Preliminaries

In this section we recall some results from [1] that are necessary for the construction of
the proof of Theorem 1.1. First, fixed T > 0, consider the following bilinear control problem

u′(t) + Au(t) + p(t)Bu(t) + f(t) = 0, t ∈ [0, T ]

u(0) = u0.
(12)

We introduce the following notation:

||f ||2,0 := ||f ||L2(0,T ;X), ∀ f ∈ L2(0, T ;X)

||f ||∞,0 := ||f ||C([0,T ];X) = supt∈[0,T ] ||f(t)||, ∀ f ∈ C([0, T ];X).

The well-posedness of (12) is ensured by the following Proposition.

Proposition 2.1. Let T > 0. If u0 ∈ X, p ∈ L2(0, T ) and f ∈ L2(0, T ;X), then there
exists a unique mild solution of (12), i.e. a function u ∈ C([0, T ];X) such that the following
equality holds for every t ∈ [0, T ],

u(t) = e−tAu0 −
∫ t

0

e−(t−s)A[p(s)Bu(s) + f(s)]ds. (13)

Moreover, there exists a constant C1(T ) > 0 such that

||u||∞,0 ≤ C1(T )(||u0||+ ||f ||2,0). (14)

We refer to [1] for a proof of Proposition 2.1.
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Our aim is to show the controllability of the following system
u′(t) + Au(t) + p(t)Bu(t) = 0, t ∈ [0, T ]

u(0) = u0,
(15)

to the ground state solution ψ1 = e−λ1tϕ1, that is the solution of (15) when p = 0 and u0 = ϕ1.
We first consider the case λ1 = 0 and prove the controllability result to the corresponding
ground state solution ψ1 = ϕ1. Then, we recover the result also for the case λ1 > 0.

Set v := u− ϕ1, then v is the solution of the following Cauchy problem
v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [0, T ]

v(0) = v0 = u0 − ϕ1.
(16)

We observe that the controllability of u to ϕ1 is equivalent to the null controllabiliy of (16).
In order to prove this latter result, we consider the following linearized system

v̄(t)′ + Av̄(t) + p(t)Bϕ1 = 0, t ∈ [0, T ]

v̄(0) = v0.
(17)

and we introduce the following constant

ΛT :=

(∑
k∈N∗

e−2λkT eC̄
√
λk/α

|〈Bϕ1, ϕk〉|2

)1/2

. (18)

where α is the constant in (4). We observe that, thanks to assumption (5), ΛT converges for
any T > 0. The next Proposition guarantees the null controllability of (17) and furthermore
it yields an estimate of the control p with respect to the initial condition v0.

Proposition 2.2. Let T > 0 and let A and B be such that (3), (4), (5) hold. Furthermore,
assume that λ1 = 0. Let v0 ∈ X. Then, defining p ∈ L2(0, T ) by

p(t) =
∑
k∈N∗

〈v0, ϕk〉
〈Bϕ1, ϕk〉

σk(t) (19)

where {σk}k∈N∗ is the biorthogonal family to {eλkt}k∈N∗ given by [12, Theorem 2.4], it holds
that v̄(T ) = 0.

Moreover, there exists a constant Cα(T ) > 0 such that

||p||L2(0,T ) ≤ Cα(T )ΛT ||v0|| (20)

where ΛT is defined in (18) and α is the constant in (4).

For the proof of Proposition 2.2 we refer to [1].

7



Remark 2.3. The behavior of Cα(·) with respect to its argument has been studied in [12] and
is given by

C2
α(T ) = C̄ ·


(

1
T

+ 1
T 2α2

)
eC̄/(Tα

2), T ≤ 1
α2

C̄α2, T ≥ 1
α2 ,

(21)

where C̄ > 0 is a constant independent of T and α.

We now use the control p built in Proposition 2.2 also in the nonlinear system (16) and
we give an estimate for the corresponding solution v.

Proposition 2.4. Let A and B satisfy hypotheses (3), (4), (5) and, furthermore, assume
λ1 = 0. Let p ∈ L2(0, T ) be defined by (19). Then, the solution v of (16) satisfies

sup
t∈[0,T ]

||v(t)||2 ≤ eC3(T )ΛT ||v0||+CBT (1 + C4(T )Λ2
T )||v0||2 (22)

where CB ≥ 1 is the norm of the operator B, C3(T ) := 2
√
TCBCα(T ), and C4(T ) :=

CBC
2
α(T ).

