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Abstract—In its raw form, micro-Doppler radar data takes
the form of a complex time-series, which can be seen as multiple
realizations of a Gaussian process. As such, a complex covariance
matrix constitutes a viable and synthetic representation of such
data. In this paper, we introduce a neural network on Hermitian
Positive Definite (HPD) matrices, that is complex-valued Sym-
metric Positive Definite (SPD) matrices, or complex covariance
matrices. We validate this new architecture on synthetic data,
comparing against previous similar methods.

Index Terms—covariance matrices, complex numbers, micro-
Doppler, drone classification, neural networks

I. INTRODUCTION

The usage of deep learning methods has steadily been
emerging in the radar community, specifically for micro-
Doppler classification [9]; furthermore, the diversity of possi-
ble representations of micro-Doppler signals induce a variety
of methods, such as recurrent neural networks (RNNs) in [14],
or convolutional neural networks (CNNs) in [17] and [8]. In
parallel, exploiting second-order feature moments, or covari-
ance, is gaining momentum in certain subfields of machine
learning, such as in EEG/ECG [4], facial recognition [1]
or texture classification [11]. The natural representation of
micro-Doppler signals as covariance (or self-correlation) led
to several classification methods based on real-valued covari-
ances matrices: in [7], authors use Riemannian barycenters on
covariance reflexion coefficients; in [3], a minimum-distance-
to-median scheme on SPD matrices was developed. Of all
previously cited methods operating on covariance, the most
promising in terms of potential development may be the ones
based on neural-like processing: specifically, a first version
of networks on SPD matrices, SPDNet, was first introduced
in 2017 in [12], upon which further works expanded on. We
also follow this blooming trend, by extending the theoretical
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framework of the SPDNet to complex values, thus introducing
the HPDNet, or neural network operating on HPD matrices.

In the following section, we review the two theoretical
learning frameworks we wish to fuse together. Then we
describe our proposed HPDNet architecture and detail its
specific mechanics. Finally, we validate the usage of a HPDNet
over a SPDNet by studying micro-Doppler drone classification
on synthetic radar data.

II. MANIFOLD VALUES IN NEURAL NETWORKS

Both machine learning frameworks we wish to fuse involve
manifold values; the first type involves SPD matrices, the
second complex values.

A. SPD matrices in neural networks

The fundamental interest of the SPD neural network is
to take into account the information geometric structure of
the curved Riemannian manifold of SPD matrices, noted S .
Statistical learning on curved manifolds is part of the field of
information geometry [2]. Here, the learning model involved
is a neural network, the layers of which we describe here.
As in a standard Euclidean network, the SPDNet builds a
hierarchy of activations on linear transformations, ended by
a loss function to minimize by gradient descent [12]. This
linear transformation, a fully-connected layer in perceptrons,
a convolution in convolutional networks, becomes a bilinear
mappping in the SPDNet, referred to as the BiMap layer,
which we illustrate in Fig. 1. The activation function, usually
set to the rectified linear unit (ReLU) in Euclidean networks,
becomes the ReFEig (rectified eigenvalues) in the SPDNet:



Fig. 1. Illustration of the BiMap layer. These are successively set in order to
reduce the feature dimension, and more importantly separate the data. Each
BiMap is followed by the ReEig activation.
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Fig. 2. [Illustration of the LogEig. The final feature SPD manifold is
logarithmically mapped to a Euclidean space to allow for classification.

PO =wO" XD O with wh € O(ny_y,my)
X0 = U0 max(2D, e1,)UD" with PO = gOsOy®”
(1)

