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Abstract Micromanipulation tools are not yet com-

monly used in the industry or in the research due to

the lack of natural and intuitive human-computer inter-

faces. This work proposes a ”metaphor-free” interface

for a pick-and-place operation for semi-operated teleop-

eration. A predictive intention extraction technique is

proposed through a computational model inspired from

cognitive sciences and implemented through a Kinect

depth sensor. This allows a more natural interaction

without any prior instructions to the operator. The

model is compared to a gesture recognition technique

in terms of naturalness and intuitiveness. It shows an

improvement in user performance in duration and suc-

cess of the task, and a qualitative preference for the

proposed approach evaluated by a user survey.

Address(es) of author(s) should be given

Keywords human-robot interaction · microrobotics ·

intention extraction · gesture recognition · pick-and-

place operation · kinect

1 Introduction

Manipulation of micro objects is a key issue for fur-

ther developments in nanotechnology and biology. At

this scale, typical manipulation tasks involve pick-and-

place of micro objects, in unstructured environments.

Robotic manipulation open access to these scales, how-

ever full automated operation is a still a standing issue

due to complex and counter-intuitive force fields, and

the high influence of environmental conditions [6] [15].

Teleoperation is hence the generally adopted approach

to give the control of the robotic system to the user

to carry out the task through the scale barrier. Never-

theless, the vision feedback and sensor data of micro-
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manipulation systems are generally limited. Dedicated

interfaces between the user and the micro world are

called for to overcome the difficulties of remote human

interaction to small scales.

Recent works focus on the development of novel in-

terfaces to provide information from the microworld to-

ward the natural human sensory modalities. Haptic in-

terfaces enable the operator to touch these intangible

scales [4], and virtual reality to see and interact with

the microworld in 3D [18]. These techniques assist the

user to apprehend the task in spite of uncertainties in

micro and nanoscale physical environments.

Despite the recent progress, the lack of intuitive in-

terfaces limits the adoption of micromanipulation sys-

tems. The task is still conducted manually, and requires

the operator to directly control the position or velocity

of the robot with a joystick or a haptic device. From

the operator’s point of view, these interfaces remain

complex to use, unhandy and hard to manage. For ex-

ample, naive users mention the difficulty to identify the

interface’s handle to the real end-effector. Furthermore,

these interfaces require a learning phase because of the

use of a specific symbolic language. Several works in

the literature agree on the necessity to create more

natural and intuitive interfaces for widespread adop-

tion of microrobotic technologies, but this specific issue

has not been addressed yet. A promising approach is

semi-automated manipulation: the whole operation is

divided in simple automated tasks. The operator con-

trols the transition between those tasks and their set-

points.

New solutions for the detection of user actions are

currently emerging in the field of macroscale Human

Computer Interface (HCI), with low-cost RGB-Depth

sensors (e.g. Microsoft Kinect) based on natural inter-

action modalities such as hand gesture recognition. This

kind of interfaces, dedicated to macroscale interaction,

appears also as a promising solution for micromanipula-

tion as they are intuitive and does not require markers

or gloves.

Current macroscale approaches widely use gesture

recognition methods to detect predefined commands.

Ren and O’Neill [16] propose a 3D selection method

that uses the gesture direction to determine the target

object and confirm selection by raising the other hand.

This kind of interfaces therefore requires to learn and

remember a complex symbolic language [12]. Further-

more, their low flexibility makes them poorly robust to

gestures that differ from the predefined dictionary. Even

if the gesture modality seems ”natural”, the need to

produce a discrete predefined gesture remains as sym-

bolic as clicking on a button to trigger an action. It

implies a learning phase and thus is ill-fitted for non-

specialist users.
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To address this issue, ”symbol-free” interfaces have

been proposed [14]. The aim of this approach is to en-

able the user to interact with virtual objects in the same

way as they interact with the real world. Hence, the op-

erator relies on already mastered skills and doesn’t need

any instruction.

