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This paper proposes an approach to detect social speech signals by computing segmental features using adaptation of segmental Hidden Markov Models (HMMs). This approach uses segmental HMMs and model adaptation techniques such as Maximum Likelihood Linear Regression (MLLR) and Maximum A Posterior (MAP) in order to acquire specific (or adapted) segmental HMMs that are fine-tuned to detect local regions of social signals such as laughter and fillers. Several segmental features are computed on automatically segmented audio with the specific segmental HMMs. Subsequently, the segmental features are used to detect social signals using Support Vector Machines (SVMs). The results indicate that the proposed segmental features play a significant role in detection of social speech signals.

Introduction

Despite the best efforts made over past two decades in speech recognition systems, detection of emotions and nonlinguistic vocalizations are still challenging tasks [START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism[END_REF][START_REF] Weninger | Localization of non-linguistic events in spontaneous speech by nonnegative matrix factorization and long short-term memory[END_REF]. Social speech signals such as laughter or fillers are most frequent vocalizations in our daily conversational speech. Several disciplines such as affective computing require tools and methods for automatically detecting social signals in speech. Traditional speech recognition frameworks have not been adequately focused on detecting nonlinguistic vocalizations such as laughs, sighs, hesitation sounds under a common and generic framework. One of the main reasons is that obtaining phonetic representation or a pronunciation dictionary for such vocalizations is an incredibly difficult task.

Schuller et al. [START_REF] Schuller | Discrimination of speech and nonlinguistic vocalizations by non-negative matrix factorization[END_REF][START_REF] Weninger | Localization of non-linguistic events in spontaneous speech by nonnegative matrix factorization and long short-term memory[END_REF] show that integrating likelihood features derived from Non-negative Matrix Factorization into Bidirectional Long Short-Term Memory Recurrent Neural Networks provides better results in terms of discriminating nonlinguistic vocalizations from speech. Most of previous studies (e.g. [START_REF] Truong | Automatic discrimination between laughter and speech[END_REF][START_REF] Knox | Automatic laughter detection using neural networks[END_REF]) on automatic laughter detection from audio are based on frame-level acoustic features as parameters to train machine learning techniques, such as Gaussian Mixture Models (GMMs), Support Vector Machines (SVMs). However, segmental approaches that capture higher-level events have not been adequately focused yet.

Pammi et al. [START_REF] Pammi | Detection of nonlinguistic vocalizations using alisp sequencing[END_REF], in a recent work, proposed a segmental approach to detect nonlinguistic vocalizations using ALISP (Automatic Language Independent Speech Processing) techniques. The main advantage of ALISP models is purely data-driven; and they can segment any audio signal into pseudo-phonetic units and provide corresponding segment labels. In the work, ALISP segmental models are adapted using Maximum Likelihood Linear Regression (MLLR) [START_REF] Leggetter | Maximum likelihood linear regression for speaker adaptation of continuous density hidden markov models[END_REF] and Maximum A Posterior (MAP) [START_REF] Gauvain | Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains[END_REF][START_REF] Chesta | Maximum a posteriori linear regression for hidden markov model adaptation[END_REF] techniques. The resulting adapted models can then be used to detect local regions of nonlinguistic vocalizations, using the standard Viterbi algorithm.

In this paper, we extend our previous approach further to compute additional segmental-level features by adapting generic segmental HMMs to vocalization specific segmental HMMs. The paper is organized as follows: Section 2 explains our approach to extract additional segmental features using adaptation of segmental HMMs. In Section 3, we present experimental evaluation of the proposed method on social signals corpora. Conclusions follow in Section 4.

Approach

This section describes our generic approach to compute segmental level features using adaptation of segmental HMMs. This methodology aims at obtaining specific segmental HMMs that are specialized in finding similar spectral regions of target vocalizations. We can obtain such models by applying model adaptation techniques on generic segmental HMMs that are trained using ALISP methodology. The specific segmental HMMs can facilitate Viterbi decoding algorithm to detect similar spectral regions from audio.