Thus, the building block of the SPDNet is X =1 — p() =
BiMap®(XE1) s XU = ReEig(P®). In the BiMap
layer, O(n;—1,n;) is the space of semi-orthogonal rectangular
matrices, also called Stiefel manifold, meaning the bilinear
mapping is none other than an orthogonal basis change. In
order for the parameter W to be non-singular, we must have
n;—1 < ny. In the ReEig equation, ¢ is a fixed parameter, which
thresholds close to zero eigenvlues. Note the activation acts
directly on the eigenvalues, thus necessitating a prior eigen-
decomposition; such a function is sometimes referred to as
a structured matrix function [13]. A final layer, of central
importance to the SPDNet, is the logarithmic mapping, or Lo-
gEig, which maps the final SPD representation to a Euclidean
space to perform the actual classification, which we illustrate
in Fig. 2; the LogEig is simply the matrix logarithm. The
training of an SPDNet entails two main technical difficulties:
the optimization constrained to the Stiefel manifold for the
update of the BiMap orthogonal parameters on the one hand,
and on the other hand the propagation of gradients through the
non-linear structured matrix functions found in the ReEig and
LogFig layers. Interested readers may refer to [13] and [10]
for theoretical background on these matters.

B. Complex numbers in neural networks

Here we explain how to integrate complex values in standard
learning frameworks. Real-valued neural networks handle Eu-
clidean data, which can be represented as vectors. A practical
approach to handling Hermitian values, i.e. complex values,
would simply to concatenate the real and imaginary parts

in two independent channels. However, this method fails to
take into account the structure of complex numbers. However,
given some constraints, it is possible to formally state the
equivalence between C and R?, which is directly translat-
able to C" and R?". This equivalence was first discovered
by Wirtinger in 1927 [18], and adapted in [6] and [5] for
electrical engineering purposes; it is sometimes referred to as
Wirtinger calculus, or CR calculus, due to the intimacy shared
between real and 2D real vectors exposed below. Traditional
complex calculus is presented in the context of holomorphic
functions; the aforementioned developments aimed to broaden
this limited set of functions, nowadays allowing for instance
differentiation of complex neural blocks, which are for the
most part non-holomorphic, an operation fundamental to statis-
tical learning. The key idea of these developments is to equate
the Taylor expansion of a function f : z € C— y € R with
a two-dimensional, real-valued counterpart, which by abuse of
notation is also noted f : (u,v)T € R? — y € R:

f(Z) zf(ZO)-‘erfZO(Z—ZO) (2)
f(u,v) ~ f(u07UO) + [vuf vvf] (10,v0) |:u0:| (3)

Vo

We now introduce the 2 x 2 real-to-complex matrix 7":
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As such, we can now write:

Vuf 1" fw] _ (L [Vur]" u
|:vv :|(u0,'u0) |:’U§:| N (2 |:va:| (up,v0) TH) (T |:U3:| >
= (fox0> (x - x0>
)

We have isolated a term, Vx f, behaving like a gradient,
artificially introduced in the CR calculations:

o vmfzo 4 _ {é(vufjvvf)(uo,vg) :|T
VEflo - |:vz*f930:| - %(V“f+jv1)f)(uo,v0) (6)

It is now possible to perform optimization on a non-
holomorphic complex-valued function f by zeroing Vi f. It is
now crucial to note that doing so is equivalent to zeroing either
Vo f or Vo« f, which is exactly how [18] showed that such
a function f can be seen as operating on two independent
variables « and x*. We see below how the choice of V. f
over V.- f in a neural architecture will lead to a very fluid
computational scheme.



III. HPDNET: A HPD-VALUED NEURAL NETWORK

In this section, we present how we adapt the SPDNet layers
to complex values, making use of the formal two-channel
representation previously exposed. We note ™ the manifold
of HPD matrices.

A. Formal HPD representation in a real-valued computational
framework

Because calculus of non-holomorphic functions is to this
day not widespread in computational frameworks (for instance
as of end 2018, complex tensors are not integrated in the deep
learning framework PyTorch [15]), it remains interesting to
provide a custom integration, especially given the simplicity of
the resulting implementation. From the results derived above,
and taking inspiration from a seminal paper on deep complex
networks [16], we can thus represent an HPD matrix H =
Hgy + jHg as a two-channel SPD matrix (Hg, Hg). In any
neural architecture, the gradient of the loss function [ involving
(Hg, Hg) is computed as V g, 1+ jV g I, which corresponds
exactly to Vgl. For this reason, it is natural to choose Vgl
over V[, as foreseen above. The backpropagation through
the network can therefore be done with no additional pain,
using any out-of-the-box backpropagation algorithm in a real-
valued computational framework. However, the inference still
needs to respect the internal structure of complex numbers.
Below we show how to adapt the BiMap layer to adopt
complex numbers.

