
HAL Id: hal-02428561
https://hal.sorbonne-universite.fr/hal-02428561

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding Source Code Variability in Cloned
Android Families: an Empirical Study on 75 Families

Anas Shatnawi, Tewfik Ziadi, Mohamed Yassin Mohamadi

To cite this version:
Anas Shatnawi, Tewfik Ziadi, Mohamed Yassin Mohamadi. Understanding Source Code Variability in
Cloned Android Families: an Empirical Study on 75 Families. 26th Asia-Pacific Software Engineering
Conference (ASPEC 2019), Dec 2019, Putrajava, Malaysia. �10.1109/APSEC48747.2019.00047�. �hal-
02428561�

https://hal.sorbonne-universite.fr/hal-02428561
https://hal.archives-ouvertes.fr


Understanding Source Code Variability in Cloned
Android Families: an Empirical Study on 75

Families
Anas Shantawi, Tewfik Ziadi, Mohamed Yassin Mohamadi

Sorbonne University, CNRS, LIP6, F-75005 Paris, France
anas.shatnawi@lip6.fr, tewfik.ziadi@lip6.fr, em_mohamadi@esi.dz

Abstract—Software developers rely on the clone-and-own ap-
proach to rapidly develop software product variants (PVs) that
meet variability in market needs. To improve the comprehension
of how PVs are evolved and varied, we analyze the clone-and-
own practices applied by developers of these PVs. We perform
an empirical study on 75 android families to gain insights
about observable phenomena related to the commonality and
variability between the source code of PVs of these families.
In particular, we study three research questions to identify the
commonality and variability related to the organization of source
code files, cloning Java methods, and configuration parameters
of AndroidManifest.xml files. The results show that cloning
packages, Java files and Java methods is a common practice
used by developers of all android families. Maintainers should
put efforts for managing the diverse implementations (bodies) of
the modified cloned methods and it is essential to consider the
commonality and variability of configuration parameters.

Index Terms—clone-and-own reuse, source code, commonality
and variability, android families, SPL

I. INTRODUCTION

Mobile applications should be in variants to follow differ-
ences in market needs and users’ demands [1]. The use of the
clone-and-own approach becomes a common practice used by
developers to rapidly customize existing applications to meet
variability in market needs [2] [3] [4].

Businge et al. [1] define an android family as a group of
PVs (i.e., android applications) developed and maintained in
GitHub in terms of a mainline and its forks that are published
in Google Play as different products. As results of their study,
Businge et al. [1] identify 88 android families based on the
analysis of the clone-and-own in fork-based development in
GitHub. These families are implemented using 88 mainlines
and 127 forks.

As a practical example, among 1200 forks of the bitcoin-
wallet/bitcoin-wallet1 git repository of the Bitcoin Wallet2,
Businge et al. [1] identified that 10 forks are customized
to produce 10 distinguishable android applications offered in
Google Play (Globaltoken Wallet3, Europecoin Wallet4, Fair-
Coin Wallet5, etc.) [1]. Consequently, the mainline together
with the 10 forks constitute a family of 11 PVs.

1https://github.com/bitcoin-wallet/bitcoin-wallet
2play.google.com/store/apps/details?id=de.schildbach.wallet&hl
3play.google.com/store/apps/details?id=org.globaltoken.wallet&hl
4play.google.com/store/apps/details?id=madzebra.erc.wallet&hl
5play.google.com/store/apps/details?id=de.schildbach.wallet.faircoin&hl

Figure 1. Number of LOCs of 11 PVs of the Bitcoin Wallet android families

Understanding the source code commonality and variability
inside all these families improve the comprehension of how
their PVs are evolved through the different forks. In addition,
it can radically change the way how these PVs are maintained
and managed by reengineered them to a systematic reuse
framework such as Software Product Line Engineering (SPLE)
[5]. SPLE allows us to maintain a set of PVs in parallel by
managing the commonality and the variability between PVs.
Indeed, many recent work have been proposed in the last years
to extract SPL from cloned PVs such as [4] [6] [7] [8] [9].