As shown in Figure 1, the workflow of this framework can be broadly divided into two stages: (i) the training of generic segmental HMMs on huge unlabeled audio corpus by using ALISP technology; (ii) the acquisition of specific segmental HMMs by adapting generic HMMs with MLLR and MAP techniques. In this approach, we intend to train vocalization specific segmental HMMs in order to find corresponding target regions in audio while decoding with Viterbi algorithm.

Generic segmental HMMs

Generic segmental HMMs are acquired using ALISP methodology [START_REF] Chollet | Towards ALISP: a proposal for Automatic Language Independent Speech Processing[END_REF][START_REF] Hannani | Text independent speaker verification[END_REF][START_REF] Padellini | Very low bit rate (vlbr) speech coding around 500 bits/sec[END_REF]. ALISP method is an established technique to train segmental HMMs in an unsupervised approach. According to this methodology, the set of ALISP models can be automatically acquired from unlabeled audio corpus through parameterization, temporal decomposition, vector quantization, and Hidden Markov Modeling. Firstly, temporal decomposition [START_REF]Efficient coding of lpc parameters by temporal decomposition[END_REF] is used to obtain an initial segmentation of the audio data into quasi-stationary segments after parameterization of audio. The detailed algorithm of interpolation functions used in temporal decomposition can be found in [START_REF] Bimbot | An evaluation of temporal decomposition[END_REF]. Secondly, unsupervised clustering of initial segments is performed via Vector Quantization [START_REF] Linde | An algorithm for vector quantizer design[END_REF]. In order to train robust models of ALISP units on the basis of the initial segments resulting from the Temporal Decomposition, the ALISP approach uses Hidden Markov Modeling techniques. HMM training is performed using the HTK toolkit [START_REF]HTK: Hidden Markov Model ToolKit[END_REF]. It is mainly based on Baum-Welch reestimations and an iterative procedure of refinement of the models. A dynamic split of the state mixtures is used to fix the number of Gaussians of each ALISP model. After this training step, one can obtain a set of generic segmental HMMs.

Specific segmental HMMs

The acquired generic models in the previous step can be used for obtaining pseudo-phonetic segments and corresponding labels. In this step, we adapt such models by providing supervised adaptation data of vocalizations. Firstly, the generic models segment the annotated audio and acquire segment labels using Viterbi decoding algorithm as shown in Figure 1. The pseudophonetic segmental labels, adaptation corpus and its annotation are required for the second-stage. Secondly, MLLR adaptation approach is applied to estimate a set of linear transformations for the mean and variance parameters for reducing mismatch between the initial generic segmental HMMs and the adaptation set. Finally, the model is further adapted (means, variances and transition probabilities) using MAP approach considering MLLR adapted model as prior knowledge. Therefore, adaptation of ALISP models uses MLLR followed by MAP approaches. In this way, the models are expected to deviate from each other for discriminating nonlinguistic vocalizations. Figure 1 illustrates the workflow used to obtain vocalization specific segmental HMMs.

Acquisition of specific segmental HMMs conceptually resembles a hierarchy in HMM modeling as shown in Figure 2.

Segmental feature extraction

The combination of specific segmental HMMs can be used for pseudo-phonetic segmentation. We compute segmental-level features on such pseudo-phonetic units that are acquired using Viterbi algorithm [START_REF] Young | Token passing: a conceptual model for connected speech recognition systems[END_REF] -a well established technique for decoding an HMM sequence of states. This decoding algorithm is used in order to transform an observed sequence of speech features into a string of recognized ALISP units. In this work, a combined set of adapted ALISP models are used to discriminate social vocalizations. Therefore, the labels of ALISP sequences generated from the Viterbi decoding are expected to follow a naming convention in order to support symbolic level post processing for computing segmental-level features.

The other main advantage of segmental HMMs is a possibility to operate on the level of symbols and symbolic sequences. Viterbi decoded sequence of labels contain timestamps of each segment and also corresponding maximum likelihood values. The segmental labels contain information about its hierarchy (Figure 2) of generic and specific segmental information. This information can be used as segmental cues for detection of social speech signals. In order to incorporate contextual features, we can also use a simple voting scheme that uses a sliding window on Viterbi decoded sequence to compute votes obtained for each class as a feature.