For the proof of Proposition 2.4 we refer to [1].
We introduce the function w(t) := v(t)− v̄(t) that satisfies the following Cauchy problem

w′(t) + Aw(t) + p(t)Bv(t) = 0, t ∈ [0, T ]

w(0) = 0.
(23)

We define the function K on (0,∞) by

K2(T ) := CBe
2CB

√
T+(CB+1)TC4(T )Λ2

T (1 + C4(T )Λ2
T ). (24)

In the following Proposition we estimate how close we are able to steer v to 0 in time T by
means of the control p defined in (19).

Proposition 2.5. Let A and B satisfy hypotheses (3), (4), (5), and, furthermore, we assume
λ1 = 0. Let T > 0, p be defined by (19), and let v0 ∈ X be such that

Cα(T )ΛT ||v0|| ≤ 1. (25)

Then, it holds that
||w(T )|| = ||v(T )|| ≤ K(T )||v0||2. (26)

Proof. Observe that w ∈ C([0, T ];X) is the mild solution of (23). Moreover w ∈ H1(0, T ;X)∩
L2(0, T ;D(A)) and thus w satisfies the equality

w′(t) + Aw(t) + p(t)Bv(t) = 0 (27)

for almost every t ∈ [0, T ].
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We multiply equation (27) by w(t) and we obtain

1

2

d

dt
||w(t)||2 ≤ |p(t)|||Bv(t)||||w(t)||

≤ 1

2
||w(t)||2 + C2

B

1

2
|p(t)|2||v(t)||2.

(28)

Therefore, applying Gronwall’s inequality, taking the supremum over [0, T ] and using (22)
and (20), we get

sup
t∈[0,T ]

||w(t)||2 ≤ C2
Be

T ||p||2L2(0,T ) sup
t∈[0,T ]

||v(t)||2

≤ C2
Be

C3(T )ΛT ||v0||+CBT+T (1 + C4(T )Λ2
T )||v0||2||p||2L2(0,T )

≤ C2
BC

2
α(T )Λ2

T e
C3(T )ΛT ||v0||+(CB+1)T (1 + C4(T )Λ2

T )||v0||4.

(29)

We can suppose, without loss of generality, that Cα(T ) ≥ 1. Thus, thanks to (25), we obtain

sup
t∈[0,T ]

||w(t)||2 ≤ C2
BC

2
α(T )Λ2

T e
2CB

√
T+(CB+1)T (1 + C4(T )Λ2

T )||v0||4

that is equivalent to
sup
t∈[0,T ]

||w(t)||2 ≤ K(T )2||v0||4.

By the last inequality we infer that

||w(T )|| ≤ K(T )||v0||2. (30)

3. Proof of Theorem 1.1

Fixed 0 < T ≤ min {1, 1/α2}, we define the sequence {Tj}j∈N∗ by

Tj := T/j2, (31)

and the time steps

τn =
n∑
j=1

Tj, ∀n ∈ N, (32)

with the convention that
∑0

j=1 Tj = 0. Notice that
∑∞

j=1 Tj = π2

6
T .

The proof of our result relies on the construction of the solution v of (16) in consecutive
intervals of the form [τn, τn+1] for which we are able to perform an iterate estimate of (26).

First, through the following Lemma, we study the behavior of the constant K(T ) with
respect to T .

We define the function

GM(T ) :=
M

T 2
eM/T

∞∑
k=1

e−2λkT+M
√
λk

|〈Bϕ1, ϕk〉|2
, 0 < T ≤ 1 (33)

where M is a positive constant.
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Lemma 3.1. Let A : D(A) ⊂ X → X be such that (3) and (4) hold and B : X → X be such
that (5) holds. Then, there exists a suitable positive constant CM such that

GM(T ) ≤ eCM/T , ∀ 0 < T ≤ 1. (34)

Proof. Thanks to assumption (5), we have that

GM(T ) =
M

T 2
eM/T

∞∑
k=1

e−2λkT+M
√
λk

|〈Bϕ1, ϕk〉|2

≤ M

T 2
eM/T

[
eM

2/(8T )

|〈Bϕ1, ϕ1〉|2
+

1

b2

∞∑
k=2

(
λ2q
k e
−λkT

)
e−λkT+M

√
λk

]
.

(35)

For any λ ≥ 0 we set f(λ) = e−λT+M
√
λ. The maximum value of f is attained at λ =

(
M
2T

)2
.

