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We extend the range-separated double-hybrid RSH+MP2 method [J. G. Ángyán et al., Phys. Rev. A 72,
012510 (2005)], combining long-range HF exchange and MP2 correlation with a short-range density functional,
to a fully self-consistent version using the optimized-effective-potential technique in which the orbitals are ob-
tained from a local potential including the long-range HF and MP2 contributions. We test this approach, that we
name RS-OEP2, on a set of small closed-shell atoms and molecules. For the commonly used value of the range-
separation parameter µ = 0.5 bohr−1, we find that self-consistency does not seem to bring any improvement
for total energies, ionization potentials, and electronic affinities. However, contrary to the non-self-consistent
RSH+MP2 method, the present RS-OEP2 method gives a LUMO energy which physically corresponds to a
neutral excitation energy and gives local exchange-correlation potentials which are reasonably good approx-
imations to the corresponding Kohn-Sham quantities. At a finer scale, we find that RS-OEP2 gives largely
inaccurate correlation potentials and correlated densities, which points to the need of further improvement of
this type of range-separated double hybrids.

I. INTRODUCTION

Kohn-Sham (KS) density-functional theory (DFT) [1, 2] is
among the most popular approaches to describe properties of
atoms, molecules, and solids. The key quantity in KS DFT is
the exchange-correlation density functional which describes
the non-classical part of the electron-electron interaction.
Despite the enormous effort put in studying the exchange-
correlation density functional, its exact explicit form still re-
mains unknown. To date, however, many useful density-
functional approximations (DFAs) have been proposed. They
are commonly classified by increasing complexity accord-
ing to Perdew’s ladder of DFAs [3]: the local-density ap-
proximation (LDA), semilocal generalized-gradient approxi-
mations (GGAs) and meta-GGA approximations, hybrid ap-
proximations including a fraction of Hartree-Fock (HF) ex-
change [4], and more sophisticated approximations including
a dependence on orbital energies and virtual orbitals such as
double-hybrid approximations [5–7], random-phase approx-
imations (RPAs) [8–10], the so-called ab initio DFT [11–
15], and interaction-strength interpolation (ISI) approxima-
tions [16, 17].

The last family of approximations also includes range-
separated hybrid (RSH) wave-function/density-functional ap-
proaches [18, 19], in which the Coulomb electron-electron in-
teraction wee(r12) = 1/r12 is decomposed as

wee(r12) = wlr
ee(r12) + wsr

ee(r12), (1)
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where wlr
ee(r12) = erf(µr12)/r12 is a long-range interaction

(written with the error function erf), wsr
ee(r12) = erfc(µr12)/r12

is the complementary short-range interaction (written with
the complementary error function erfc), and µ is the range-
separation parameter which roughly represents the inverse of
the distance where the short-range interaction transits to the
long-range one. In these approaches, the long-range contri-
bution is described by a wave-function method, e.g. second-
order Møller-Plesset (MP2) perturbation theory (resulting in a
method called RSH+MP2) [20], RPA (resulting in a method
that we will call RSH+RPA) [21, 22] , or coupled cluster [23],
and the complementary short-range contribution is described
by specially developed short-range semilocal DFAs [19, 24–
27].

In the previously listed range-separated approaches, the or-
bitals and orbital energies are calculated within the general-
ized Kohn-Sham (GKS) scheme [28] where KS-like equations
are solved with a nonlocal long-range HF exchange potential,
but without adding to the potential the contribution coming
from the long-range wave-function correlation part. The long-
range correlation energy is only computed a posteriori using
the orbitals and orbital energies from the previously solved
GKS equations. The lack of full self-consistency of these ap-
proaches may affect their accuracy and complicates the calcu-
lation of molecular properties.

Recently, Heßelmann et al. [29] have reported a fully
self-consistent RSH+RPA method based on the optimized-
effective-potential (OEP) scheme [30, 31] where the total
RSH+RPA energy is computed using the orbitals optimized
in the presence of a fully local exchange-correlation potential
including the long-range RPA correlation contribution. Tests
of this method on molecular reaction energies and properties
are promising and encourage us to test a similar fully self-
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consistent RSH+MP2 method based on the OEP approach.
Indeed, the RSH+MP2 method represents the simplest vari-
ant of the correlated range-separated approaches and its ac-
curacy has been well investigated [20, 32–42], revealing that
it is capable of providing a rather significant improvement
over standard semilocal DFAs, especially for the description
of weak interaction energies in molecules[20, 32, 34–37, 41]
and solids[40], while keeping a reasonably low computational
cost for a fifth-rung approximation. Thus, in this work, we
have developed the method where the RSH+MP2 energy is
optimized with respect to variations of the orbitals and or-
bital energies via a fully local exchange-correlation potential
including the long-range MP2 correlation contribution. We
name this method RS-OEP2.