This approach raises many challenges. An interface

that would need no instructions to specify the con-

straints of the system to the user has to handle the com-

plexity of free interaction. A symbol-free interface thus

requires interpreting naturally human actions. Humans

are experts in understanding others’ behavior. Thus,

a promising approach is to exploit models issued from

cognitive sciences on how humans infer others’ inten-

tions by observing their actions.

This work provides a natural interface to assist the

teleoperation of a micromanipulation system. Proposed

system is experimented on a dedicated AFM (Atomic

Force Microscopy) simulator from the literature [10].

User movements are tracked using a Kinect sensor to

allow free interaction. A symbol-free intention extrac-

tion model is proposed to grab and drop a microsphere,

based on cognitive sciences. This approach is compared

to a classical hand gesture recognition system in terms

of naturalness and intuitiveness.

2 AFM based micromanipulation

At microscale, typical interactive manipulation tasks

consist in picking, transfering and placing micro objects

on a substrate. An example strategy of micromanipu-

lation that has been experimentally demonstrated for

this purpose is the pick-and-place by adhesion with an

AFM cantilever [7] [8]. AFM has the advantage to pro-

vide force sensing in the micronewton range and is the

most used manipulation tool in micro and nanoscales

[2].

2.1 Manipulation by adhesion

For objects with dimensions less than 100µm, adhe-

sion forces (namely van der Waals, capillary and elec-

trostatic) are stronger than gravitation forces. These

forces can be advantageously used for manipulation. An

AFM cantilever is used for the manipulation as shown

on fig. 1. Objects are picked by simple contact due to

the superiority of the adhesion vs. weight. Then, ob-

jects are placed on a substrate with a higher adhesion

than the cantilever’s [7].

For an AFM based micromanipulation, the semi-

automation can be implemented with these three ele-

mentary tasks:

– picking an object by adhesion: the cantilever touches

down the sample and removes it from the substrate,
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Fig. 1 Pick (up) and place (down) of a microsphere with

an AFM cantilever by adhesion. Fi−j is the adhesion force

between i and j.

– transfering the object while avoiding contact with

the substrate or other samples,

– placing the object on a target site: touching down

the object then release from cantilever.

Due to the force sensing of the AFM cantilever, the

contact and adhesion force measurements are used to

detect the success or failure of the pick and place tasks.

2.2 Teleoperation of the AFM cantilever

Some recent works have focused on providing both hap-

tic and 3D virtual reality feedbacks to enable the oper-

ator to manipulate micro objects intuitively in a wide

range of applications [3] [10]. Virtual reality (VR) envi-

ronments are interesting solutions to provide users with

a reconstructed 3D view of a manipulation scene, which

can be displayed at the human scale and from differ-

ent vantage points. This overcomes the limitations of

vision sensors such as optical or electron microscopy

which lacks the sense of depth. This VR layer approach

is depicted in fig. 2.

Operator

Micro/nanoworld

ACQUISITION

INTERFACEINTERFACE

● virtual reality
● force feedback

RESTITUTION [Bolopion 12]

Fig. 2 Teleoperation of a micromanipulation system through

a VR environment. The operator is 600 km away from the

manipulation chamber [3].

In a previous work [9], authors used a haptic arm

to teleoperate an AFM cantilever in a VR environment.

This includes a simulator which realistically reproduces

the adhesion and dynamics of a real micro manipula-

tion setup and was used to evaluate haptic teleopera-

tion. It’s composed of a flexible virtual cantilever that

can be displaced depending on the system kinematics.

The adhesion forces between the object, the substrate

and the cantilever shown on fig. 1 are realistically mod-

eled. The interaction is measured from the cantilever

deflection as in a real AFM system. A computational

physics engine enables real-time interaction. The haptic

feedback allows the user to feel interactions like contact,

adhesion and pull-off phenomena.
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This simulator is used here to impersonate a real

micromanipulation system, in order to circumvent the

difficulties to set up repetitive real-world operations and

to focus on the development of the interface.