Experimental evaluation

In this section, we describe an experimental evaluation of the proposed method in comparison with baseline system [START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism[END_REF] in detection of social signals.

Corpora

As explained in Section 2, this method is a two-stage methodology that requires two different corpora. In the first stage, generic segmental HMMs (ALISP models) are trained with approximately 240 hours of speech corpus selected from 26 days of complete broadcast audio of 13 French radio streams.

SSPNet Vocalisation Corpus (SVC) [START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism[END_REF] is used in the second stage for supervised training in order to obtain specific segmental HMMs for each type of nonlinguistic vocalizations. The SVC audio corpora of social signals contains gold-standard annotations of laughter, filler and garbage. The corpus was extracted from a collection of 60 phone calls involving 120 subjects (63 female, 57 male). It contains 2763 utterances of duration about 11 seconds. Among them, we used 1583, 500, and 680 utterances for training (train), development (devel) and test (test) sets respectively. Overall, this corpus includes 1158 laughter (649 for train, 225 for devel, 284 for test), 2988 filler (1710 for train, 556 for devel, 722 for test) vocalizations. 

Baseline system

As described in [START_REF] Schuller | The interspeech 2013 computational paralinguistics challenge: Social signals, conflict, emotion, autism[END_REF], the base line system uses 141 feature descriptors per frame. The frame-wise features include MFCCs 1-12 and logarithmic energy are computed along with their first and second order delta regression coefficients. In addition, the features also include voicing probability, HNR, F0 and zerocrossing rate, as well as their first order deltas. Then, for each frame-wise feature descriptor the arithmetic mean and standard deviation across the frame itself and eight of its neighbouring frames (four before and four after) are calculated as additional features.

The baseline system used linear kernel Support Vector Machines (SVM) / Support Vector Regression (SVR), which are known to be robust against overfitting. As training algorithm, it uses Sequential Minimal Optimisation (SMO). The results of the baseline system are shown in Table 1.

Segmental HMMs: generic vs. specific

Generic segmental HMMs were trained using ALISP methodology with 240 hours of unlabeled radio corpus. The unlabeled audio corpus has been modeled by a set of 32 ALISP segmental HMMs (i.e. pseudo-phonetic HMMs) along with a silence model. This set can be considered as an universal acoustic model because of its training database includes all possible sounds such as music, laughter, advertisements. This set of models can be used not only for segmenting any audio, but also for getting pseudo-phonetic (symbolic) transcription. For the transcription, the segmentation system uses 32 ALISP symbols (such as HA, HB and H4), referring each of the segmental HMMs, in addition to a silence label (Hsil).

In the next step, we adapted the generic ALISP segmental HMMs into vocalization specific segmental HMMs by using nonlinguistic vocalizations as adaptation data. As shown in Figure 2, generic segmental HMMs were adapted to vo-calization specific segmental HMMs such as laughter-specific, filler-specific, and garbage-specific segmental HMMs. The 33 generic HMMs has been adapted to 99 (i.e. 33 * 3 types of vocalization categories) vocalization specific segmental HMMs. In order to facilitate combining the two sets, vocalization specific adapted models were renamed with its type of vocalization. For example, laughter-specific adapted models are renamed with HA to laughter-HA, H4 to laughter-H4, and so on. The combined set of the models (i.e. set of specific segmental HMMs) were used to segment social signals corpus using Viterbi algorithm.

A standard set of features that are typical for automatic recognition systems have been used for HMM modeling and adaptation. The parameterization of audio data is done with Mel Frequency Cepstral Coefficients (MFCC), calculated on 20 ms windows, with a 10 ms shift. For each frame, a Hamming window has been applied and a cepstral vector of dimension 15 was computed and appended with first order deltas.

Extraction of segmental cues

We computed segmental features for social speech signals as shown in Figure 3. The features from SF1 to SF6 are explained in the figure description. In order to take account of symbolic level contextual information, we compute features from SF7 to SF9 by counting the number of votes for each class descriptor. As described in Section 2.3, a sliding window counts 'yes/no' votes depending on whether symbols in its range belong to target vocalization. The sliding window size can be 3 and/or 5. For example, as shown in Figure 3, a sliding window of size 3 is used to compute the number of votes for each category; where laughter, filler, and garbage get 2, 0, and 1 votes respectively. In this work, we calculated such features using two sliding windows: one of its size 3; and another of its size 5.