There at least two potential advantages for having a fully
self-consistent method. First, we expect an improvement
in spin-unrestricted calculations for symmetry breaking and
open-shell situations, as observed in Ref. 43. Second, calcu-
lations of properties by response theory are facilitated. More-
over, there are at least two motivations for realizing this self-
consistency with a fully local potential. First, we stay within
the KS scheme which allows us to perform comparisons of lo-
cal potentials with other DFAs. Second, contrary to the GKS
scheme, the virtual orbitals are approximations of neutral ex-
cited states and are thus “ready” for time-dependent density-
functional theory (TDDFT) calculations.

The approach is similar to the self-consistent OEP double-
hybrid method based on a linear decomposition of the
electron-electron interaction, wee(r12) = λwee(r12) + (1 −
λ)wee(r12), named 1DH-OEP, that was developed in Ref.
7. However, there at least two important advantages of the
present RS-OEP2 method over the 1DH-OEP method. First,
in the RS-OEP2 method, the whole long-range part of the
exchange-correlation potential is treated by OEP, which leads
to an exchange-correlation potential correctly decaying as
−1/r asymptotically. In comparison, the OEP-1DH method
gives an exchange-correlation potential decaying as −λ/r and
thus underestimates the long-range tail. Second, the RS-
OEP2 method will have a fast convergence with the size of
the one-electron basis set since the entire short-range correla-
tion part is treated by DFT [44]. By contrast, in the OEP-1DH
method, a fraction of the short-range correlation is treated in
the second-order perturbative term, which slows down the ba-
sis convergence.

The papers is organized as follows. In Sec. II, we briefly
review the standard RSH+MP2 method and present its self-
consistent extension based on the OEP scheme. After giving
computational details in Sec.III, we then discuss in Sec. IV
the results obtained for a few atoms (He, Be, Ne, Ar) and
molecules (CO and H2O) on total energies, ionization poten-
tials (IPs), electronic affinities (EAs), exchange and correla-
tion potentials, and correlated densities. Sec. V contains our
conclusions. Throughout the paper, we use the convention
that i and j indices label occupied spin orbitals, a and b label
virtual ones, and p and q are used for both occupied and vir-
tual spin orbitals. In all equations, Hartree atomic units are
assumed.

II. THEORY

A. The standard RSH+MP2 method

In the standard RSH+MP2 method the total energy expres-
sion is defined as [20]

E =
∑

i

∫

ϕ∗i (x)
(

−
1
2
∇

2 + vne(x)
)

ϕi(x) dx + EH + ERSH+MP2
xc ,

(2)

where {ϕi(x)} are the occupied spin orbitals written with
space-spin coordinates x = (r, σ), vne(r) is the nuclei-electron
potential, and EH = (1/2)

!
ρ(x1)ρ(x2)wee(r12)dx1dx2 is

the Hartree energy written with the spin densities ρ(x) =
∑

i |ϕi(x)|2. The exchange-correlation energy ERSH+MP2
xc is de-

fined as

ERSH+MP2
xc = Esr,DFA

xc + Elr,HF
x + Elr,MP2

c , (3)

where Esr,DFA
xc is a complement short-range exchange-

correlation semilocal DFA, and the last two terms correspond
to the long-range HF (or exact) exchange energy

Elr,HF
x = −

1
2

∑

i, j

〈i j| ji〉lr, (4)

and to the long-range MP2 correlation energy

Elr,MP2
c = −

1
4

∑

i, j

∑

a,b

|〈i j||ab〉lr|2

εa + εb − εi − ε j

, (5)

where

〈pq|rs〉lr =

"
dx1dx2ϕ

∗
p(x1)ϕ∗q(x2)wlr

ee(r12)ϕr(x1)ϕs(x2) (6)

are the long-range two-electron integrals associated with the
long-range interaction wlr

ee(r12) and εp are the orbital eigenval-
ues.

The orbitals are calculated using the GKS scheme [28]
where we disregard the long-range MP2 correlation contribu-
tion, resulting in the so-called RSH equations

(

−
1
2
∇

2 + vne(r) + vH(r) + vsr,DFA
xc (x)

)

ϕp(x)

+

∫

vlr,HF
x (x, x′)ϕp(x′)dx′ = εpϕp(x) , (7)

where vH(r) =
∫

ρ(x′)wee(|r − r′|)dx′ is the Hartree
potential, v

sr,DFA
x (x) = δE

sr,DFA
x /δρ(x) is the short-range

exchange-correlation DFA potential, and vlr,HF
x (x, x′) =

−
∑

i ϕ
∗
i
(x′)ϕi(x)wlr

ee(|r− r′|) is the long-range nonlocal HF po-
tential. After solving Eq. (7), the calculated orbitals and or-
bital energies are used in Eq. (2) to obtain the RSH+MP2 en-
ergy.
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FIG. 1. Total energies calculated with the RSH+MP2 and RS-OEP2 methods with the srPBE exchange-correlation density functional as a
function of the range-separation parameter µ. The reference total energies are calculated with the CCSD(T) method in the same basis set
(horizontal black line). The vertical lines correspond to commonly used value µ = 0.5 bohr−1. For Be, the RS-OEP2 calculations are unstable
for µ > 1.0 bohr−1.