2.3 Virtual reality interface and coupling

To establish a direct link between the user’s hand and

the end-effector, a natural interface layer is added to

the system. In this interface, the user interacts through

a hand displayed directly in the VR environment. The

Kinect skeleton data of the operator is used to tran-

scribe the hand’s spatial position and rotation onto the

interface. The hand position is then used to teleoperate

the end-effector as described in fig 3 through a spring-

and-damper coupling in transfer phases, and to select

the target on pick and place phases. During the trans-

fer phase, the cantilever holding the object is kept at a

certain distance above to substrate to avoid collisions;

only its planar motion is coupled to the hand position.

The transition between pick and transfer, and be-

tween transfer and place phases are controlled through

the detection of actions of the operator. The working

principle is to detect his intention to ”grab” (respec-

tively to ”drop”) and move to end-effector accordingly

to contact with the object/substrate and back. For each

a corresponding animation of the virtual hand is cre-

ated to provide visual feedback. When an action is rec-

Natural interface Simulator

Operator

(1)

(4)

(2)

(3)

100 μm

Fig. 3 Teleoperation of a VR micromanipulation simulator.

(1) The user’s hand motions are used to move the virtual hand

in the natural interface. (2) a spring-and-damper coupling is

used to teleoperate the AFM cantilever. (3) The failure or

success of the pick/place task is fed back towards the natural

interface to give visual feedback to the operator (4).

ognized, the corresponding animation is played and the

grab/drop of the microsphere is triggered. This detec-

tion is the key component of the semi-automated ap-

proach presented here and is the focus of this manuscript.

Two approaches are compared to detect actions per-

formed by the operator. A classical gesture recognition

method, based solely on visual feedback is presented in

the next section and is then compared to a novel pre-

dictive intention extraction approach, detailed in the

following section. The AFM simulator is used to vali-

date and compare these two approaches.

3 Hand gesture recognition

To detect the grab and drop actions, an initial method

is to use gesture recognition techniques available in the
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literature. In order to avoid the constraint of learning

symbolic gestures, a first approach is to use ”natural”

gestures. As the proposed task involves the pick-and-

place of a microsphere, two natural gestures are used:

a closing hand near a sphere triggers the pick and an

opening hand near a target triggers the drop. The Mi-

crosoft Kinect SDK hand gesture recognition library is

used as it is a robust and position-invariant method.

A preliminary evaluation of this system consists in

the observation of users interacting without any instruc-

tion on the method to pick-and-place the sphere. Some

operators are observed while performing pick-and-place

tasks using the hand gesture based interface.

A first issue is that the animation can be triggered

only when the gesture is recognized, that is when the

gesture is already completed. Therefore, users report an

impression of delay between the performed gesture and

the virtual hand animation, even if the gesture recog-

nition operates in real-time.

The second point is that users tend to not fully close

their hand, as if to adapt it to the size of the virtual

object to be grabbed. Furthermore, the rest position

of the hand is neither totally open nor closed. Despite

the robustness of the hand gesture recognition method,

many false negatives are thus observed.

The interface thus seems sufficiently close to a real

interaction for the user to behave as if to interact with a

real object. However, this likeness harms the robustness

of the detection.

There is therefore a duality between the natural be-

havior of the user towards the interface and the sym-

bolic language used by it. This observation shows that it

is not sufficient to mimic a natural behavior, like grab-

bing/dropping an object by associating to it a hand

open/closed recognition. To address this issue, a symbol-

free intention prediction model is proposed in the next

section. The gesture recognition approach is used in this

work as a baseline to evaluate this intention prediction

model.

4 Computational model of intention prediction

The observations from the previous section show that

designing a natural interface requires fitting to the nat-

ural behavior of the user.

In order to perform the task, two pieces of informa-

tion are required: what object the user wants to inter-

act with, and what action to perform on this object.

An action is composed of two parts: an intention and

a movement. In cases of deliberative action, the action

is caused by what Searle [19] terms a prior intention,

that is, an intention to act formed in advance of the ac-

tion itself. A same movement can be caused by different

prior intentions, for example a person can grasp an ap-

ple to eat it or to hand it to another person. Becchio
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et al. [1] show that human observers can infer the prior

intention of others by observing their actions. In this

paper, this capacity is termed as intention extraction.

