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Intention prediction approach to interact naturally with the microworld

Laura Cohen, Sinan Haliyo, Mohamed Chetouani and Stéphane Régnier

Abstract— Micromanipulation tools are not yet commonly
used in the industry or in the research due to the lack of
natural and intuitive human-computer interfaces. This work
proposes a vision based approach using a Kinect RGB-Depth
sensor to provide a ”metaphor-free” interface. An intention
prediction approach is proposed, based on a cognitive science
computational model, to allow a more natural interaction with-
out any prior instructions. This model is compared to a vision
based gesture recognition approach in terms of naturalness and
intuitiveness. It shows an improvement in user performance in
terms of duration and success of the task, and a qualitative
preference for the proposed approach evaluated by a user
survey.

I. INTRODUCTION

Manipulation of micro objects is a key issue for further

developments in nanotechnology. At this scale, typical ma-

nipulation tasks involve picking and placing micro objects.

They cannot be handled manually due to their reduced size,

complex and counter-intuitive force fields, and the high in-

fluence of environmental conditions [1] [2]. Furthermore, the

vision feedback and sensor data of a micromanipulation sys-

tems are generally limited. Non-repetitive and unautomated

tasks therefore imply the design of dedicated interfaces

between the user and the micro world. Recent works focus

on the development of natural and intuitive interfaces, to

provide information from the microworld toward the natural

human sensory modalities. Hence, haptic interfaces enable

the operator to touch these intangible scales [3], and virtual

reality to see and interact with the microworld in 3D [4].

Despite the recent progress, the lack of intuitive interfaces

limits the adoption of micromanipulation systems. From the

operator’s point of view, these interfaces remain complex to

use, unhandy and hard to manage. For example, naive users

mention the difficulty to identify the haptic arm handle and

the real end-effector. Furthermore, these interfaces require a

learning phase because of the use of a specific symbolic lan-

guage. Several works in the literature agree on the necessity

to create more natural and intuitive interfaces for widespread

adoption of microrobotic technologies, but this specific issue

has not been addressed yet from the user perspective.

New solutions are currently emerging in the field of

macroscale Human Computer Interface (HCI), with low-cost

RGB-Depth sensors (e.g. Microsoft Kinect) based on natural

interaction modalities such as hand gesture recognition,

without requiring to wear markers or gloves. This kind of

interfaces, dedicated to macroscale interaction, appears also

as a promising acquisition solution for micromanipulation
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interfaces as it allows high intuitivity and benefits from ro-

bust detection tools like skeleton tracking. These sensors are

widely used in video games for interaction tasks that involve

the whole body, like dance or tennis games whereas typical

microscale interaction consists in more precise manipulation

tasks like picking, displacing and placing objects. Current

macroscale solutions widely use gesture recognition methods

to detect predefined gestural commands. Ren and O’Neill [5]

propose a 3D selection method that uses the gesture direction

to determine the target object and confirm selection by

raising the other hand. This kind of interfaces therefore

requires to learn and remember a complex metaphorical

language [6]. Furthermore, their low flexibility makes them

poorly robust to gestures that differ from the predefined

dictionary. Even if the gesture modality seems ”natural”,

the need to produce a discrete predefined gesture remains as

metaphorical and symbolic as clicking on a button to trigger

an action. It implies a learning phase and thus is ill-fitted for

nonspecialist users.

To address this issue, ”metaphor-free” interfaces have been

proposed [7]. The aim of this approach is to enable the

user to interact with virtual objects in the same way as they

interact with the real world. Hence, the operator relies on

already mastered skills and doesn’t need any instruction. This

approach raises many challenges. An interface that would

need no instructions to specify the constraints of the system

to the user has to handle the complexity of free interaction.

A metaphor-free interface thus requires interpreting the nat-

ural human behavior. Humans are experts in understanding

others’ behavior. A promising approach is to exploit models

issued from cognitive science research on how humans infer

others’ intentions by observing their actions.

The objective of this work is to provide a natural interface

to assist the virtual teleoperation of an AFM (Atomic Force

Microscope) probe for micromanipulation. User movements

are tracked using a Kinect sensor to allow free interaction.

A metaphor-free intention prediction model is proposed to

grab and drop the microsphere, based on cognitive science

findings in the field of intention prediction. This approach is

compared to a classical hand gesture recognition system in

terms of naturalness and intuitiveness.