So, we can bound GM(T ) as follows

GM(T ) ≤ M

T 2
eM/T

[
eM

2/(8T )

|〈Bϕ1, ϕ1〉|2
+
eM

2/(4T )

b2

∞∑
k=1

λ2q
k e
−λkT

]
. (36)

Now, for any λ ≥ 0 we define the function g(λ) = λ2qe−λT . Its derivative is given by

g′(λ) = (2q − λT )λ2q−1e−λT

and therefore we deduce that

g(λ) is


increasing if 0 ≤ λ < (2q)/T

decreasing if λ ≥ (2q)/T

and g has a maximum at λ = (2q)/T . We define the following index:

k1 := k1(T ) = sup

{
k ∈ N∗ : λk ≤

2q

T

}
Note that k1(T ) goes to ∞ as T converges to 0. We can rewrite the sum in (36) as follows

∞∑
k=1

λ2q
k e
−λkT =

∑
k≤k1−1

λ2q
k e
−λkT +

∑
k1≤k≤k1+1

λ2q
k e
−λkT +

∑
k≥k1+2

λ2q
k e
−λkT . (37)

For any k ≤ k1 − 1, we have∫ λk+1

λk

λ2qe−λTdλ ≥ (λk+1 − λk)λ2q
k e
−λkT ≥ α(

√
λ2 +

√
λ1)λ2q

k e
−λkT (38)

and for any k ≥ k1 + 2∫ λk

λk−1

λ2qe−λTdλ ≥ (λk − λk−1)λ2q
k e
−λkT ≥ α(

√
λ2 +

√
λ1)λ2q

k e
−λkT . (39)
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So, by using estimates (38) and (39), (37) becomes

∞∑
k=1

λ2q
k e
−λkT =

2

α(
√
λ2 +

√
λ1)

∫ ∞
0

λ2qe−λTdλ+
∑

k1≤k≤k1+1

λ2q
k e
−λkT . (40)

Furthermore, recalling that g has a maximum for λ = 2q/T , it holds that

k = k1, k1 + 1 ⇒ λ2q
k e
−λkT ≤ (2q/T )2q e−2q. (41)

Finally, the integral term of (40) can be rewritten as∫ ∞
0

λ2qe−λTdλ =
1

T

∫ ∞
0

( s
T

)2q

e−sds =
1

T 1+2q

∫ ∞
0

s2qe−sds =
Γ(2q + 1)

T 1+2q
, (42)

where by Γ(·) we indicate the Euler integral of the second kind.
Therefore, we conclude from (41) and (42) that there exist two constants Cq, Cq,α > 0

such that
∞∑
k=1

λ2q
k e
−λkT ≤ Cq

T 2q
+

Cα,q
T 1+2q

. (43)

We use this last bound to prove that there exists CM > 0 such that

GM(T ) ≤ M

T 2
eM/T

[
eM

2/(8T )

|〈Bϕ1, ϕ1〉|2
+
eM

2/(4T )

b2

(
Cq
T 2q

+
Cα,q
T 1+2q

)]
≤ eCM/T , 0 < T ≤ 1

as claimed.

Remark 3.2. We recall that K(·) is defined by

K2(T ) := C2
Be

2CB

√
T+(CB+1)TC2

α(T )Λ2
T (1 + CBC

2
α(T )Λ2

T ).

For any 0 < T ≤ min {1, 1/α2}, C2
α(·) is given by

C2
α(T ) = C̄

(
1

T
+

1

T 2α2

)
eC̄/(α

2T ).

Thus, we have the following bound for K(·)

K(T )2 ≤ C2
Be

2CB

√
T+(CB+1)TGM(T ) (1 + CBGM(T )) , (44)

where GM(·) is defined by (33) and the subscribed M is given by M = C̄
(
1 + 1

α2

)
.

Thanks to Lemma 3.1, we infer that there exists a suitable constant CK > 0 such that
CK > CM and

K(T ) ≤ eCK/T , ∀T ∈ (0, 1]. (45)

In the following Proposition we prove that it is possible to iterate the construction of v
in consecutive time intervals of the form [τn−1, τn].
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Proposition 3.3. Let 0 < T ≤ min {1, 1/α2}, and consider the sequence (Tj)j∈N∗ defined by
(31). Let v0 ∈ X for which ||v0|| < e−6CK/T , let A : D(A) ⊂ X → X be such that (3) and
(4) hold and let B : X → X satisfies (5). Moreover, we assume that λ1 = 0. Then, for every
n ∈ N∗, problem

v′(t) + Av(t) + p(t)Bv(t) + p(t)Bϕ1 = 0, t ∈ [τn−1, τn]

v (τn−1) = vn−1,
(46)

where vn−1 is determined by induction from the previous steps, p ∈ L2(τn−1, τn) is given by

p(t) =
∞∑
k=1

〈vn−1, ϕk〉
〈Bϕ1, ϕk〉

σk(t− τn−1), (47)

admits a unique mild solution v ∈ C ([τn−1, τn] , X) that satisfies

||v (τn)|| ≤ e(
∑n

j=1 2n−jj2−2n6)CK/T , (48)

where the time steps {τn}n∈N are defined by (32).