Building a computational model of a predictive in-

tention extraction is an interesting perspective. In fact,

it is centered on the goal of the user and it allows an

early detection, thus avoiding the delay between the

gesture recognition and the visual feedback. Intention

is a high level notion and thus cannot be directly ex-

tracted by a sensor. It is however correlated to low level

data that are quantifiable. In this work, a high level in-

tention prediction model is proposed based on low level

features extracted from the Kinect sensor.

In order to establish a computational model of in-

tention prediction, the first step consists in determining

the relevant low level quantifiable data upon which to

model the intention of the user.

4.1 Low level features to model the intention

The determination of the relevant low level features

must meet two requirements. First, the chosen feature

must contain enough information about the intention

of the user. The second one is that the feature has to

be sufficiently invariant regarding the intention of the

user.

4.1.1 Features of human intention prediction

The first requirement to select the pertinent features is

to determine if they contain enough information about

the intention of the user. Humans are experts in inten-

tion extraction. Even before grabbing an object, dur-

ing the reach phase, a human observer can infer what

action the actor wants to perform, and what is their

target object. This capacity is essential to interact and

collaborate with others.

Several works in the field of cognitive science have

studied this capacity. Becchio et al. [1] synthesize var-

ious experimental data showing that for a same ges-

ture, for example a prehensile gesture, the kinematics

features vary depending on the prior intention of the

actor. Sartori et al. [17] demonstrate that kinematics

features are sufficient for an observer to infer the prior

intention. In their experiment, white spots placed on an

actor’s articulations are the only visible elements, and

observers are asked to infer the intention. The perfor-

mances are close to classical video results. Other stud-

ies [20] show the importance of the context in intention

extraction. The prediction is more precise if the action

is constrained by a target and a precise context. How-

ever, human observers principally rely on kinematic in-

formation rather than direct visual information on the

target object and the context.



8

Gesture kinematics contains both invariant features

and sufficient information to enable a human observer

to infer other intention. Thus, the kinematic features

are selected as low level information upon which to

build the intention prediction model. For this purpose,

hand gesture velocity is extracted by derivation of the

position of the hand joints of the Kinect SDK skeleton

library.

4.1.2 Gesture invariant features

Despite the great variability of human goal-directed

gestures, there exist some invariant features. The ve-

locity has an invariant log normal shape, that can be

approximated by a Gaussian for the movements with an

intermediate speed [11]. This classical profile is shown

in fig. 4 from a gesture towards a target in the virtual

reality simulator described in the previous section. This
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Fig. 4 Invariant velocity profile for goal-directed gesture,

with mean µ, standard deviation σ and maximum vmax. A

Blender unit corresponds to the Blender simulator default

unit of measurement.

classical profile is expressed by :

v(t) = vmax · e
−

(t− µ)2

2 · σ2 (1)

where µ is the mean, σ the standard deviation, v the

hand velovity and vmax the maximum velocity (fig. 4).

Another property of goal-directed gestures is the

isochrony principle [21]. The duration of a gesture to

reach a target is demonstrated to be a constant. Thus,

the speed depends linearly on the distance to the tar-

get. This result is validated in the proposed architecture

from 60 trials of reaching a target in the virtual reality

simulator. The result is shown in fig. 5.
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Fig. 5 Isochrony principle for goal-directed gesture. A

Blender unit corresponds to the Blender simulator default

unit of measurement.

This principle is expressed by the following linear

equation:

vmax(d0) = a · d0 + b (2)

where a is the slope, b the intercept et d0 the initial dis-

tance between the virtual hand and the target (fig. 5).
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Thus, the gaussian profile of the movement and the

isochrony principle are selected as invariant features

in the virtual reality micromanipulation simulator con-

text.

4.2 High level model of intention prediction

Despite the fact that humans are experts at intention

extraction, cognitive models of this capacity are not

exploited yet to design natural interfaces. The proposed

solution is based on a model of the intention extraction

by a human observing an actor performing an action.