II. AFM VIRTUAL TELEOPERATION SYSTEM

At microscale, typical interactive manipulation tasks con-

sist in picking, transfering and placing micro objects on a

substrate. An example strategy of micromanipulation that

has been experimentally demonstrated for this purpose is the

pick-and-place by adhesion with an AFM cantilever [8] [9].
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A. AFM based micromanipulation

For objects with dimensions less than 100µm, adhesion

forces (namely van der Waals, capillary and electrostatic)

are stronger than gravitation forces. These forces can be

advantageously used for manipulation. An AFM cantilever

is used for the manipulation as shown on fig. 1. Objects

are picked by simple contact due to the superiority of the

adhesion vs. weight. Then, objects are placed on a substrate

with an higher surface adhesion than the cantilever’s.

Approach Contact Adhesion

P
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P
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Fobj-can

Fsub-obj Fobj-can > Fsub-obj

Fobj-can < Fsub-obj

Fobj-can

Fsub-obj

Fig. 1. Pick (up) and place (down) of a microsphere with an AFM cantilever
by adhesion. Fi−j is the adhesion force between i and j.

An AFM based micromanipulation interface hence has to

fulfill the following subtasks :

• picking an object by adhesion with the AFM cantilever

• transfering the object while avoiding involuntary contact

with the substrate

• placing the object on a target site by adhesion with

another substrate

B. Teleoperation of an AFM cantilever

Some recent works have focused on providing both haptic

and 3D virtual reality feedbacks to enable the operator to

manipulate micro objects intuitively in a wide range of ap-

plications [10] [11]. Virtual reality simulators are interesting

solutions to provide users with a reconstructed 3D view of

a manipulation scene, which can be displayed at the human

scale and from different vantage points.

In a previous work [12], authors used an haptic arm to

teleoperate an AFM cantilever in a virtual reality simulator.

This simulator realistically reproduces the adhesion and

dynamics of a real system and validates haptic teleoperation.

It is composed of a flexible virtual cantilever that can be

displaced depending on the system kinematics. The adhesion

forces between the object, the substrate and the cantilever

shown on fig. 1 are realistically modeled. The interaction is

measured from the cantilever deflection as in a real AFM

system. A physics engine enables real-time interaction. The

haptic feedback allows the user to feel micro interactions like

adhesion and pull-off phenomenons.

The same simulator is used here to explore new ways to

interact with the microworld that could provide an assistance

for virtual teleoperation. Instead of the haptic device, a

Kinect sensor is used for acquisition of users’ motions.

These RGB-Depth sensors are promising solutions, with less

constraints for the user and specially dedicated to natural 3D

interaction.

C. Virtual reality simulator

To allow a direct link between the user’s hand and the

virtual effector, this work proposes to add a natural interface

layer in the simulator. In this interface, the user interacts

through a virtual hand included in the simulator. The Kinect

skeleton joints of the operator are used to estimate the hand’s

3D position and rotation in the virtual reality environment,

providing a direct way to interact with the microworld. The

proposed virtual teleoperation system is shown in fig. 2. The

virtual hand’s position is then used to teleoperate the realistic

simulation with a master-slave system.

Natural interface Realistic simulation

100 μm

Operator

(1)

(4)

(2)

(3)

Fig. 2. Teleoperation of the micromanipulation simulation. (1) The user’s
hand translation and rotation are used to move the virtual hand in the natural
interface. (2) Then, a master-slave system is used to teleoperate the AFM
cantilever in the simulation. (3) The failure/success of the pick/place task is
fed back towards the natural interface to give visual feedback to the operator
(4).

In this work, two approaches are compared to detect the

grabbing and dropping actions performed by the operator,

associated to the pick-and-place task of the microsphere. For

each task, corresponding animations of the virtual hand are

created to provide visual feedback to the operator. When a

gesture is recognized, the corresponding animation is played

and the grab/drop of the microsphere is triggered. For this

purpose, a gesture recognition method is presented in the

next section and is compared to a new intention prediction

approach, detailed in section IV. These two approaches

are compared and validated using the AFM manipulation

simulator.

III. HAND GESTURE RECOGNITION

To detect the grabbing and dropping actions, a classical

method is to use gesture recognition. In order to avoid the

constraint of learning metaphorical gestures, a first approach

is to use ”natural” gestures. As the proposed task involves

the pick-and-place of a microsphere, two natural gestures are

used : a closed hand near a sphere triggers the pick and an

open hand near a target triggers the drop. The OpenNI [13]

hand gesture recognition library is used as it is a robust and

position-invariant method.