Proof. To prove the result, we proceed by induction on n. For n = 1, by Proposition 2.5, the
hypothesis on v0 and Remark 3.2, v it satisfies

||v(T )|| ≤ K(T )||v0||2 ≤ e−11CK/T .

Now, suppose the statement is true for all indices k ≤ n− 1, we show the validity for index
n. Therefore, by inductive hypothesis, the solution v has been constructed in consecutive
intervals until [τn−2, τn−1] and it satisfies

||v (τn−1)|| ≤ e(
∑n−1

j=1 2n−1−jj2−2n−16)CK/T .

Hence,

Cα(Tn)ΛTn ||v (τn−1)|| ≤ eCMn2/T e(
∑n−1

j=1 2n−1−jj2−2n−16)CK/T

≤ e(n2+(−(n−1)2−4(n−1)+2n−16−6−2n−16)CK/T

= e−(2n+3)CK/T ,

(49)

where we have used that CM < CK and the identity

n∑
j=0

j2

2j
= 2−n(−n2 − 4n+ 6(2n − 1)), n ≥ 0, (50)

which can be easily checked by induction.
Consider problem (46) with vn−1 the solution built in the previous interval, evaluated at

τn−1. By the change of variables s = t − τn−1, we shift (46) into the interval [0, Tn]. We
introduce the functions ṽ(s) = v (s+ τn−1) and p̃(s) = p (s+ τn−1) and we rewrite (46) as

ṽ′(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕ1 = 0, s ∈ [0, Tn]

ṽ(0) = vn−1.
(51)

12



From (49) it follows that Cα(Tn)ΛTn ||v(τn−1)|| < 1 and thus we can apply Proposition 2.5 to
problem (51), obtaining

||ṽ(Tn)|| ≤ K(Tn)||vn−1||2. (52)

We shift back the problem into the original interval [τn−1, τn] and we get

||v (τn)|| ≤ K(Tn)||vn−1||2. (53)

By inductive hypothesis, we can estimate ||v (τn)|| as follows

||v (τn)|| ≤ eCKn
2/T
[
e(

∑n−1
j=1 2n−1−jj2−2n−16)CK/T

]2

= e(
∑n

j=1 2n−jj2−2n6)CK/T . (54)

Proposition 3.4. Let 0 < T ≤ min {1, 1/α2} and consider the sequence (Tj)j∈N∗ defined by
(31). Let v0 ∈ X be such that ||v0|| < e−6CK/T , let A : D(A) ⊂ X → X be such that (3) and
(4) hold and let B : X → X satisfies (5). Let p ∈ L2(τn−1, τn) be defined by (47). Moreover,
we assume that λ1 = 0. Then, the solution of (46) satisfies

||v (τn)|| ≤
n∏
j=1

K(Tj)
2n−j ||v0||2

n

, (55)

for all n ∈ N∗.

Proof. We prove formula (55) by induction on n. The case n = 1 follows from Proposition
2.5, thanks to the assumption ||v0|| < e−6CK/T . Now, suppose the formula holds for all the
indices less than or equal to n − 1. We prove it for n as follows. We consider problem (46)
and in order to shift it in the interval [0, Tn], we introduce the variable s = t− τn−1 as before
and the functions ṽ(s) = v (s+ τn−1) and p̃(s) = p (s+ τn−1). Thus, (46) can be rewritten as

ṽ′(s) + Aṽ(s) + p̃(s)Bṽ(s) + p̃(s)Bϕ1 = 0, s ∈ [0, Tn]

ṽ(0) = vn−1.
(56)

By Proposition 3.3, it holds that Cα(Tn)ΛTn||vn−1|| ≤ 1 and hence, we can apply Proposition
2.5 considering as final time Tn (instead of T ), obtaining that

||v (τn)|| = ||ṽ(Tn)|| ≤ K(Tn)||vn−1||2. (57)

Finally, by inductive hypothesis, we conclude that

||v (τn)|| ≤ K(Tn)||vn−1||2 ≤ K(Tn)

[
n−1∏
j=1

K(Tj)
2n−1−j ||v0||2

n−1

]2

(58)

that is equivalent to formula (55).