B. A self-consistent version of RSH+MP2: The RS-OEP2

method

Similarly to Ref. 7, we can include the disregarded long-
range MP2 correlation term in the KS-like equations by us-
ing the OEP scheme. In this manner, we define a fully self-
consistent range-separated second-order OEP method (RS-
OEP2) in which the orbitals are evaluated by the equations

(

−
1
2
∇

2 + vne(r) + vH(r) + vRS-OEP2
xc (x)

)

ϕp(x)

= εpϕp(x), (8)

where the local exchange-correlation potential vRS-OEP2
xc is ob-

tained by taking the functional derivative with respect to the
density of all terms in Eq. (3)

vRS-OEP2
xc (x) = vsr,DFA

xc (x) + vlr,EXX
x (x) + vlr,GL2

c (x) . (9)

The last two terms, namely v
lr,EXX
x (x) = δElr,HF

x /δρ(x) and
vlr,GL2

c (x) = δElr,MP2
c /δρ(x) are the long-range exact exchange

(EXX) and second-order Görling-Levy (GL2) potentials, re-
spectively. Note that GL2 is defined here without the single-
excitation term, which is usually two orders of magnitude
smaller than the double-excitation term [11, 14, 45]. Since
E

lr,HF
x and E

lr,MP2
c are only implicit functionals of the den-

sity through the orbitals and orbital energies, the calcula-
tion of v

lr,EXX
x (x) and v

lr,GL2
c (x) must be done with the OEP

method [14, 46, 47]. Thus, the long-range OEP exchange-
correlation potential v

lr,OEP
xc (x) = v

lr,EXX
x (x)+ v

lr,GL2
c (x) is given

by the solution of the integral equation
∫

vlr,OEP
xc (x′)χs(x′, x)dx′ = Λlr

xc(x) , (10)

where χs(x, x′) is the static KS linear-response function and

Λlr
xc(x) =

∑

p

[∫

dx′

















δElr
xc

δϕp(x′)

∑

q,p

ϕ∗q(x)ϕp(x)

εp − εq

ϕq(x′) + c.c.

















+
∂Elr

xc

∂εp

|ϕp(x)|2
]

, (11)

with Elr
xc = E

lr,HF
x + E

lr,MP2
c . This equation is solved at each

iteration of the self-consistent calculation of the orbitals in
Eq. (8). The obtained orbitals and orbital energies are then
use to evaluate the RS-OEP2 energy using Eq. (2).

III. COMPUTATIONAL DETAILS

We have performed RSH+MP2 calculations with a devel-
opment version of MOLPRO 2019 [48] and RS-OEP2 calcula-
tions with a development version of ACES II [49] on a series
of atoms and molecules (He, Be, Ne, Ar, CO, and H2O).

To calculate the long-range exchange-correlation OEP part
of the potential, we employ the finite basis-set procedure of
Refs. 46, 47, and 50. Hence, in this approach, the OEP po-
tential vlr,OEP

xc (r) = vlr,OEP
xc (rσ), for spin-unpolarized systems,

is expanded as

vlr,OEP
xc (r) = vlr

Slater(r) +
M
∑

l=1

clgl(r), (12)

where the first term is the long-range Slater potential, written
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FIG. 2. Total energies calculated with the RSH+MP2, RS-OEP2,
and RS-OEP2@OEPx (where vlr,GL2

c (x) was neglected when solving
Eq. (8)) methods with the srPBE exchange-correlation density func-
tional as a function of the range-separation parameter µ. The refer-
ence total energies are calculated with the CCSD(T) method in the
same basis set (horizontal black line). The vertical lines correspond
to commonly used value µ = 0.5 bohr−1.
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FIG. 3. Interaction energy curves of the Ne dimer calculated using
several approximations including RSH+MP2 and RS-OEP2 methods
in the uncontracted aug-cc-pVTZ basis set. The reference results are
calculated with the CCSD(T) method in the same basis set.

in terms of spatial orbitals {φi(r)},

vlr
Slater(r) = −

∑

i, j

φ∗
i
(r)φ j(r)

ρ(r)

∫

φi(r′)φ∗j(r
′)wlr

ee(|r − r′|)dr′,

(13)
imposing the correct −1/r asymptotic decay of the potential,
and the second term is a correction spanned by M auxiliary
Gaussian basis functions {gl(r)} with the expansion coeffi-
cients {cl} determined from the solution of the OEP equations.
In order to compute the long-range Slater potential we have
employ the resolution of the identity (RI) method proposed in

Ref. 51 combined with the modified interaction two-electron
integrals. A similar approach was also used in Ref. 52 to
calculate the HF exchange energy density and the Slater po-
tential.