Oztop et al. [13] propose a computational model

that could give an explanation of how the same cerebral

areas are used in motor planning and in understanding

others’ action. The observer forms an intention hypoth-

esis, based on sensory consequences of actor’s motion,

according to his own learned motor behavior. At the

next step, a difference is computed between the hy-

pothesis and the observation. If this error is too high,

a new intention hypothesis is then made. This model is

predictive and symbol-free: observer guesses the other

intention before the action is completed, and relies only

on his past experiences. This model is interesting solu-

tion to answer the raised issues.

This work proposes to adapt this model to predict

the intention of a user in the context of the microma-

nipulation interface. Figure 6 depicts the plant derived

from the cognitive model of an observer extracting the

intention of an actor. The plant is constructed such as

the information exploited by the observer is the joint

velocities of the actor.

Movement
planning  

Feedback
controller

Feedforward
controller

vdes
Intention

+

- +

+
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planning    

Feedback
controller

Motor
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controller
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+
-vpred

Motor command inhibition
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O
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ER
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Fig. 6 Intention prediction cognitive model

In the teleoperation context, two intentions are con-

sidered: the picking of a microsphere and its placing

on a specific target site on the substrate. Hence, the

states space is reduced to two possible intentions. Fur-

thermore, the intention hypothesis also depends on the

context, i.e. what objects are present and what are the

possible actions to perform on these objects. In the mi-

cromanipulation interface, when the hand is free, its

only possibility of action is to grab an object and when

a microsphere is grabbed, the only possible intention is

to drop it on a site. Hence, the system takes into ac-

count of this context to establish a relevant intention

hypothesis. This observation is consistent with the fact
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that human intention prediction is more precise when

the context is known [20].

4.3 Construction of predictors

The first step is to learn the basic motor behavior of

grab and drop gestures upon which to compute the in-

tention predictors. These predictors corresponds to the

forward model (fig. 6). Gesture kinematics is a good

feature for intention prediction as shown previously,

thus this work exploits hand velocity in the proposed

model as the sensory input signal. The invariant laws of

the goal-directed movements are used to compute the

predictor. The predictor profile is approximated by a

Gaussian according to the invariant speed profile law.

The isochrony principle states that gesture velocity in-

creases with the initial distance to the target. The am-

plitude of the Gaussian should hence be proportional

to the distance to the target.

Humans are apparently able to infer intention from

kinematics features. Thus, this work hypothesis is that

the invariant laws are modulated by the intention. An

experiment is proposed to validate this hypothesis in

the micromanipulation context.

The learning phase protocol consists in 20 grab ges-

tures and 20 drops at various distances from the target

performed by 3 subjects. A microsphere and a target

dropping site are randomly placed on the substrate for

each round. The grabbing and dropping are automat-

ically triggered when the hand is sufficiently close to

the target, in order to avoid any a priori hypothesis

that could affect the naturalness of the interaction. No

information is given to the user about how to grab and

drop the object. The hand velocity and distance toward

the target are recorded for each task.

A Gaussian fit is then performed on the hand veloc-

ity for each task to compute the amplitude, expected

value and standard deviation parameters.

4.3.1 Task influence

An example result for a user learning phase is shown on

fig. 7. The three parameters (amplitude (A), expected

value (EV ) and standard deviation (SD)) of the Gaus-

sian are plotted as functions of the initial distance to

the target. Each point corresponds to one round (in

black for the grab task and in blue for the drop task).

A polynomial interpolation is then performed on the

points for each parameter and each task.

As expected, the amplitude depends linearly on the

distance to the target. Only the first order of the poly-

nomial interpolation is significant. This result is consis-

tent with the isochrony law. Furthermore, the expected

value is also a linear function of the distance to the tar-

get. On the other hand, the standard deviation doesn’t

seem to depend on the distance to the target.
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Another interesting result is that the curves associ-

ated with the grab and the drop tasks are different. De-

spite the fact that both are goal-directed gestures, the

amplitude and the expected value of the speed vary de-

pending on the intention. This observation supports the

fact that prior intention modifies the movement kine-

matics even for the same reach gesture [1,17]. Thus,

different predictors need to be computed for these ac-

tions.