We are now ready to prove our main result.
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Proof of Theorem 1.1. We start the proof by considering the case in which λ1 = 0. Let T > 0
and let Tα and Tf be defined by (7). We define T̃ = 6

π2Tf and RT := e−π
2CK/Tf . Observe

that 0 < T̃ ≤ 1 and we define the time steps {τn}n∈N as in (32) with Tj := T̃ /j2. Fixed
v0 ∈ BRT

(0), we apply (55) to obtain

||v (τn)|| ≤
n∏
j=1

K(Tj)
2n−j ||v0||2

n

≤
n∏
j=1

(
eCKj

2/T̃
)2n−j

||v0||2
n

= eCK2n/T̃
∑n

j=1 j
2/2j ||v0||2

n

≤ eCK2n/T̃
∑∞

j=1 j
2/2j ||v0||2

n

≤
(
e6CK/T̃ ||v0||

)2n

(59)

where we have used that
∑∞

j=1 j
2/2j = 6. We take the limit as n→∞ of (59) and we get∣∣∣∣∣∣∣∣u(π2

6
T̃

)
− ϕ1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣v(π2

6
T̃

)∣∣∣∣∣∣∣∣ = ||v(Tf )|| ≤ 0 (60)

since ||v0|| < e−π
2CK/Tf = e−6CK/T̃ . This means that, we have built a control p ∈ L2

loc([0,∞)),
defined by

p(t) =


∑∞

n=0 pn(t)χ[τn,τn+1](t), t ∈ (0, Tf ] ,

0, t ∈ (Tf ,+∞)
(61)

where

pn(t) =
∞∑
k=1

〈v (τn) , ϕk〉
〈Bϕ1, ϕk〉

σk (t− τn) , ∀n ∈ N, (62)

such that the solution u of (1) reaches the ground state solution ϕ1 in time T , and stays on
it forever.

Observe that, thanks to (20) and (49), we are able to yield a bound for the L2-norm of
such a control:

||p||2L2(0,T ) =
∞∑
n=0

||pn||2L2(τn,τn+1)

≤
∞∑
n=0

(
Cα(Tn+1)ΛTn+1 ||v (τn)||

)2

≤
∞∑
n=0

e−2(2(n+1)+3)CK/T̃

=
e−6CK/T̃

e4CK/T̃ − 1

=
e−π

2CK/Tf

e2π2CK/(3Tf ) − 1

(63)
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Now we face the case λ1 > 0. We define the operator

A1 := A− λ1I.

It is possible to check that A1 satisfies (3) and moreover it has the same eigenfuctions,
{ϕk}k∈N∗ , of A, while the eigenvalues are given by

µk = λk − λ1, ∀k ∈ N∗. (64)

In particular, µ1 = 0 and furthermore, {µk}k∈N∗ satisfy the same gap condition (4) fulfilled
by {λk}k∈N∗ .

We define the function z(t) = eλ1tu(t), where u is the solution of (1). Then, z solves the
following problem 

z′(t) + A1z(t) + p(t)Bz(t) = 0, t > 0,

z(0) = u0.
(65)

For any T > 0, we define Tf as in (7) and the constant RT := e−π
2CK/Tf . We deduce from

the previous analysis that, if u0 ∈ BRT
(ϕ1), then there exists a control p ∈ L2([0,+∞)) that

steers the solution z to the ground state solution ϕ1 in time Tf ≤ T . This implies the exact
controllability of u to the ground state solution ψ1(t) = e−λ1tϕ1: indeed,

||u (Tf )− ψ1 (Tf )|| =
∣∣∣∣e−λ1Tf z (Tf )− e−λ1Tfϕ1

∣∣∣∣ = e−λ1Tf ||z (Tf )− ϕ1|| = 0.

This concludes the proof of our Theorem.

Remark 3.5. We observe that, from (63), it follows that ||p||L2(0,Tf ) → 0 as Tf → 0. This
fact is not surprising because as Tf approaches 0, also the size of the neighborhood where the
initial condition can be chosen goes to zero.

4. Proof of Theorems 1.2 and 1.3

Before proving Theorem 1.2, let us show a preliminary result that demonstrates the
statement in the case of a strictly accretive operator.

Lemma 4.1. Let A and B satisfy hypotheses (3), (4) and (5). Furthermore, we assume
λ1 = 0. Then, there exists a constant r1 > 0 such that for any R > 0 there exists TR > 0
such that for all v0 ∈ X that satisfy

|〈v0, ϕ1〉| < r1,

||v0 − 〈v0, ϕ1〉ϕ1|| ≤ R,
(66)

problem (16) is null controllable in time TR.