For android families, understanding source code variability
concerns three main dimensions: (i) the organization of the
source code files through the PVs, (ii) the Java source code
variability that concerns the implementation of the different
PVs, (iii) the configuration parameters that define important
information about android application variants to the android
build tools, the android operating system, and Google Play.

As a motivation example, we identify the number of LOCs
composing the source code of each PV of the Bitcoin Wallet
android family in Figure 1. The diversity in the numbers of
LOCs implies the existence of variability between the source
code of these 11 PVs. However, this does not provide a precise
knowledge about how this variability is realized compared
to the three mentioned dimensions. To do so, we need to
understand the commonality and variability of source code
elements in terms of what packages, Java files, Java methods
and configuration parameters are added, deleted, or modified.

In this paper, we perform an empirical study to gain insights
about observable phenomena of the commonality and variabil-
ity across the source code of PVs of 75 android families from



the results of Businge et al. [1]. The goal of such phenomena
is to support maintainers to understand the clone practices in
the android families which helps them to take maintenance
decisions related to these PVs. We select the 75 families due
to the availability of their source code on GitHub repositories
and their PVs are published on Google Play. Our empirical
study is guided based on three Research Questions (RQs) that
are related to three dimensions discussed above:

• RQ1: what is the commonality and variability in the
organization of source code files of PVs? We identify
the impact of clone practices on the source code orga-
nization including adding, removing and modifying Java
files and packages. To study this, we rely on similarities
and differences in packages and Java files composing PVs
of the 75 android families.

• RQ2: what is the commonality and variability related
to the cloned Java methods across PVs? We study the
commonality and variability corresponding to the cloned
Java methods across source code files of PVs in terms
of adding, removing and modifying methods. We identity
exact cloned methods and modified cloned methods based
on analyzing the similarities and differences between
headers and bodies of these methods in different PVs
of the 75 android families.

• RQ3: what is the commonality and variability in the
configuration parameters of android applications of
PVs? We investigate the influence of clone practices in
the variability of configuration parameters (e.g., access
permissions, activities...) that characterize the android
applications corresponding to the PVs. We identify the
configuration variability by analyzing the AndroidMan-
ifest.xml files of PVs to identify common and variable
configuration parameters.

The results show that developers rename some packages of
cloned Java files in different PVs of 90.66% android families
(the Oracele’s name convention pattern). Also, we identify
that cloning exact method is a common practice used by
developers of all families and developers modify the body of
cloned methods but with low percentage in many families.
Configuration parameters of PVs of families are varied and it
is essential to consider their commonality and variability while
maintaining these families.

The contributions of this paper are:
• To the best of our knowledge, our study is the first

empirical study that performs a deeply analysis of the
source code variability of PVs of 75 android families.

• We define seven software metrics to measure the com-
monality and variability in PVs.

• We propose a methodology for understanding code vari-
ability at different variability dimensions (organization,
implementation details and configuration parameters).

• We develop a parameterized tool that realizes the pro-
posed methodology for understand code variability and it
works for any java-based family.

The rest of this paper is organized as follows. We describe

Figure 2. The size of PVs of android families

the dataset of 75 android families and their PVs in Section
II. Then, we discuss our methodology to answer research
questions in Section III. Next, we discuss the results of
answering the three research questions in Section IV. We
discuss the usefulness of the results of our empirical study
and the threats to validly in Section V. Related works are
discussed in Section VI. We conclude our empirical study and
draw future directions in Section VII.

II. DATASET OF ANDROID FAMILIES

Businge et al. [1] identified 88 android families in terms
of PVs developed and maintained together based on the
clone-and-own approach in fork-based development in GitHub
repositories. Each family is a composition of one mainline
PV and its forks represent other PVs. To identify the 88
families, they developed a search methodology to guarantee
that: (i) each family consists of at least two PVs (the mainline
and at least one active fork), and (ii) each PV has a unique
corresponding application offered in the Google Play. For
details of their identification methodology please refer to [1].