For the molecules, we considered the following equilib-
rium geometries: for CO d(C–O) = 1.128Å, and for H2O
d(H–O) = 0.959Å and a(H–O–H) = 103.9◦. In the OEP
calculations, to ensure that the basis sets chosen were flex-
ible enough for representation of orbitals and exchange-
correlation potentials, all basis sets were constructed by full
uncontraction of basis sets originally developed for correlated
calculations, as in Refs. 53, 54. In particular, we employed
an even tempered 20s10p2d basis for He, and an uncontracted
ROOS–ATZP basis [55] for Be and Ne. For Ar, we used a
modified basis set [13] which combines s and p basis func-
tions from the uncontracted ROOS–ATZP [55] with d and
f functions coming from the uncontracted aug–cc–pwCVQZ
basis set [56]. In the case of both molecular systems, the un-
contracted cc–pVTZ basis set of Dunning [57] was employed.
Core excitations were included in the second-order correlation
term. For the short-range DFA we have employed the short-
range Perdew-Burke-Ernzerhof (srPBE) exchange-correlation
density functional from Ref. 27.

For all OEP calculations standard convergence criteria were
enforced, corresponding to maximum deviations in density-
matrix elements of 10−8. Additionally, the TSVD cutoff was
set to 10−6 and results were carefully checked to ensure con-
vergence with respect to this parameter. As in Ref. 14, in
order to check the stability of our solutions we have com-
puted the gradient of the total electronic energy with respect
to variations of the OEP expansion coefficients in Eq. (12).
For each value of µ the computed gradient had a norm less
than 10−12. Furthermore, the energies computed at slightly
perturbed coefficients were higher than the one obtained in
our converged calculations, which is consistent with an en-
ergy minimum. In the case of Be atom, which is strongly
correlated, the OEP-GL2 calculation is unstable, as shown in
Sec. IV. For more details regarding the OEP calculations, we
refer to Refs. 7, 14, 15, and 58. . To assess the quality of
the results obtained with the RSH+MP2 and RS-OEP2 meth-
ods, we have considered reference data from coupled-cluster
singles doubles and perturbative triples [CCSD(T)] [59–62]
calculated in the same basis sets.

IV. RESULTS AND DISCUSSION

A. Total energies

In Fig. 1 we report the total energies of each system as
a function of the range-separation parameter µ calculated us-
ing the RSH+MP2 and RS-OEP2 methods. At µ = 0 both
methods reduce to standard KS DFT with the PBE exchange-
correlation functional. In this limit, the total energies are
systematically too high (up to about 100 mHa) in compar-
ison with the CCSD(T) reference values. When µ → ∞,
RSH+MP2 reduces to standard MP2, and RS-OEP2 reduces
to a full-range OEP-GL2 calculation. For all systems, stan-
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FIG. 4. Opposite of the IPs calculated by the RSH, RSH+MP2, and RS-OEP2 methods using the srPBE exchange-correlation functional as a
function of range-separation parameter µ. The reference values were calculated as CCSD(T) total energy differences with the same basis sets.
The vertical lines correspond to commonly used value µ = 0.5 bohr−1. For Be, the RS-OEP2 calculations are unstable for µ > 1 bohr−1.

TABLE I. IPs (in eV) calculated with the RSH+MP2 and RS-OEP2 methods using the srPBE exchange-correlation density functional for
different range-separation parameters µ (in bohr−1). The reference CCSD(T) values were calculated as total energy differences with the same
basis sets. The last line gives the mean absolute error (MAE) with respect to the CCSD(T) values.

CCSD(T) RSH+MP2 RS-OEP2
µ = 0 µ = 0.5 µ = 1 µ→∞ µ = 0 µ = 0.5 µ = 1 µ→ ∞

He 24.56 15.79 22.11 24.27 24.46 15.79 22.10 24.21 24.23
Be 9.31 5.63 8.77 8.72 8.68 5.63 9.07 9.50 -
Ne 21.47 13.37 19.66 21.37 20.07 13.37 19.59 20.87 17.66
Ar 15.63 10.31 15.22 15.70 15.14 10.31 15.16 15.55 14.94
CO 13.94 8.98 13.86 13.95 13.17 8.98 13.60 12.86 10.61
H2O 12.52 6.85 12.14 12.46 11.07 6.85 11.99 11.67 9.06

MAE 6.09 0.94 0.19 0.81 6.09 0.99 0.52 2.32

dard MP2 gives total energies which are too high by a modest
amount (at most about 20 mHa). By contrast, OEP-GL2 gives
much too negative total energies (by more than 200 mHa for
CO) which is a consequence of the large overestimation of the
correlation effects by this approximation [14, 54, 63]. This
feature has two origins: i) the much smaller HOMO-LUMO
gap obtained from the KS calculations where both the oc-
cupied and unoccupied orbital energies are defined with the
same local effective potential [64, 65]; ii) the optimization
of orbitals conducted in the presence of the correlation po-
tential v

lr,GL2
c (x) which leads to a further amplification of the

overestimation due to its explicit dependence on the KS or-
bital energies. This can be seen in Fig. 2 where we com-
pare, for two representative systems (He and CO), the results
obtained with RSH+MP2, RS-OEP2, and a simplified RS-
OEP2 variant (denoted as RS-OEP2@OEPx) in which only
the long-range EXX potential is calculated using the OEP pro-
cedure and the long-range MP2 correlation energy is calcu-
lated a posteriori like in the RSH+MP2 case. We note that