B. Complex bilinear mapping

Here we show how to generalise the BiMap layer described
previously to complex values, using the formalism exposed
above. First we write the complex expresison of the bilinear
mapping, then structure it to fit the CR framework:

P=wxwHt
= (W + jWs) (X + jXo) (Wi + jWE)

= (WmX%W;g — W X Wi
— WX Wi — W XgWd )
+j (meﬁwg — WeXWi

+ WX Wil + Wo X WH )

. WgQX%W% W(\X(\W% W%XOWC»
W%X%Wc\

(7

Note that the parameter matrix is now unitary (that is, com-

plex orthogonal), and the transpose becomes a transconjugate.
C. Complex structured non-linearities

We study here the case of the non-linear structured complex
functions involved in the HPDNet, the complex ReEig and
complex LogEig. As stated previously, both take the form a

non-linear function f acting on the an HPD matrix P’s eigen-
values. We assume an eigen-decomposition of P = ULUH .
Note that although U is unitary, > is real because P is
Hermitian. This is a very strong result, which greatly simplifies
the generalisation of aforementioned functions to the complex
setting: in fact, there is nothing in f to actually generalise,
since the input eigenvalues are already real. However, one must
take care to correctly handle the eigen-decomposition itself,
separating the real and imaginary parts in order to respect the
CR formalism:

X = f(P)
=Uf(2)U"
= (U + jUs) f(2) (U — jUs)"

_ (Umf(Z)Us?{ U f()UT )

+j<Uwf(E)U§ 4 Usf(Z)U§>

= [Unf(E)UF - Usf(2) §U%f(E)U§+U%f(Z)Ui]
®)

Using the equations above, we are now able to perform
inference through the complex BiMap, ReEig and LogEig
layers. Posterior to the LogEig, a fully-connected layer (or
several) handles the hyperplanar separation for classification.
At any point in the network, it is possible to go back to R
using the C2R transfer function below:

VH € HY, J(Hy+ Ho) =S € 5} ©)

This is necessary because, again, we cannot yet perform the
classification in the complex manifold. Furthermore, it is not
obvious that the best performing model would maximize the
use of complex numbers; it remains of interest to study the
influence of the C2R’s positioning in the networks hierarchy
to optimize its performance andd robustness.

IV. EXPERIMENTS

In this section we test the HPDNet architecture against an
equivalent SPDNet counterpart on both synthetic and two real
micro-Doppler datasets. We also evaluate the robustness to
lack of available training data.

A. Description of the synthetic data

The synthetic micro-Doppler data generated from a sim-

W“X%WC‘ ulator introduced in [8]. The simulator models three drone
WC‘X“W“ +W§RX“WH% + WC‘X%W% classes: a helicopter, a quadrocopter and an octocopter as

shown in Fig. 3.

Approximately 4 minutes of signal are synthetisized per
class. We set the observation conditions such that the signal-
to-noise ration (SNR) varies around 5dB before coherent
integration. We consider an elementary timeframe to cor-
respond roughly to one or two blade rotations; the fastest
propeller having an RPM of 4800 rounds per minute, we set
the elementary period of observation to 10ms. We also set a
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Fig. 3. Photographs and corresponding models of the three drones to classify.
Scatter points along their surface define the reflected radar wave which in turn
constitutes the received micro-Doppler signal.

reasonably low period of repetition frequency (PRF) of 2k H z,
which results in an elementary signal of 20 discrete timesteps,
which translates to setting the input feature dimension to 20.
In other words, one radar signal is modeled as a point 2 in
C", with n = 20. However, the final objective here is the
classification on the underlying Gaussian process; in order to
estimate its corresponding covariance, we theoretically need at
least 20 independent samples in order for the resulting matrix
to be non-singular. In practice, we sample N = 20 successive
samples; that is, the strict minimum. We use the unbiased
covariance estimator:

1 5 sH +
X =5 > zmEl e Hi(n) (10)

i<N

In the equation above, z; is the centered version of z;. We
implement a 2-layer network reducing the matrix dimension
from 20 to 16 and 8.

