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Abstract

This paper proposes an approach to detect social speech
signals by computing segmental features using adaptation of
segmental Hidden Markov Models (HMMs). This approach
uses segmental HMMs and model adaptation techniques such
as Maximum Likelihood Linear Regression (MLLR) and Max-
imum A Posterior (MAP) in order to acquire specific (or
adapted) segmental HMMs that are fine-tuned to detect local
regions of social signals such as laughter and fillers. Several
segmental features are computed on automatically segmented
audio with the specific segmental HMMs. Subsequently, the
segmental features are used to detect social signals using Sup-
port Vector Machines (SVMs). The results indicate that the pro-
posed segmental features play a significant role in detection of
social speech signals.
Index Terms: Nonlinguistic vocalizations, Detection of social
signals, Hidden Markov Models, Model adaptation

1. Introduction
Despite the best efforts made over past two decades in speech
recognition systems, detection of emotions and nonlinguistic
vocalizations are still challenging tasks [1, 2]. Social speech
signals such as laughter or fillers are most frequent vocaliza-
tions in our daily conversational speech. Several disciplines
such as affective computing require tools and methods for auto-
matically detecting social signals in speech. Traditional speech
recognition frameworks have not been adequately focused on
detecting nonlinguistic vocalizations such as laughs, sighs, hes-
itation sounds under a common and generic framework. One of
the main reasons is that obtaining phonetic representation or a
pronunciation dictionary for such vocalizations is an incredibly
difficult task.

Schuller et al. [3, 2] show that integrating likelihood
features derived from Non-negative Matrix Factorization into
Bidirectional Long Short-Term Memory Recurrent Neural Net-
works provides better results in terms of discriminating non-
linguistic vocalizations from speech. Most of previous stud-
ies (e.g. [4, 5]) on automatic laughter detection from audio are
based on frame-level acoustic features as parameters to train
machine learning techniques, such as Gaussian Mixture Mod-
els (GMMs), Support Vector Machines (SVMs). However, seg-
mental approaches that capture higher-level events have not
been adequately focused yet.

Pammi et al. [6], in a recent work, proposed a segmental ap-
proach to detect nonlinguistic vocalizations using ALISP (Au-
tomatic Language Independent Speech Processing) techniques.
The main advantage of ALISP models is purely data-driven;
and they can segment any audio signal into pseudo-phonetic
units and provide corresponding segment labels. In the work,

Figure 1: Workflow of two-stage methodology for acquiring
specific segmental HMMs that are adapted for each type of
social signals: (i) training of generic segmental HMMs using
ALISP-based unsupervised techniques; (ii) acquiring specific
segmental HMMs that are tuned for specific vocalizations using
supervised acoustic model adaptation techniques.

ALISP segmental models are adapted using Maximum Likeli-
hood Linear Regression (MLLR)[7] and Maximum A Posterior
(MAP)[8, 9] techniques. The resulting adapted models can then
be used to detect local regions of nonlinguistic vocalizations,
using the standard Viterbi algorithm.

In this paper, we extend our previous approach further
to compute additional segmental-level features by adapting
generic segmental HMMs to vocalization specific segmental
HMMs. The paper is organized as follows: Section 2 ex-
plains our approach to extract additional segmental features us-
ing adaptation of segmental HMMs. In Section 3, we present
experimental evaluation of the proposed method on social sig-
nals corpora. Conclusions follow in Section 4.

2. Approach
This section describes our generic approach to compute seg-
mental level features using adaptation of segmental HMMs.
This methodology aims at obtaining specific segmental HMMs
that are specialized in finding similar spectral regions of tar-
get vocalizations. We can obtain such models by applying
model adaptation techniques on generic segmental HMMs that
are trained using ALISP methodology. The specific segmental
HMMs can facilitate Viterbi decoding algorithm to detect simi-
lar spectral regions from audio.