RS-OEP2@OEPx already largely overestimates the reference
CCSD(T) results. For He, RS-OEP2 and RS-OEP2@OEPx
give almost the same total energies, much lower than the
RSH+MP2 total energy for large µ due to the smaller HOMO-
LUMO gap value. For CO, this effect is further increased
by the orbital relaxation in the self-consistent procedure in-
cluding the correlation potential v

lr,GL2
c (x). We note that, for

intermediate values of µ, the RSH+MP2 and RS-OEP2 to-
tal energies show a non-monotonic variation with respect to
µ. At the scale of the plots, the two methods give essentially
identical total energies for µ . 0.2 − 1 bohr−1. The differ-
ence between the two methods becomes important for µ & 1
bohr−1 where the long-range exchange-correlation contribu-
tion starts to dominate over the srPBE exchange-correlation
functional. This fact actually explains the lack of convergence
of RS-OEP2 for µ > 1 bohr−1 in the case of the Be atom.
The dominating role of the GL2 part of the potential causes
the HOMO-LUMO gap to close and leads to an instability for
µ > 1 bohr−1. This aspect was investigated in Refs. 64 and 65.



6

For the commonly used value of the range-separation param-
eter, µ = 0.5 bohr−1, [66, 67] the RSH+MP2 and RS-OEP2
methods thus perform overall very similarly for total energies.

In Fig. 3 we report the interaction energy curves for the Ne
dimer calculated using the RSH+MP2 and RS-OEP2 meth-
ods. For comparison we also report the curves obtained with
several approximations from several rungs of Perdew’s ladder,
namely GGA (PBE, µ = 0), meta-GGA (TPSS [68]), hybrid
(B3LYP [4, 69, 70]) and double hybrid (B2PLYP [5]). Addi-
tionally, as a reference, we have added the CCSD(T) curve.
As one can see, RSH+MP2 slightly underbinds and RS-OEP2
overbinds the Ne dimer, which is consistent with a larger over-
estimation of the total energy by RS-OEP2 in the dimer com-
pared to the atom. Nevertheless both methods improve over
their original counterparts, namely MP2 and OEP-GL2. We
can also note the rather large improvement over the other types
of approximations.

B. HOMO orbital energies and ionization potentials

In Fig. 4, we report the ionization potentials (IP) calcu-
lated with the RSH+MP2 and RS-OEP2 methods as a func-
tion of µ. We also report the IPs obtained by the RSH
method which simply corresponds to dropping the MP2 corre-
lation term in the RSH+MP2 method and constitutes the first
step of a RSH+MP2 calculation. For the non-self-consistent
RSH+MP2 method, the IP is calculated as a finite-difference
derivative of the total energy with respect to the electron num-
ber, as described in Refs. 7, 71, and 72. For the self-consistent
RSH and RS-OEP2 methods, the IP is simply obtained as the
opposite of the HOMO orbital energy [73–75]. As in Ref.
7, in all RS-OEP2 calculations, the HOMO condition on the
OEP exchange [47, 50, 76] and correlation [15, 77] poten-
tials has been imposed. The reference values (black horizontal
line) were calculated using the CCSD(T) method as the differ-
ence between the total energies of the N- and (N − 1)-electron
systems using the same basis sets.

For µ = 0, all methods reduce to KS PBE which gives
a HOMO energy systematically higher than the reference
CCSD(T) −IP value by about 4 to 9 eV (depending on the
considered system). This must be due to self-interaction er-
ror introduced by this semilocal DFA. For µ → ∞, the RSH
method reduces to HF with a HOMO energy which provides
a much better estimation of −IP, differing from the reference
value by about 1−2 eV. In the same limit, RSH+MP2 reduces
to standard MP2 which tends to give IPs even closer to the ref-
erence CCSD(T) values. In the case of the RS-OEP2 method,
when µ → ∞, we obtain the OEP-GL2 method which tends
to give substantially too high HOMO energies.

For intermediate values of µ, we first note the non-
monotonic behavior of all the curves. Furthermore, in the
range of µ between about 0.4 and 2.0 bohr−1 (depending on
the system), almost all the curves have minima which for
RSH+MP2 and RS-OEP2 correspond to IPs relatively close
to the reference CCSD(T) values. The only exception is the
Be atom for which the RS-OEP2 HOMO and LUMO energies
(see Sec. IV C) rapid decreases with µ just before the calcula-

tion becomes unstable for µ > 1 bohr−1.
In order to investigate more closely the performance of the

RSH+MP2 and RS-OEP2 methods in the vicinity of the min-
imum, we report in Table I the IPs calculated for several val-
ues of the range-separation parameter µ. For µ = 0, where
the two methods reduce to KS PBE, the mean absolute error
(MAE) is as large as 6.09 eV. For the commonly used value
µ = 0.5 bohr−1, RSH+MP2 and RS-OEP2 give similar MAEs
of 0.94 and 0.99 eV, respectively. For µ = 1 bohr−1, we ob-
serve a further decrease of the MAEs, with 0.19 and 0.52 eV
for RSH+MP2 and RS-OEP2, respectively. A similar behav-
ior was also observed in Ref. 29 for the self-consistent OEP
version of a range-separated RPA method. The better perfor-
mance of RSH+MP2 over RS-OEP2 for this larger value of µ
is consistent with the µ→ ∞ limit where standard MP2 gives
more accurate IPs than OEP-GL2 (MAEs of 0.81 and 2.32 eV,
respectively).