These observations lead to a reformulation of the

isochrony principle (equation 2) and the gaussian profile

(equation 1) laws taking the intention parameter into

account:

vmax(d0, task) = atask · d0 + btask (3)

where atask and btask are the parameters interpolated

linearly of the maximum velocity as a function of the

initial distance to target, depending on the grad or drop

task (fig. 7).

v(t) = vmax(d0, task) · e
−

(t− µtask(d0))2

2 · σ2 (4)

where µtask(d0) is the mean value estimater for each

task and for the initial distance d0, from the linear in-

terpolation proposed on fig.7. The standard deviation

σ doesn’t depend on the task.

4.3.2 User influence

Fig. 8 shows the influence of the user on the Gaussian

parameters as a function of the initial distance to the

target.
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Fig. 8 User influence on the Gaussian predictor parameters

The curves are increasing and linear for all the users.

Moreover, the amplitudes for the grab task are higher

than for the drop task for all the users. Conversely, the
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expected value is lower for the grab task. Therefore, de-

spite the numeric differences, the Gaussian curves have

similar characteristics, independent of the user. This

observation shows the generality of the model.

4.3.3 Computation of predictors

The predictors pred(t) are computed based on these ob-

servations according to the current possible task {grab, drop}

and to the current distance to target (dist), based on

equations 4 and 3,

vpred(t) = vmax(d0, task) · e
−

(t− µ)2

2 · σ2 (5)

where vpred is the velocity predictor, σ and µ are the

means of respectively the standard deviation and mean

learned for each possible task, and vmax(d0, tâche) is

the maximum of the gaussian predictor computed from

the linear equation 3.

As the standard deviation doesn’t seem to depend

on the distance to target, its value is computed as the

mean value of learning samples. Furthermore, the ges-

ture segmentation is emergent from the proposed model.

A gesture starts when it is predicted well enough. Thus,

the mean of the gaussian is simply compared to the

mean of learning samples.

4.4 Prediction method

In the first phase of the task, the user grabs the mi-

crosphere. According to the proposed model, the inten-

tion hypothesis is set on the grab intention, and the

corresponding predictor is used. Algorithm 1 presents

the proposed prediction method for the grab task. At

each step, if the prediction mean error is under a fixed

threshold (errThresh), the predictor is considered as

good enough and it is kept. The score (N) is increased.

An intention hypothesis is validated if the predictor has

been good for Npred points. This threshold is fixed de-

pending on the frame rate of the sensor, shortly after

the maximum of the Gaussian is reached. Once the grab

intention is predicted, the intention hypothesis is set to

the drop task and the following steps are repeated.

Fig. 9 shows an example of a grabbing task intention

prediction. The first 2s correspond to non-goal-directed

random gestures. The figure shows that the predictor is

not good enough and is discarded. Following predictors

are then recalculated. At t = 2s, the mean error be-

tween the predictor and the hand mean velocity (err)

is bellow the threshold errThresh and after NPred

points, the grab intention is predicted, corresponding

to the red dotted line. This gesture is effectively the

user reaching to grab the object.
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Algorithm 1 Grab intention prediction

Extract current distance to target dist(t) from sensor

v(t) = d(dist(t))

dt

if v(t) > 0 then

err = 1
N

·
∑N

i=1
(vpred(N) − v(t))2

if err > errThresh then

vpred(t) = vmax(d0, grab) · e

(
− (t−µ)2

2·σ2

)
N = 1

else

N = N + 1

end if

end if

if N > Npred then

Grab intention predicted

end if
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Fig. 9 Intention prediction example

Once the microsphere grab intention is predicted,

the interface starts the corresponding animation of the

virtual hand, in order to avoid the delay observed with

the classical gesture recognition method.