As shown in Figure 1, the workflow of this framework can
be broadly divided into two stages: (i) the training of generic



segmental HMMs on huge unlabeled audio corpus by using
ALISP technology; (ii) the acquisition of specific segmental
HMMs by adapting generic HMMs with MLLR and MAP tech-
niques. In this approach, we intend to train vocalization specific
segmental HMMs in order to find corresponding target regions
in audio while decoding with Viterbi algorithm.

2.1. Generic segmental HMMs

Generic segmental HMMs are acquired using ALISP method-
ology [10, 11, 12]. ALISP method is an established technique
to train segmental HMMs in an unsupervised approach. Ac-
cording to this methodology, the set of ALISP models can be
automatically acquired from unlabeled audio corpus through
parameterization, temporal decomposition, vector quantization,
and Hidden Markov Modeling. Firstly, temporal decomposi-
tion [13] is used to obtain an initial segmentation of the au-
dio data into quasi-stationary segments after parameterization
of audio. The detailed algorithm of interpolation functions used
in temporal decomposition can be found in [14]. Secondly, un-
supervised clustering of initial segments is performed via Vec-
tor Quantization [15]. In order to train robust models of ALISP
units on the basis of the initial segments resulting from the Tem-
poral Decomposition, the ALISP approach uses Hidden Markov
Modeling techniques. HMM training is performed using the
HTK toolkit [16]. It is mainly based on Baum-Welch reestima-
tions and an iterative procedure of refinement of the models. A
dynamic split of the state mixtures is used to fix the number of
Gaussians of each ALISP model. After this training step, one
can obtain a set of generic segmental HMMs.

2.2. Specific segmental HMMs

The acquired generic models in the previous step can be used
for obtaining pseudo-phonetic segments and corresponding la-
bels. In this step, we adapt such models by providing supervised
adaptation data of vocalizations. Firstly, the generic models
segment the annotated audio and acquire segment labels using
Viterbi decoding algorithm as shown in Figure 1. The pseudo-
phonetic segmental labels, adaptation corpus and its annotation
are required for the second-stage. Secondly, MLLR adaptation
approach is applied to estimate a set of linear transformations
for the mean and variance parameters for reducing mismatch
between the initial generic segmental HMMs and the adapta-
tion set. Finally, the model is further adapted (means, vari-
ances and transition probabilities) using MAP approach con-
sidering MLLR adapted model as prior knowledge. Therefore,
adaptation of ALISP models uses MLLR followed by MAP ap-
proaches. In this way, the models are expected to deviate from
each other for discriminating nonlinguistic vocalizations. Fig-
ure 1 illustrates the workflow used to obtain vocalization spe-
cific segmental HMMs.

Acquisition of specific segmental HMMs conceptually re-
sembles a hierarchy in HMM modeling as shown in Figure 2.

2.3. Segmental feature extraction

The combination of specific segmental HMMs can be used for
pseudo-phonetic segmentation. We compute segmental-level
features on such pseudo-phonetic units that are acquired using
Viterbi algorithm [17] – a well established technique for de-
coding an HMM sequence of states. This decoding algorithm
is used in order to transform an observed sequence of speech
features into a string of recognized ALISP units. In this work, a
combined set of adapted ALISP models are used to discriminate

Figure 2: Hierarchy in acquisition of specific segmental HMMs.
In this work, 33 generic segmental HMMs are adapted into 99
(i.e. 33 * 3 types of vocalization categories) vocalization spe-
cific segmental HMMs.

social vocalizations. Therefore, the labels of ALISP sequences
generated from the Viterbi decoding are expected to follow a
naming convention in order to support symbolic level post pro-
cessing for computing segmental-level features.

The other main advantage of segmental HMMs is a pos-
sibility to operate on the level of symbols and symbolic se-
quences. Viterbi decoded sequence of labels contain times-
tamps of each segment and also corresponding maximum like-
lihood values. The segmental labels contain information about
its hierarchy (Figure 2) of generic and specific segmental in-
formation. This information can be used as segmental cues for
detection of social speech signals. In order to incorporate con-
textual features, we can also use a simple voting scheme that
uses a sliding window on Viterbi decoded sequence to compute
votes obtained for each class as a feature.