We thus conclude that self-consistency does not bring any
improvement for the calculation of IPs in the RSH+MP2 ap-
proach. More accurate IPs might be obtained by using a
spin-component-scaled second-order correlation energy ex-
pression [15] both in RS-OEP2 and in RSH+MP2 [78].

C. LUMO orbital energies and electronic affinities

We turn now our attention to the EAs. For the RSH+MP2
method, the EA is calculated similarly as the IP, i.e. as a finite-
difference derivative of the total energy with respect to the
electron number, as described in Refs. 7, 71, and 72. For the
RS-OEP2 method, the EA is computed as a sum of LUMO
energy and the derivative discontinuity coming from the long-
range exchange and correlation OEP potentials, similarly as
in Ref. 7. These EAs are reported in Fig. 5 as a function of
µ. The reference CCSD(T) values (indicated by the top black
horizontal lines) are calculated as the difference between the
total energies of the (N + 1)- and N-electron systems with the
same basis sets. Note that the fact that we obtain positive
−EA reflects the incompleteness of the basis set which arti-
ficially confines the additional electron. We also report the
LUMO energies for the RSH and RS-OEP2 methods, as well
as reference KS LUMO energies obtained by inversion of the
KS equations using CCSD(T) densities as input (bottom black
horizontal lines).

Again, at µ = 0, all methods reduces to KS PBE,
which gives LUMO energies largely too low compared to the
CCSD(T) reference. For µ → ∞, RSH reduces to standard
HF, with a LUMO orbital energy which is a better estimate of
−EA (the error ranges from about 0.01 to 1.2 eV). In the same
limit, RSH+MP2 reduces to standard MP2, which gives EAs
essentially identical to the CCSD(T) values, and RS-OEP2 re-
duces to OEP-GL2 which gives −EA values with an accuracy
quite dependent on the system considered: i) in good agree-
ment with CCSD(T) for Ne and Ar; ii) substantially too high
for He and CO with errors of about 0.4 and 1.9 eV, respec-
tively; iii) slightly to low for H2O with an error of about 0.3
eV; and iv) incalculable for Be due to the instability. The
LUMO energies given by OEP-GL2 are reasonable approx-
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FIG. 5. Opposite of the EAs calculated by the RSH, RSH+MP2, and RS-OEP2 methods, together with LUMO orbital energies for the RS-
OEP2 method, using the srPBE exchange-correlation functional as a function of range-separation parameter µ. The reference values were
calculated as CCSD(T) total energy differences with the same basis sets. The vertical lines correspond to commonly used value µ = 0.5
bohr−1. For Be, the RS-OEP2 calculations are unstable for µ > 1 bohr−1.

TABLE II. Opposite of EAs (in eV) calculated with the RSH+MP2 and RS-OEP2 methods using the srPBE exchange-correlation density
functional for different range-separation parameters µ (in bohr−1). The reference CCSD(T) values were calculated as total energy differences
with the same basis sets. The last line gives the mean absolute error (MAE) with respect to the CCSD(T) values.

CCSD(T) RSH+MP2 RS-OEP2
µ = 0 µ = 0.5 µ = 1 µ→∞ µ = 0 µ = 0.5 µ = 1 µ→ ∞

He 4.22 2.52 4.23 4.25 4.24 2.52 4.45 4.63 4.60
Be 0.35 -2.00 0.35 0.38 0.40 -2.00 0.84 1.23 -
Ne 3.44 1.38 3.44 3.45 3.46 1.38 3.83 4.01 3.58
Ar 1.72 0.18 1.74 1.75 1.71 0.18 1.95 1.88 1.70
CO 2.72 -1.84 2.02 2.31 2.57 -1.84 2.03 2.56 4.59
H2O 3.04 0.13 2.93 3.02 2.98 0.13 2.99 2.97 2.73

MAE 2.52 0.14 0.09 0.05 2.52 0.35 0.38 0.55

imations to the accurate KS LUMO energies (except for the
unstable case of Be). These LUMO energies are always neg-
ative and much lower than the opposite of EAs, and do not
correspond to the addition of an electron but to a neutral exci-
tation.