Results and discussion

In order to understand the influence of segmental features, we trained with the same training algorithm, SVMs, used in the baseline system. C indicates SVM's complexity parameter.

Table 1 shows the results of detection of social speech signals. Initially, we trained SVMs with segmental features alone that are explained in Section 3.4. The Unweighted Average of Area Under Curve (UAAUC) measures [START_REF] Witten | Data Mining: Practical machine learning tools and techniques[END_REF] in detecting nonlinguistic vocalizations on development and test set are 90.9% and 86.73% respectively. When compared to the baseline system, we found at least 3% better performance using segmental features alone. Later, we also trained with a combined set of features (segmental features + baseline features). The performance is observed as 92.50% and 88.15% on development and test sets respectively in terms of UAAUC measures. Therefore, the system yields a consistent increase of 4.9% and 4.85% on the UAAUC measure when compared to baseline performance on development and test sets respectively.

[%] C Devel Test Baseline features only [ The segmental features show a clear positive impact on the performance of detection of nonlinguistic vocalizations. Interestingly, the acoustic modeling in HMMs and model adaptation uses a standard set of automatic speech recognition features (i.e. MFCCs and their deltas), and the segmental features alone performed at least 3% better than baseline system.

Conclusion

We described a data-driven approach in detection of social speech signals using adaptation of segmental HMMs. We used unsupervised ALISP methodology to obtain generic segmental HMMs. Then, we adapted generic segmental HMMs to vocalization specific segmental HMMs using MLLR and MAP supervised adaptation techniques.

In this paper, we mainly focused on extraction of additional segmental features that contain temporal structure of spectral distribution of social speech signals such as laughter and fillers. We computed several frame-wise segmental features and symbolic-level contextual features for detection of the social speech signals. When compared to the baseline system, the results consistently indicate that: the described segmental features alone yielded at least 3% better performance in terms of UAAUC; and a combined set of features that include baseline features yielded around 4.9% of increase in UAAUC.
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 1 Figure 1: Workflow of two-stage methodology for acquiring specific segmental HMMs that are adapted for each type of social signals: (i) training of generic segmental HMMs using ALISP-based unsupervised techniques; (ii) acquiring specific segmental HMMs that are tuned for specific vocalizations using supervised acoustic model adaptation techniques.

Figure 2 :

 2 Figure 2: Hierarchy in acquisition of specific segmental HMMs. In this work, 33 generic segmental HMMs are adapted into 99 (i.e. 33 * 3 types of vocalization categories) vocalization specific segmental HMMs.

Figure 3 :

 3 Figure 3: The segmentation is obtained by using vocalization specific segmental HMMs and Viterbi decoding algorithm. Segmental features (SFs) used for the detection of social speech signals are: SF1 -normalized frame position within segment (0 <= SF1 <= 1; i.e. 0.0 for segment's start frame; 1.0 for segment's end frame); SF2 -number of frames in current segment; SF3 -type-of predicted vocalization (i.e. class label); SF4 -type-of generic class label (i.e. ALISP label -hierarchical information); SF5 -segmental label predicted in Viterbi decoding; SF6 -maximum-likelihood estimated by Viterbi algorithm; SF7, SF8, SF9 -number of votes counted for each type of vocalization (i.e. laughter, filler, garbage);

Table 1 :

 1 Results on detection of laughter and fillers in audio

			1]	
	AUC[Laughter] 0.1	86.2%	82.9%
	AUC[Filler] UAAUC	0.1	89.0% 87.6%	83.6% 83.3%
	Segmental features only	
	AUC[Laughter] 0.1 90.90% 88.44%
	AUC[Filler] UAAUC	0.1 90.90% 85.02% 90.90% 86.73%
	Segmental features + baseline features
	AUC[Laughter] 0.1 92.60% 89.74%
	AUC[Filler] UAAUC	0.1 92.40% 86.55% 92.50% 88.15%
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