3. Experimental evaluation
In this section, we describe an experimental evaluation of the
proposed method in comparison with baseline system [1] in de-
tection of social signals.

3.1. Corpora

As explained in Section 2, this method is a two-stage method-
ology that requires two different corpora. In the first stage,
generic segmental HMMs (ALISP models) are trained with ap-
proximately 240 hours of speech corpus selected from 26 days
of complete broadcast audio of 13 French radio streams.

SSPNet Vocalisation Corpus (SVC) [1] is used in the sec-
ond stage for supervised training in order to obtain specific seg-
mental HMMs for each type of nonlinguistic vocalizations. The
SVC audio corpora of social signals contains gold-standard an-
notations of laughter, filler and garbage. The corpus was ex-
tracted from a collection of 60 phone calls involving 120 sub-
jects (63 female, 57 male). It contains 2763 utterances of du-
ration about 11 seconds. Among them, we used 1583, 500,
and 680 utterances for training (train), development (devel) and
test (test) sets respectively. Overall, this corpus includes 1158
laughter (649 for train, 225 for devel, 284 for test), 2988 filler
(1710 for train, 556 for devel, 722 for test) vocalizations.



Figure 3: The segmentation is obtained by using vocalization specific segmental HMMs and Viterbi decoding algorithm. Segmental
features (SFs) used for the detection of social speech signals are: SF1 – normalized frame position within segment (0 <= SF1 <= 1;
i.e. 0.0 for segment’s start frame; 1.0 for segment’s end frame); SF2 – number of frames in current segment; SF3 – type-of predicted
vocalization (i.e. class label); SF4 – type-of generic class label (i.e. ALISP label – hierarchical information); SF5 – segmental label
predicted in Viterbi decoding; SF6 – maximum-likelihood estimated by Viterbi algorithm; SF7, SF8, SF9 – number of votes counted
for each type of vocalization (i.e. laughter, filler, garbage);

3.2. Baseline system

As described in [1], the base line system uses 141 feature de-
scriptors per frame. The frame-wise features include MFCCs
1–12 and logarithmic energy are computed along with their first
and second order delta regression coefficients. In addition, the
features also include voicing probability, HNR, F0 and zero-
crossing rate, as well as their first order deltas. Then, for each
frame-wise feature descriptor the arithmetic mean and standard
deviation across the frame itself and eight of its neighbouring
frames (four before and four after) are calculated as additional
features.

The baseline system used linear kernel Support Vector Ma-
chines (SVM) / Support Vector Regression (SVR), which are
known to be robust against overfitting. As training algorithm,
it uses Sequential Minimal Optimisation (SMO). The results of
the baseline system are shown in Table 1.

3.3. Segmental HMMs: generic vs. specific

Generic segmental HMMs were trained using ALISP method-
ology with 240 hours of unlabeled radio corpus. The unla-
beled audio corpus has been modeled by a set of 32 ALISP
segmental HMMs (i.e. pseudo-phonetic HMMs) along with a
silence model. This set can be considered as an universal acous-
tic model because of its training database includes all possi-
ble sounds such as music, laughter, advertisements. This set
of models can be used not only for segmenting any audio, but
also for getting pseudo-phonetic (symbolic) transcription. For
the transcription, the segmentation system uses 32 ALISP sym-
bols (such as HA, HB and H4), referring each of the segmental
HMMs, in addition to a silence label (Hsil).

In the next step, we adapted the generic ALISP segmen-
tal HMMs into vocalization specific segmental HMMs by us-
ing nonlinguistic vocalizations as adaptation data. As shown
in Figure 2, generic segmental HMMs were adapted to vo-

calization specific segmental HMMs such as laughter-specific,
filler-specific, and garbage-specific segmental HMMs. The 33
generic HMMs has been adapted to 99 (i.e. 33 * 3 types of vo-
calization categories) vocalization specific segmental HMMs.
In order to facilitate combining the two sets, vocalization spe-
cific adapted models were renamed with its type of vocaliza-
tion. For example, laughter-specific adapted models are re-
named with HA to laughter-HA, H4 to laughter-H4, and
so on. The combined set of the models (i.e. set of specific seg-
mental HMMs) were used to segment social signals corpus us-
ing Viterbi algorithm.