Around the common value of µ = 0.5 bohr−1, RSH,
RSH+MP2, and RS-OEP2 all give EAs reasonably close to
the reference CCSD(T) values, and moreover the RS-OEP2
LUMO energies are also quite close to the accurate KS ref-
erence values. In order to investigate this more closely, we
report the values of −EA for different values of µ in Table II.
The largest errors are obtained with KS PBE, corresponding
to the µ = 0 limit, with a MAE of 2.52 eV. Owing to the ac-
curacy of standard MP2, RSH+MP2 gives decreasing errors
with increasing µ, with MAEs of 0.14, 0.09, and 0.05 eV for
µ = 0.5, µ = 1 bohr−1, and µ → ∞, respectively. By con-
trast, RS-OEP2 gives minimal MAEs of 0.35 and 0.38 eV for
µ = 0.5 and µ = 1 bohr−1, respectively, and a larger MAE of

0.55 eV in the limit µ→ ∞.
As for the IPs, we thus conclude that self-consistency does

not bring any improvement for the calculation of EAs in the
RSH+MP2 approach. However, contrary to the RSH+MP2
method, the RS-OEP2 method gives a LUMO corresponding
to a neutral excitation and its energy is a good approximation
to the exact KS LUMO energy. This may be advantageous for
calculating excitation energies.

D. Exchange-correlation and correlation potentials

One of the advantages of the RS-OEP2 method is that we
have local exchange and correlation potentials, including both
the long-range and short-range contributions, which is useful
for analysis of the approximations and comparison to the ex-
act KS scheme. We report in Fig. 6 the RS-OEP2 exchange-
correlation potentials for the commonly used value of the
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FIG. 6. Exchange-correlation potentials calculated with the RS-OEP2 method using the srPBE exchange-correlation density functional for
the range-separation parameter µ = 0.5 bohr−1, and for the limiting values µ = 0 (standard KS PBE) and µ → ∞ (OEP-GL2). The reference
potentials were calculated by KS inversion of CCSD(T) densities. For Be, the OEP-GL2 calculation is unstable. For CO the correlation
potentials are calculated along the molecular axis, and for H2O along the HO bond.
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FIG. 7. Correlation potentials calculated with the RS-OEP2 method using the srPBE exchange-correlation density functional for the range-
separation parameter µ = 0.5 bohr−1, and for the limiting values µ = 0 (standard KS PBE) and µ → ∞ (OEP-GL2). The reference potentials
were calculated by KS inversion of CCSD(T) densities. For Be, the OEP-GL2 calculation is unstable.

range-separation parameter µ = 0.5 bohr−1, as well as for the
limiting values µ = 0 (standard KS PBE) and µ → ∞ (OEP-
GL2). For comparison, we also report accurate exchange-
correlation potentials obtained by KS inversion of CCSD(T)
densities.

First of all, we note that the PBE and RS-OEP2 exchange-
correlation potentials diverge to minus infinity at the nuclei

positions (see, e.g., the He atom). This is due to the inclu-
sion of the density Laplacian term [58] in the semilocal DFA
part of the potential. The PBE exchange-correlation potentials
only partially reproduce the shell structure of the accurate ref-
erence potentials. They are not negative enough in the valence
region, and decay too fast at large distances which is the cause
of the large underestimation of IPs by KS PBE. The OEP-GL2
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FIG. 8. Correlation potentials calculated with the RS-OEP2 method
using the srPBE exchange-correlation density functional for the
range-separation parameters µ = 0.5 bohr−1 and µ = 1 bohr−1, and
for the limiting values µ = 0 (standard KS PBE) and µ → ∞ (OEP-
GL2). The reference potentials were calculated by KS inversion of
CCSD(T) densities.

method gives exchange-correlation potentials which are quite
accurate for He and Ar, and to a lesser extent for Ne, but not
negative enough for CO and too negative for H2O. For Be, the
OEP-GL2 calculation is unstable. The RS-OEP2 exchange-
correlation potentials for µ = 0.5 bohr−1 tend to be slightly
not negative enough at small valence distances but have the
correct −1/r asymptotic behavior at large distances, as most
clearly seen on atoms in Fig. 6. This feature is important for
obtaining accurate IPs as well as accurate excitation energies
within TDDFT [79]. By contrast, the OEP-1DH method of
Ref. 7 gives exchange-correlation potentials that tend to un-
derestimate the long-range tail (see Fig. 5 of Ref. 7).

The correlation potentials are shown in Fig. 7. The PBE
correlation potentials are out of phase with respect to the
CCSD(T) reference potentials, i.e. minima of the PBE corre-
lation potentials are often observed where the CCSD(T) corre-
lation potentials have maxima. This qualitatively incorrect be-
havior of correlation potentials has been already observed for
other GGAs [58, 63] and meta-GGAs [80] functionals. The
OEP-GL2 correlation potentials tend to be in phase with the
CCSD(T) reference potentials, but they are largely overesti-
mated, as previously observed in Refs. 14 and 63. In the core
and in the valence regions, the RS-OEP2 correlation potentials
are similar to the PBE ones. Farther from the nuclei, the RS-
OEP2 correlation potentials tend to go more rapidly to zero
than both the PBE and OEP-GL2 correlation potentials, and
tend to correctly remove the unphysical long-range contribu-
tions of these potentials. We note in passing that, in the case
of the Ar atom, the RS-OEP2 correlation potential is quite
similar to the one obtained from recently developed adiabatic

connection semi-local correlation (ACSC) functional (see Fig.
4 in Ref. 81).