A preliminary evaluation of this system consists in the

observation of users interacting without any instruction on

the method to pick-and-place the sphere. A first issue is
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that the animation can be triggered only when the gesture is

recognized, that is when the gesture is completed. Therefore,

users report an impression of delay between the performed

gesture and the virtual hand animation, even if the gesture

recognition operates in real-time. The second issue is that

users tend to not fully close their hand, as if to adapt it to

the size of the virtual object to be grabbed. Furthermore,

the rest position of the hand is neither totally open nor

closed. Despite the robustness of the hand gesture recognition

method, many false negatives are observed. The interface

seems sufficiently close to a real interaction for the user

to behave as if to interact with a real object, however, this

likeness harms the robustness of the detection.

There is therefore a duality between the natural behavior

of the user towards the interface and the symbolic language

used by it. This observation shows that it is not sufficient to

mimic a natural behavior, like grabbing/dropping an object

by associating to it a hand open/closed recognition. To

address this issue, a metaphor-free intention prediction model

is proposed in the next section. The gesture recognition

approach is used in this work as a baseline to evaluate this

intention prediction model.

IV. COMPUTATIONAL MODEL OF INTENTION PREDICTION

The observations from the previous section show that

designing a natural interface requires fitting to the natural

behavior of the user. In order to perform the task, two

pieces of information are required: what object the user

wants to interact with, and what action to perform on this

object. An action is composed of two parts: an intention and

a movement. In cases of deliberative action, the action is

caused by what Searle [14] terms a prior intention, that is,

an intention to act formed in advance of the action itself. A

same movement can be caused by different prior intentions,

for example a person can grasp an apple to eat it or to hand

it to another person. Becchio et al. [15] show that human

observers can infer the prior intention of others by observing

their actions. In this paper, this capacity is termed as intention

prediction.

Building a computational model of intention prediction is

an interesting perspective for further developments of HCI.

In fact, intention prediction approach can lead to an earlier

detection than classical gesture recognition, thus avoiding

the delay between the gesture recognition and the visual

feedback. Intention is a high level notion and thus cannot

be directly extracted by a sensor. It is however based on low

level data that are quantifiable. In this work, a high level

intention prediction model is proposed based on low level

features extracted from the Kinect sensor.

In order to establish a computational model of intention

prediction, the first step consists in determining the relevant

low level quantifiable data upon which to model the intention

of the user.

A. Low level features to model the intention

Despite the great variability of human goal-directed ges-

tures, there exist some invariant features. The velocity has an

invariant log normal shape, that can be approximated by a

Gaussian for the movements with an intermediate speed [16].

This classical profile is shown in fig. 3 on the left from

a gesture towards a target in the virtual reality simulator

described in the previous section. Another property of goal-

directed gestures is the isochrony principle [17]. The duration

of a gesture to reach a target is demonstrated to be a constant,

i.e. the speed depends linearly on the distance to the target.

This result is validated in the proposed architecture from 60

trials of reaching a target in the virtual reality simulator as

shown in fig. 3 on the right.
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Fig. 3. Invariant velocity profile for goal-directed gesture and isochrony
principle. A Blender unit corresponds to the Blender simulator default unit
of measurement.

Several works in the field of cognitive science have studied

intention prediction. Becchio et al. [15] synthetize various

experimental data showing that for a same gesture, for

example a prehension gesture, the kinematics features vary

depending on the prior intention of the actor. Sartori et

al. [18] demonstrate that kinematics features are sufficient for

an observer to infer the prior intention. Gesture kinematics

contains both invariant features and sufficient information to

enable a human observer to infer others’ intentions. Thus,

the kinematic features are selected as low level information

upon which to build the intention prediction model. For this

purpose, hand gesture velocity is extracted by derivating the

position of the hand joint of the Kinect SDK skeleton library.

B. High level model of intention prediction

Despite the fact that humans are experts at intention

prediction, cognitive models of this capacity are not exploited

to design natural interfaces. Oztop et al. [19] propose a

computational model that could give an explanation of how

the same cerebral areas are used in motor planning and in un-

derstanding others’ action. Based on an intention hypothesis,

the observer predicts the sensory consequences according to

his own learned motor behavior. At the next step, a difference

is computed between the prediction and the observation. If

the prediction error is too high, a new intention hypothesis

is then made. This model is predictive and metaphor-free,

and therefore is an interesting solution to answer the raised

issues. This work proposes to adapt this model to predict the

intention of a user in the context of the micromanipulation

interface. The proposed system architecture is shown in fig.