Proof. First step. We fix T = 1. Thanks to Theorem 1.1, there exists a constant r1 > 0
such that if ||u1(0) − ϕ1|| <

√
2r1 then there exists a control p1 ∈ L2(0, 1) for which the

solution u1 of (1) on [0, 1] with p replaced by p1, satisfies u1(1) = ϕ1. We set v1 = u1−ϕ1 on
[0, 1]. We deduce that if ||v1(0)|| <

√
2r1 then there exists a control p1 ∈ L2(0, 1) for which

the solution v1 of (16) on [0, 1] with p replaced by p1, satisfies v1(1) = 0.
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Second step. Let v0 ∈ X be the initial condition of (16). We decompose v0 as follows

v0 = 〈v0, ϕ1〉ϕ1 + v0,1,

where v0,1 ∈ ϕ⊥1 and we suppose that |〈v0, ϕ1〉| < r1. We define tR as

tR :=
1

2λ2

log

(
R2

r2
1

)
(67)

and in the time interval [0, tR] we take the control p ≡ 0. Then, for all t ∈ [0, tR], we have
that

||v(t)||2 ≤
∣∣∣∣e−tA (〈v0, ϕ1〉ϕ1 + v0,1)

∣∣∣∣2 ≤ |〈v0, ϕ1〉|2 + e−2λ2t ||v0,1||2 < r2
1 + e−2λ2tR2.

In particular, for t = tR, it holds that ||v(tR)||2 < 2r2
1.

Now, we define TR := tR + 1 and set v1(0) = v(tR). Thanks to the first step of the proof,
there exists a control p1 ∈ L2(0, 1), such that v1(1) = 0, where v1 is the solution of (16) on
[0, 1] with p replaced by p1.

Then v(t) = v1(t− tR) solves (16) in the time interval (tR, TR] with the control p1(t− tR)
that steers the solution v to 0 at TR.

Proof (of Theorem 1.2). We start with the case λ1 = 0. Let u0 ∈ X that satisfies (8). Set
v(t) := u(t)− ϕ1, then v satisfies (16) and moreover v0 := v(0) = u0 − ϕ0 fulfills (66). Thus,
by Lemma 4.1, problem (1) is exactly controllable to the ground state solution ψ1 ≡ ϕ1 in
time TR.

Now, we consider the case λ1 > 0. As in the proof of Theorem 1.1, we introduce the
variable z(t) = eλ1tu(t) that solves problem (65). For such a system, since the first eigenvalue
of A1 is equal 0, we have the exact controllability to ϕ1 in time TR. Namely z(TR) = ϕ1, that
is equivalent to the exact controllability of u to ψ1:

z(TR) = ϕ1 ⇐⇒ eλ1TRu(TR) = ϕ1 ⇐⇒ u(TR) = ψ1(TR). (68)

The proof is thus complete.

The proof of Theorem 1.3 easily follows from Theorem (1.2).

Proof (of Theorem 1.3). Suppose that γ := 〈u0, ϕ1〉 6= 0. We decompose u0 as u0 = γϕ1 +ζ1,
with ζ1 := u0 − 〈u0, ϕ1〉ϕ1 ∈ ϕ⊥1 and define ũ(t) := u(t)/γ. Hence, ũ solves{

ũ′(t) + Aũ(t) + p(t)Bũ(t) = 0, t > 0

ũ(0) = ϕ1 + ζ̃1,
(69)

where ζ̃1 := ζ1/γ.
We apply Theorem 1.2 to (69) to deduce the existence of TR > 0 such that ũ(TR) =

ψ1(TR). Therefore, the solution of (1) with initial condition u0 ∈ X that do not vanish along
the direction ϕ1 can be exactly controlled in time TR to the trajectory 〈u0, ϕ1〉ψ1(·).

Note that if u0 ∈ X satisfies both u0 ∈ ϕ⊥1 and (10), then we have trivially that u0 ≡ 0.
We then choose p ≡ 0, so that the solution of (1) remains constantly equal to φ1 ≡ 0.
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5. Applications

In this section we present some examples of parabolic equations for which Theorem 1.1
can be applied. The hypotheses (3)–(5) have been verified in [1] and [13], to which we refer for
more details. Furthermore, we observe that also the global results Theorem 1.2 and Theorem
1.3 can be applied to any example.

5.1. Diffusion equation with Dirichlet boundary conditions

Let I = (0, 1) and X = L2(0, 1). Consider the following problem
ut(t, x)− uxx(t, x) + p(t)µ(x)u(t, x) = 0 x ∈ I, t > 0

u(t, 0) = 0, u(t, 1) = 0, t > 0

u(0, x) = u0(x) x ∈ I.

(70)

We denote by A the operator defined by

D(A) = H2 ∩H1
0 (I), Aϕ = −d

2ϕ

dx2
.

and it can be checked that A satisfies (3). We indicate by {λk}k∈N∗ and {ϕk}k∈N∗ the families
of eigenvalues and eigenfunctions of A, respectively:

λk = (kπ)2, ϕk(x) =
√

2 sin(kπx), ∀k ∈ N∗.

It is easy to see that (4) holds true:√
λk+1 −

√
λk = π, ∀k ∈ N∗.