In Fig. 8 we show additionally, for Ne and CO, the RS-
OEP2 correlation potentials for a larger value of the range-
separation parameter, i.e. µ = 1 bohr−1. In this case, the
RS-OEP2 correlation potentials tend to be in better agreement
with the reference potentials in the valence regions, which
must come from the increased role of the long-range GL2 cor-
relation term.

E. Correlated densities

In Fig. 9 we report correlated densities calculated by
the RS-OEP2 method for µ = 0.5 bohr−1 and by the KS
PBE, MP2, and OEP-GL2 methods. The reference corre-
lated densities were calculated from the CCSD(T) relaxed
density matrix. It have been shown that the analysis of
the correlated densities can provide useful information in
the development and testing of density functionals in KS
DFT [7, 14, 54, 58, 63, 82–84]. This quantity is defined as
∆ρc(r) = ρ(r) − ρx(r) where ρ(r) is the total density calcu-
lated with the full exchange-correlation term and ρx(r) is the
density calculated only at the exchange level.

The KS PBE correlated densities are quite far the reference
CCSD(T) correlated densities, being often out of phase with
them, as was the case for the correlation potentials. This be-
havior was also reported for other density functionals in Refs.
54 and 63. The OEP-GL2 correlated densities have a qualita-
tive behavior similar to the reference correlated densities but
are largely overestimated. The RS-OEP2 correlated densities
are overall quite similar to the KS PBE correlated densities.

V. CONCLUSION

We have extended the range-separated hybrid RSH+MP2
method to a fully self-consistent version using the OEP tech-
nique in which the orbitals are obtained from a local poten-
tial including the long-range HF exchange and MP2 corre-
lation contributions. We have tested this approach, named
RS-OEP2, using a short-range version of PBE exchange-
correlation density functional, on a set of small closed-shell
atoms and molecules. For the commonly used value of the
range-separation parameter µ = 0.5 bohr−1, while RS-OEP2
is a big improvement over KS PBE, it gives very similar
total energies, IPs, and EAs than RSH+MP2. Thus, self-
consistency itself does not seem to bring any improvement,
at least for these systems and properties. One distinct fea-
ture of RS-OEP2 over RSH+MP2 is that it gives a LUMO
energy which physically corresponds to a neutral excitation
energy (and not to a EA) and which is a reasonably good
approximation to the exact KS LUMO energy. Moreover,
contrary to RSH+MP2, the RS-OEP2 method naturally gives
local exchange-correlation potentials and densities. The RS-
OEP2 exchange-correlation potentials are reasonable approx-
imations to the exact KS exchange-correlation potentials and
have the correct asymptotic behavior. However, a finer look at
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FIG. 9. Correlated densities calculated with the RS-OEP2 method using the srPBE exchange-correlation density functional for the range-
separation parameter µ = 0.5 bohr−1, and for the limiting values µ = 0 (standard KS PBE) and µ → ∞ (OEP-GL2). For comparison,
correlated densities calculated with standard MP2 are also shown. The reference correlated densities were calculated with CCSD(T). For Be,
the OEP-GL2 calculation is unstable. For CO the correlated densities are calculated along the molecular axis, and for H2O along the HO bond.

correlation potentials and correlated densities shows that RS-
OEP2 barely improves over KS PBE for these quantities.

In future works, the RS-OEP2 method should be tested
on more systems, including open-shell species where the
benefices of self-consistency should be more important [43],
and could be extended to the calculations of excitation ener-
gies in TDDFT. More importantly, the limited accuracy of the
obtained correlation potentials and correlated densities may
be overcome by introducing a fraction of HF exchange and
MP2 correlation in the short-range part of electron-electron

decomposition [85, 86]. Another possible route of improve-
ment is the development of a new type of short-range func-
tional and potential which could be combined with state-of-art
ab initio DFT (OEP2) functionals[11–15, 63].
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[32] I. C. Gerber and J. G. Ángyán, Chem. Phys. Lett. 416, 370

(2005).
[33] E. Goll, H. Stoll, C. Thierfelder, and P. Schwerdtfeger, Phys.

Rev. A 76, 032507 (2007).
[34] E. Goll, T. Leininger, F. R. Manby, A. Mitrushchenkov, H.-

J. Werner, and H. Stoll, Phys. Chem. Chem. Phys. 10, 3353
(2008).

[35] E. Goll, H.-J. Werner, and H. Stoll, Chem. Phys. 346, 257
(2008).

[36] W. Zhu, J. Toulouse, A. Savin, and J. G. Ángyán,
The Journal of Chemical Physics 132, 244108 (2010),
https://doi.org/10.1063/1.3431616.

[37] J. Toulouse, W. Zhu, J. G. Ángyán, and A. Savin,
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