A standard set of features that are typical for automatic
recognition systems have been used for HMM modeling and
adaptation. The parameterization of audio data is done with
Mel Frequency Cepstral Coefficients (MFCC), calculated on 20
ms windows, with a 10 ms shift. For each frame, a Hamming
window has been applied and a cepstral vector of dimension 15
was computed and appended with first order deltas.

3.4. Extraction of segmental cues

We computed segmental features for social speech signals as
shown in Figure 3. The features from SF1 to SF6 are explained
in the figure description. In order to take account of symbolic
level contextual information, we compute features from SF7 to
SF9 by counting the number of votes for each class descriptor.
As described in Section 2.3, a sliding window counts ‘yes/no’
votes depending on whether symbols in its range belong to tar-
get vocalization. The sliding window size can be 3 and/or 5.
For example, as shown in Figure 3, a sliding window of size 3
is used to compute the number of votes for each category; where
laughter, filler, and garbage get 2, 0, and 1 votes respectively.
In this work, we calculated such features using two sliding win-
dows: one of its size 3; and another of its size 5.



3.5. Results and discussion

In order to understand the influence of segmental features, we
trained with the same training algorithm, SVMs, used in the
baseline system. C indicates SVM’s complexity parameter.

Table 1 shows the results of detection of social speech sig-
nals. Initially, we trained SVMs with segmental features alone
that are explained in Section 3.4. The Unweighted Average of
Area Under Curve (UAAUC) measures [18] in detecting non-
linguistic vocalizations on development and test set are 90.9%
and 86.73% respectively. When compared to the baseline sys-
tem, we found at least 3% better performance using segmental
features alone. Later, we also trained with a combined set of
features (segmental features + baseline features). The perfor-
mance is observed as 92.50% and 88.15% on development and
test sets respectively in terms of UAAUC measures. Therefore,
the system yields a consistent increase of 4.9% and 4.85% on
the UAAUC measure when compared to baseline performance
on development and test sets respectively.

[%] C Devel Test
Baseline features only [1]

AUC[Laughter] 0.1 86.2% 82.9%
AUC[Filler] 0.1 89.0% 83.6%

UAAUC 87.6% 83.3%
Segmental features only

AUC[Laughter] 0.1 90.90% 88.44%
AUC[Filler] 0.1 90.90% 85.02%

UAAUC 90.90% 86.73%
Segmental features + baseline features

AUC[Laughter] 0.1 92.60% 89.74%
AUC[Filler] 0.1 92.40% 86.55%

UAAUC 92.50% 88.15%

Table 1: Results on detection of laughter and fillers in audio

The segmental features show a clear positive impact on the
performance of detection of nonlinguistic vocalizations. Inter-
estingly, the acoustic modeling in HMMs and model adaptation
uses a standard set of automatic speech recognition features (i.e.
MFCCs and their deltas), and the segmental features alone per-
formed at least 3% better than baseline system.

4. Conclusion
We described a data-driven approach in detection of social
speech signals using adaptation of segmental HMMs. We used
unsupervised ALISP methodology to obtain generic segmental
HMMs. Then, we adapted generic segmental HMMs to vocal-
ization specific segmental HMMs using MLLR and MAP su-
pervised adaptation techniques.

In this paper, we mainly focused on extraction of addi-
tional segmental features that contain temporal structure of
spectral distribution of social speech signals such as laughter
and fillers. We computed several frame-wise segmental features
and symbolic-level contextual features for detection of the so-
cial speech signals. When compared to the baseline system, the
results consistently indicate that: the described segmental fea-
tures alone yielded at least 3% better performance in terms of
UAAUC; and a combined set of features that include baseline
features yielded around 4.9% of increase in UAAUC.
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