5 Experimental results

5.1 User test protocol

A user test protocol is set up to evaluate the proposed

interactive system and compare it to the baseline hand

gesture recognition approach. The task consists in grab-

bing a microsphere and displacing it to a target on the

substrate marked as a cross. A new configuration of the

microsphere and the target is drawn randomly at the

end of each round. To validate the natural aspect of the

interaction, no instruction is given to the operator on

the method to use to perform the task.

The experimental protocol is conducted in 3 phases.

The first one is a case-control in which the grabbing

and dropping is triggered only by a proximity criterion

as in the learning phase. The second uses the gesture

recognition method presented in section III. The third

uses the intention prediction approach to test the model

proposed in this work.

The order of the phases proposed to the user are

changed randomly in order to avoid a learning effect on

the results. Each phase is constituted of 15 rounds of

grab and drop. At the end of each phase, a user ques-

tionnaire is submitted to the operator. This question-

naire is based on the System Usability Scale (SUS) [5].

Nine adult subjects took part in the experiment.
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5.2 Intention prediction and gesture recognition

comparative results

5.2.1 Quantitative results

The success of the task is evaluated on a proximity and

duration criterion : if the hand stays near the target

for more than 0.5s and the grab/drop is not detected,

the task is considered as a failure. The success percent-

age for each task is shown in fig. 10 on the left. The

proposed intention prediction method shows a signifi-

cant improvement of 33.8% over the classical gesture

recognition method for the dropping task.

Grabbing Dropping Mean
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70
80
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100

Intention Prediction
Gesture recognition

Round duration mean (s)
0
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2

3

4

5

6

7

Fig. 10 Percentage of success for the two tasks with the

intention prediction and classical gesture recognition ap-

proaches (left) and round duration mean (right). One asterisk

(*) indicates a p value smaller than 0.05 (p < 0.05). The sta-

tistical analysis used is the ANOVA test.

A second quantitative result is the mean duration

of each round. The intention prediction methods mean

duration is 4.7s, while the gesture recognition is 6s

as shown in fig. 10 on the right. Thus, the proposed

method allows for significant improvement in the dura-

tion of the task.

5.2.2 Qualitative results

Finally, the SUS questionnaire shows a strong prefer-

ence for the model proposed in this work of 30.8% over

the gesture recognition method as shown in fig. 11. In

particular, the users’ evaluation of the ease to manipu-

late the microspheres shows better results than both the

hand gesture recognition method and the case-control

method. The evaluation of comfort is consistent with

these results, showing a significant preference for the

proposed approach.
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Fig. 11 Qualitative SUS user survey results. One asterisk

(*) indicates a p value smaller than 0.05 (p < 0.05). The

statistical analysis used is the ANOVA test.

5.3 Discussion

The results show the improvements of the proposed

method in a context of natural interaction without any
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prior instruction, both quantitatively and qualitatively.

Hence, the proposed approach is validated as an ap-

propriate solution to provide an assistance for AFM

micromanipulation. However, some users mention the

fact that the method seems sometimes too predictive,

weakening the impression of being in control of the task.

6 Conclusions

In this paper, a symbol-free interface is proposed for the

teleoperation of an AFM cantilever in a virtual drag and

drop task of microspheres. To achieve a non symbolic

interaction, an intention prediction model is proposed,

based on the natural invariant features of human goal-

directed movement. Without any instruction to users,

the predictivity of this model significantly improves the

task duration over the classical hand gesture recogni-

tion method. In addition, the System Usability Scale

questionnaire shows a 30.8% preference of the users for

the predictive intention extraction model over the hand

gesture recognition approach. Hence, these results con-

firm the symbol-free approach as an interesting solu-

tion for natural interaction. Furthermore, the proposed

approach enables manipulation tasks independently of

the hand pose and the fingers. Thus, this method can

be generalized to various systems, such as a mouse or

a haptic arm.

For further improvements, the operator’s focus of

attention can be integrated to generalize the model

to multitarget contexts. For this purpose, a predictor

would be computed for each target and the attentional

module would select the more pertinent predictors de-

pending on the region of focus of attention of the user.
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