B. Description of the NATO database

To challenge our model to a real-world setting, we make
use of a micro-Doppler drone database provided by the NATO
organization.

The NATO database consists of recordings of 8 different
aiborne subjects, including one class encompassing birds and
7 different drones:

o DIJI Phantom 3 (carbon fiber & nylon blades) [quad-
copter];

« 3DR X8 (carbon fiber blades) [quadcopter];

e 3DR Iris (carbon fiber & nylon blades) [quadcopter];

o Firefly [hybrid]

o Anaconda [fixed wing]

¢ Opterra [fixed wing]

o Skywalker [fixed wing]

The Phantom and the Iris come in two versions: carbon fiber or
nylon blades, which can consitute child classes. The drones are
categorized in three types: quadcopter, fixed wing and hybrid,
which can consitute parent classes. The radar signals are
accessible in their raw form of time series of complex points of
amplitude and phase. The subjects were furthermore recorded
in 6 frequency bands (L,S,C,X,Ku and Ka) and with both

vertical and horizontal polarization (except for the L band).
In our classification setup, we choose to consider all class
variation as independent objects; for instance, the Phantom
drones with carbon or nylon blades are set as different classes
altogether, which we hope to descriminate. All in all, this leads
to 10 separate classes.

Each datafile is the continuous recording of one of the
above targets; those recordings vary in lenth from 7s to 672s.
The PREF is set to 25k H z, meaning a signal of 1min totals
1.5e6 complex numbers. All recordings are split in elementary
segments of M = 1024 points (i.e. 40ms) destined for further
Fourier processing. Thus, a 1min long signal would yield a
file of 1024 % 1465 complex numbers organized in a complex
matrix of shape (1024, 1465).

Having a large amount of data sampled at a high PRF
allows for customization to worstly-conditioned scenarios, by
using only part of the data and downsampling the signals. We
set ourselves in a particular scenario, making use of only 3%
of the available data, downsampled 3 times (for a PRF of
about 8kH 2).

We transform the inputs, as we do the synthetic data, to
20 x 20 HPD matrices, and also use the same architecture and
learning scheme.

C. Description of the Aveillant database

To further asses the algorithm’s sturdiness, we repeat ex-
periments on a dataset provided by the Aveillant company.

The data’s main focus is the discrimination of the I1-
D drone from other airborne targets. Although three classes
are proposed (“bird”, ‘“car”, “drone”), for which there are
respectively 10, 2 and 12 files, we chose to collapse the task to
a 2-class problem (“other”, “drone”). Each file in the dataset is
a series of nearly continuous frames of length 279ms sampled
to M = 2048 points, i.e. at a PRF of about 8kHz. The
number of frames in the files varies from 72 to 823 with a
median value of 207, i.e. the durations of the recordings vary
from 20s to 4msin with a median duration of 1min. As for
the NATO data, classification is performed frame by frame, i.e.
one data point consists of 2048 consecutive complex points. A
data point is split through a sliding window of length n = 128
with a hop length of 32 (so a 75% overlap); a single covariance
matrix of size 128 x 128 is thus sampled from all the resulting
sub-frames and passed on to an SPDNet or HPDNet. We
implement a 2-layer network reducing the matrix dimension
from 20 to 16 and 8. The following paragraph describes the
results on both datasets.

D. Comparison of SPDNet and HPDNet

Upon these 20 x 20 Hermitian matrices, we build a 2-
layer HPDNet with hidden dimensions 16 and 8. After the
LogEig Euclidean mapping, the resulting matrix is passed
to the real domain via the C2R layer and vectorized to a
8 * 8 = 64-dimensional vector, which is finally mapped to
the 3-dimensional space of class distribution. All experiments
are run on a 5-fold cross-validation using 25% of all data
for validation, and tested on another fixed 25% held-out set.