Let B : X → X be the operator
Bϕ = µϕ

with µ ∈ H3(I) such that

µ′(1)± µ′(0) 6= 0 and 〈µϕ1, ϕk〉 6= 0 ∀k ∈ N∗. (71)

Then, there exists b > 0 such that

λ
3/2
k |〈µϕ1, ϕk〉| ≥ b, ∀k ∈ N∗.

For instance, a suitable function that satisfies (71) is µ(x) = x2, for which b = 2π2−3
6π2 .

For any T > 0, we define Tf as in (7). Then, there exists a constant RTf > 0 such that
the solution u of (70), with u0 ∈ BRTf

(ϕ1), reaches the ground state solution ψ1(t, x) =
√

2 sin(πx)e−π
2t in time Tf and stays on it forever.
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5.2. Diffusion equation with Neumann boundary conditions

Let I = (0, 1), X = L2(I) and consider the Cauchy problem
ut(t, x)− uxx(t, x) + p(t)µ(x)u(t, x) = 0 x ∈ I, t > 0

ux(t, 0) = 0, ux(t, 1) = 0, t > 0

u(0, x) = u0(x). x ∈ I.

(72)

The operator A, defined by

D(A) = {ϕ ∈ H2(0, 1) : ϕ′(0) = 0, ϕ′(1) = 0}, Aϕ = −d
2ϕ

dx2

satisfies (3) and has the following eigenvalues and eigenfunctions

λ0 = 0, ϕ0 = 1

λk = (kπ)2, ϕk(x) =
√

2 cos(kπx), ∀k ≥ 1.

Thus, the gap condition (4) is fulfilled with α = π. The ground state solution is just the
stationary function ψ0(x) = ϕ0(x) = 1.

We define B : X → X as the multiplication operator by a function µ ∈ H2(I), Bϕ = µϕ,
such that

µ′(1)± µ′(0) 6= 0 and 〈µ, ϕk〉 6= 0 ∀k ∈ N. (73)

It can be proved that, there exists b > 0 such that

λk|〈µϕ0, ϕk〉| ≥ b, ∀k ∈ N∗. (74)

For example, µ(x) = x2 satisfies (74) with b = 2
√

2.
Therefore, equation (72) is controllable to the ground state solution ψ1 = 1 in any time

T > 0 as long as u0 ∈ BRT
(1), with RT > 0 a suitable constant.

5.3. Variable coefficient parabolic equation

Let I = (0, 1), X = L2(I) and consider the problem
ut(t, x)− ((1 + x)2ux(t, x))x + p(t)µ(x)u(t, x) = 0 x ∈ I, t > 0

u(t, 0) = 0, u(t, 1) = 0, t > 0

u(0, x) = u0(x) x ∈ I.

(75)

We denote by A : D(A) ⊂ X → X the following operator

D(A) = H2 ∩H1
0 (I), Aϕ = −((1 + x)2ϕx)x.

It can be checked that A satisfies (3) and that the eigenvalues and eigenfunctions have the
following expression

λk =
1

4
+

(
kπ

ln 2

)2

, ϕk =

√
2

ln 2
(1 + x)−1/2 sin

(
kπ

ln 2
ln(1 + x)

)
.
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Furthermore, {λk}k∈N∗ verifies the gap condition (4) with α = π/ ln 2.
We define the operator B : X → X by Bϕ = µϕ, where µ ∈ H2(I) is such that

2µ′(1)± µ′(0) 6= 0, and 〈µϕ1, ϕk〉 6= 0 ∀k ∈ N∗. (76)

Hence, thanks to (76), (5) is fulfilled with q = 3/2. An example of a suitable function µ that
satisfies (76) is µ(x) = x, see [1] for the verification.

Thus, from Theorem 1.1, we deduce that, for any T > 0, system (75) is controllable to
the ground state solution if the initial condition u0 is close enough to ϕ1.

5.4. Diffusion equation in a 3D ball with radial data

In this example, we study the controllability of an evolution equation in the three dimen-
sional unit ball B3 for radial data. The bilinear control problem is the following

ut(t, r)−∆u(t, r) + p(t)µ(r)u(t, r) = 0 r ∈ [0, 1], t > 0

u(t, 1) = 0, t > 0

u(0, r) = u0(r) r ∈ [0, 1]

(77)

where the Laplacian in polar coordinates for radial data is given by the following expression

∆ϕ(r) = ∂2
rϕ(r) +

2

r
∂rϕ(r).