4.
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Fig. 4. Intention prediction cognitive model

C. Construction of predictors

The first step is to learn the basic motor behavior of grab

and drop gestures upon which to compute the intention pre-

dictors. The predictor profile is approximated by a Gaussian

according to the invariant speed profile law. The isochrony

principle states that gesture velocity increases with the initial

distance to the target. Thus, the amplitude of the Gaussian

should be proportional to the distance to the target.

The learning phase protocol consists in 20 grab gestures

and 20 drops at various distances from the target performed

by 3 subjects. A microsphere and a target dropping site

are randomly placed on the substrate for each round. The

grabbing and dropping are automatically triggered when the

hand is sufficiently close to the target, in order to avoid

any a priori hypothesis that could affect the naturalness of

the interaction. No information is given to the user about

how to grab and drop the object. A Gaussian fit is then

performed on the hand velocity for each task to compute the

amplitude, expected value and standard deviation parameters.

An example result for a user learning phase is shown on

fig. 5. The three parameters (amplitude (A), expected value

(EV ) and standard deviation (SD)) of the Gaussian are

plotted as functions of the initial distance to the target. Each

point corresponds to one round (in black for the grab task

and in blue for the drop task). A polynomial interpolation is

then performed on the points for each parameter and each

task.

As expected, the amplitude depends linearly on the dis-

tance to the target. Only the first order of the polynomial

interpolation is significant. This result is consistent with the

isochrony law. Furthermore, the expected value is also a lin-

ear function of the distance to the target. On the other hand,

the standard deviation doesn’t seem to depend on the distance

to the target. Another interesting result is that the curves

associated with the grab and the drop tasks are different.

Despite the fact that both are goal-directed gestures, the am-

plitude and the expected value of the speed vary depending

on the intention. This observation supports the fact that prior

intention modifies the movement kinematics even for the

same reach gesture [15] [18]. Thus, different predictors need
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Fig. 5. Task influence on the Gaussian predictor parameters

to be computed for these actions. The predictors pred(t)
are computed based on these observations according to the

current possible task {grab, drop} and to the current distance

to target (dist), based on equation (1), where SDtask and

EVtask are the means of respectively the standard deviation

and expected value learned for each possible task on 3 users,

and Adist,task is the amplitude of the Gaussian predictor

computed from linear equation (2).

pred(t) = Adist,task · e

(

−
(t− EVtask)

2

2 · SD2
task

)

(1)

Adist,task = atask · dist+ btask (2)

atask and btask are parameters learned from the linear

interpolation of the amplitude in function of the distance to

the target, depending on the grab or drop task, as shown on

fig. 5. As the standard deviation doesn’t seem to depend on

the distance to target, its value is computed by a mean on the

learning samples. Furthermore, the gesture segmentation is

emergent from the proposed model. A gesture starts when it

is predicted well enough. Thus, the expected value is simply

evaluated as a mean on the learning samples.

D. Prediction method

In the first phase of the task, the user grabs the mi-

crosphere. According to the proposed model, the intention

hypothesis is set on the grab intention, and the corresponding

predictor is used. Algorithm 1 presents the proposed predic-

tion method for the grab task. At each step, if the prediction

mean error is under a fixed threshold (errThresh), the

predictor is considered as good enough and it is kept. The

score (N ) is increased. An intention hypothesis is validated if

the predictor has been good for Npred points. This threshold

is fixed depending on the frame rate of the sensor, shortly

after the maximum of the Gaussian is reached. Once the grab
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intention is predicted, the intention hypothesis is set to the

drop task and the following steps are repeated.

Algorithm 1 Grab intention prediction

Extract current distance to target dist(t) from sensor

velocity(t) = d(dist(t))
dt

if velocity(t) > 0 then

err = 1
N

·
∑N

i=1(pred(N)− velocity(t))2

if err > errThresh then

pred(t) = Adist,grab · e
(

(t−EVgrab)
2

2·SD2

grab

)

N = 1
else

N = N + 1
end if

end if

if N > Npred then

Grab intention predicted

end if

Fig. 6 shows an example of a grabbing task intention

prediction. The first 2s correspond to non-goal-directed ran-

dom gestures. The figure shows that the predictor is not

good enough, therefore many new predictors are recalculated.