The remaining 50% is used for training. We compare the
HPDNet described above with the equivalent SPDNet. In this
experimental configuration, the performance of both models,
measured as overall accuracy over the synthetic test set, are
as follows:

o SPDNet: 90.2% =+ 3.28
o HPDNet: 93.5% + 1.13

As for the NATO dataset, we get:

o SPDNet: 82.8% £ 0.72
o HPDNet: 86.5% + 0.53

As for the Aveillant dataset, we get:

o SPDNet: 86.7% =+ 1.61
o HPDNet: 89.2% =+ 1.42

We see that for all datasets the HPDNet performs slightly
better, while also presenting a smaller standard deviation,
which indicates higher stability from using complex values.
For visual purpose, we plot the training and validation accu-
racy curves along with the confusion matrix upon convergence
for one cross-validation instance of the training on both NATO
and Aveillant data using the HPDNet in figures 4 and 5.

E. Model robustness to lack of data

In the context of machine learning on radar data, one is often
faced with an unevitable lack of data, due to the underlying
cost and sensitivity. To simulate such a scenario, we repeat
the experiment using only 10% of the available training data.
The performance obtained on the synthetic data are then:

o SPDNet: 83.2% + 4.18
o HPDNet: 85.1% + 1.49

As for the NATO data:

e SPDNet: 79.9% + 3.18
o HPDNet: 81.4% =+ 1.95

As for the Aveillant dataset, we get:

o SPDNet: 83.2% + 1.97
o HPDNet: 85.1% + 1.56

Although the gap is reduced, the HPDNet still outperforms
the SPDNet in both cases; this results was not obvious, as,
because it involves complex numbers, the HPDNet intrinsi-
cally exhibits twice as many parameters than its real counter-
part. Allowing too many paramaters to a neural network can
lead to overfitting on the training set, resulting in worsened
performance at test time; however, we do not observe this
phenomenon, justifying the interest of correctly handling the
geometric structure of complex numbers. Again, the HPDNet
exhibits a smaller standard deviation, which makes it a suitable
generalisation of the SPDNet.

CONCLUSION

Radar signals exhibit a strong structure, which makes way
for a variety of meaningful representations; the covariance
of the underlying Gaussian process, modeled as a Symmetric
Positive Definite (SPD) matrix, is one of them. However, this
representation’s major drawback is the discarding of phase
information; in this work, we introduce a neural network on

Hermitian Positive Definite (HPD) matrices, which model the
complex covariance of the signal, thus integrating any phase
information in the raw signal. The theoretical background of
this model is grounded in both complex-valued, and SPD-
valued neural networks. We experimentally show, on synthetic
micro-Doppler data and larger-scale real-world NATO and
Aveillant datasets, that the HPDNet not only increases the
performance compared to a real-valued SPDNet counterpart,
but also exhibits higher stability and robustness to lack of
data, all the while possessing a small amount of parameters
compared to standard neural networks. For all these reasons,
we believe it to be a suitable and scalable model for radar
micro-Doppler classification.
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Validation accuracy: 84.17207792207793
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Fig. 4. Training and validation accuracy during the learning of the HPDNet on NATO data, along with the final normalized confusion matrix; true class is
written on the left, predicted class underneath. Full class names can be deduced from the letters displayed on the matrix; for instance, class ‘B’ designates
the birds, "Pc’ the Phantom drone with carbon blades. We notice that the Skywalker and X8 drones are never predicted, perhaps due to their challengingly
evasive presence within the database.
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Fig. 5. Training and validation accuracy during the learning of the HPDNet on NATO data, along with the final normalized confusion matrix; true class is
written on the left, predicted class underneath. Full class names can be deduced from the letters displayed on the matrix; for instance, class 'B’ designates
the birds, "Pc’ the Phantom drone with carbon blades. We notice that the Skywalker and X8 drones are never predicted, perhaps due to their challengingly
evasive presence within the database.
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