The function µ is a radial function as well in the space H3
r (B3), where the spaces Hk

r (B3)
are defined as follows

X := L2
r(B

3) =
{
ϕ ∈ L2(B3) | ∃ψ : R→ R, ϕ(x) = ψ(|x|)

}
Hk
r (B3) := Hk(B3) ∩ L2

r(B
3).

The domain of the Dirichlet Laplacian A := −∆ in X is D(A) = H2
r ∩ H1

0 (B3). We
observe that A satisfies hypothesis (3). We denote by {λk}k∈N∗ and {ϕk}k∈N∗ the families of
eigenvalues and eigenvectors of A, Aϕk = λkϕk, namely

ϕk =
sin(kπr)√

2πr
, λk = (kπ)2 (78)

∀k ∈ N∗, see [17, Section 8.14]. Since the eigenvalues of A are actually the same of the
Dirichlet 1D Laplacian, (4) is satisfied, as we have seen in Example 5.1.

Let B : X → X be the multiplication operator Bu(t, r) = µ(r)u(t, r), with µ be such that

µ′(1)± µ′(0) 6= 0, and 〈µϕ1, ϕk〉 6= 0 ∀k ∈ N∗. (79)

Then, it can be proved that

λ
3/2
k |〈µϕ1, ϕk〉| ≥ b, ∀k ∈ N∗, (80)

with b a positive constant. For instance, µ(x) = x2 verifies (79) and (80) with b = 2π2−3
6π2 .

Therefore, by applying Theorem 1.1, we conclude that for any T > 0, the exists a suitable
constantRT > 0 such that, if u0 ∈ BRT

(ϕ1), problem (77) is exactly controllable to the ground
state ψ1 in time T .
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5.5. Degenerate parabolic equation

In this last section we want to address an example of a control problem for a degenerate
evolution equation of the form

ut − (xγux)x + p(t)x2−γu = 0, (t, x) ∈ (0,+∞)× (0, 1)

u(t, 1) = 0,


u(t, 0) = 0, if γ ∈ [0, 1),

(xγux) (t, 0) = 0, if γ ∈ [1, 3/2),

u(0, x) = u0(x).

(81)

where γ ∈ [0, 3/2) describes the degeneracy magnitude, for which Theorem 1.1 applies.
If γ ∈ [0, 1) problem (81) is called weakly degenerate and the natural spaces for the

well-posedness are the following weighted Sobolev spaces. Let I = (0, 1) and X = L2(I), we
define

H1
γ(I) =

{
u ∈ X : u is absolutely continuous on [0, 1], xγ/2ux ∈ X

}
H1
γ,0(I) =

{
u ∈ H1

γ(I) : u(0) = 0, u(1) = 0
}

H2
γ(I) =

{
u ∈ H1

γ(I) : xγux ∈ H1(I)
}
.

We denote by A : D(A) ⊂ X → X the linear degenerate second order operator
∀u ∈ D(A), Au := −(xγux)x,

D(A) := {u ∈ H1
γ,0(I), xγux ∈ H1(I)}.

(82)

It is possible to prove that A satisfies (3) (see, for instance [8]) and furthermore, if we denote
by {λk}k∈N∗ the eigenvalues and by {ϕk}k∈N∗ the corresponding eigenfunctions, it turns out
that the gap condition (4) is fulfilled with α = 7

16
π (see [16], page 135).

If γ ∈ [1, 3/2), problem (81) is called strong degenerate and the corresponding weighted
Sobolev space are described as follows: given I = (0, 1) and X = L2(I), we define

H1
γ(I) =

{
u ∈ X : u is absolutely continuous on (0, 1], xγ/2ux ∈ X

}
H1
γ,0(I) :=

{
u ∈ H1

γ(I) : u(1) = 0
}
,

H2
γ(I) =

{
u ∈ H1

γ(I) : xγux ∈ H1(I)
}
.

In this case the operator A : D(A) ⊂ X → X is defined by

∀u ∈ D(A), Au := −(xγux)x,

D(A) :=
{
u ∈ H1

γ,0(I) : xγux ∈ H1(I)
}

= {u ∈ X : u is absolutely continuous in (0,1] , xγu ∈ H1
0 (I),

xγux ∈ H1(I) and (xγux)(0) = 0}
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and it has been proved that (3) holds true (see, for instance [11]) and that (4) is satisfied for
α = π

2
(see [16]).

For all γ ∈ [0, 3/2), we define the linear operator B : X → X by Bu(t, x) = x2−γu(t, x)
and in [13] we have proved that there exists a constant b > 0 such that

λ
3/2
k |〈Bϕ1, ϕk〉| ≥ b ∀k ∈ N∗.

Finally, by applying Theorem 1.1, we ensure the exact controllability of problem (81) to
the ground state solution, for both weakly and strongly degenerate problems.
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