After 2s, the gesture corresponds to a reach to grasp the

microsphere. Hence, the mean error between the predictor

and the user mean hand velocity (err) is bellow the threshold

errThresh and after NPred points, the grab intention

is predicted, corresponding to the red dotted line. Once

Intention prediction
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Fig. 6. Intention prediction example

the microsphere grab intention is predicted, the interface

starts the corresponding animation of the virtual hand, in

order to avoid the delay observed with the classical gesture

recognition method.

V. EXPERIMENTAL RESULTS

A. User test protocol

A user test protocol is set up to evaluate the proposed

interactive system and compare it to the baseline hand

gesture recognition approach. The task consists in grabbing

a microsphere and displacing it to a target on the substrate

marked as a cross. A new configuration of the microsphere

and the target is drawn randomly at the end of each round. To

validate the natural aspect of the interaction, no instruction

is given to the operator on the method to use to perform the

task. The experimental protocol is conducted in 3 phases.

The first one is a case-control in which the grabbing and

dropping is triggered only by a proximity criterion as in

the learning phase. The second uses the gesture recognition

method presented in section III. The third uses the intention

prediction approach to test the model proposed in this work.

The order of the phases proposed to the user are changed

randomly in order to avoid a learning effect on the results.

Each phase is constituted of 15 rounds of grab and drop.

Nine adult subjects took part in the experiment. At the end of

each phase, a user questionnaire is submitted to the operator.

This questionnaire is based on the System Usability Scale

(SUS) [20].

B. Comparative results on intention prediction and gesture

recognition

1) Quantitative results: The success of the task is eval-

uated on a proximity and duration criterion : if the hand

stays near the target for more than 0.5s and the grab/drop is

not detected, the task is considered as a failure. The success

percentage for each task is shown in fig. 7 on the left. The

proposed intention prediction method shows a significant

improvement of 33.8% over the classical gesture recognition

method for the dropping task. A second quantitative result

Grabbing Dropping Mean
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Gesture recognition

Round duration mean (s)
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Fig. 7. Percentage of success for the two tasks with the intention prediction
and classical gesture recognition approaches (left) and round duration mean
(right). One asterisk (*) indicates a p value smaller than 0.05 (p < 0.05).
The statistical analysis used is the ANOVA test.

is the mean duration of each round. The intention prediction

methods mean duration is 4.7s, while the gesture recognition

is 6s as shown in fig. 7 on the right. Thus, the proposed

method allows for significant improvement in the duration

of the task.

2) Qualitative results: Finally, the SUS questionnaire

shows a strong preference for the model proposed in this

work of 30.8% over the gesture recognition method as shown

in fig. 8. In particular, the users’ evaluation of the ease to

manipulate the microspheres shows better results than both

the hand gesture recognition method and the case-control

method. The evaluation of comfort is consistent with these
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results, showing a significant preference for the proposed

approach.

User SUS test
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Fig. 8. Qualitative SUS user survey results. One asterisk (*) indicates a
p value smaller than 0.05 (p < 0.05). The statistical analysis used is the
ANOVA test.

C. Discussion

The results show the improvements of the proposed

method in a context of natural interaction without any prior

instruction, both quantitatively and qualitatively. Hence, the

proposed approach is validated as an appropriate solution to

provide an assistance for AFM micromanipulation. However,

some users mention the fact that the method seems some-

times too predictive, weakening the impression of being in

control of the task.

VI. CONCLUSIONS

In this paper, a metaphor-free interface is proposed and

applied to the teleoperation of an AFM cantilever for a

virtual drag and drop task of microspheres. To achieve a

non symbolic interaction, an intention prediction model is

proposed, based on the natural invariant features of human

goal-directed movement. Without any instruction to users,

the predictivity of this model significantly improves the task

duration over the classical hand gesture recognition method.

In addition, the SUS questionnaire shows a 30.8% preference

of the users for the intention prediction model over the

hand gesture recognition approach. Hence, these results

confirm the metaphor-free approach as an interesting solution

for natural interaction. Furthermore, the proposed approach

enables manipulation tasks independently of the hand pose

and the fingers. Thus, this method can be generalized to

various systems, such as a mouse or a haptic arm. For

further improvements, the operator’s focus of attention can be

integrated to generalize the model to multitarget contexts. For

this purpose, an attentional module selects the more pertinent

target depending on the focus of attention of the user.
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S. Fatikow, “Remote microscale teleoperation through virtual reality
and haptic feedback,” in IROS, 2011 IEEE/RSJ International Confer-

ence on, pp. 894–900, IEEE, 2011.
[12] G. Millet, A. Lécuyer, J.-M. Burkhardt, D. S. Haliyo, and S. Régnier,
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