In our study, we include 75 real android families in which
all of their PVs are implemented using Java and their corre-
sponding GitHub repositories are still accessible as public. We
exclude 13 families due to that: (i) the PVs are implemented
using non-Java languages (e.g., C++ and Kotlin), (ii) the
GitHub repositories of PVs are not found, (iii) the PVs do not
have any commonality in their source code files at all levels
of abstraction and (iv) PVs of one family are exactly identical
products. We consider as input for our study the source code
of the last commit6 of each PVs of the 75 families.

Figure 2 presents the numbers of Lines Of Code (LOCs)
and Java files of PVs7 to better understand the nature of the
families used in our study. We have a diversity in terms of the
number of PVs composing each family (2, 3, 4, 5, 6, 11 PVs)
and the number of LOCs and Java files of these PVs. We have
families composed of PVs including very similar numbers of
LOCs and Java files and families composed of PVs having
varied numbers of LOCs and Java files. Moreover, Businge et
al. [1] reported the diversity of developers of PVs of the same

6We downloaded last commits of product variants in March 2019.
7Software metrics are calculated using the Understand tool, and the statistics

are identified using the XLSTAT tool.



families in which 74% of forks (94 out of the 127 forks) do
not have any mutual developers with their mainlines.

III. METHODOLOGY FOR ANSWERING RESEARCH
QUESTIONS

A. General Methodology to Identify Commonality and Vari-
ability

To understand variability and to identify the statistical
data describing the commonality and variability across PVs
of each android family, we develop a process presented in
Figure 3. This process extends the BUT4Reuse (Bottom-Up-
Technologies for Reuse) framework [9] to analyze common-
ality and variability corresponding to each RQ. We select to
extend BUT4Reuse because: (i) it is generic that allows to use
it to analyze different software artifact types (e.g., source code
and XML configuration files), and (ii) it is an open-source
extensible framework that allows us to (re)implement new
algorithms, visualization capabilities and metric extractors.

To compare PVs, BUT4reuse is based on three main steps:
identifying elements, identifying blocks and identifying vari-
ability metrics.

(1) Identifying elements. It aims to identify the set of
elements from each PV. BUT4Reuse allows us to define the
granularity of the elements to be identified corresponding to
each RQ. For the same PV, we can select from coarse to
fine granularity (e.g., package level versus statement level
for source code). To identify the elements corresponding to
each RQ, we extend BUT4Reuse by integrating two parsers:
Java and XML parsers. The Java parser aims to break the
source code of PVs into packages and Java files for RQ1,
and methods for RQ2. It relies on the Abstract Syntax Tree
(AST) of JDT.The XML parser aims to identify a set of XML
tags corresponding to configuration parameters based on the
analysis of AndroidManifest.xml files of PVs.

(2) Identifying blocks. It aims to identify the commonality
in terms of interdependent similar elements across PVs and
the variability in terms of dissimilar elements across PVs.
Based on a user-defined similarity metric between any pair
of elements, a set of elements is considered as interdependent
if and only if they belong to exactly the same PVs. We perform
this identification based on reusing algorithms implemented in
BUT4Reuse which automatically identify sets of elements that
correspond to the distinguishable features from PVs. These
sets of elements are named Blocks. Each block contains a set
of interdependent elements belonging to exactly the same PVs.

We categorize the identified blocks into complete common,
partial common and product exclusive blocks based on the
number of PVs sharing the interdependent elements of blocks,
as presented in Figure 4. The complete common block includes
elements that are interdependent in all PVs of the android
family. The partial common blocks contains elements that are
interdependent in subsets of PVs but not all of them. The
product exclusive blocks are composed of elements that are
specific to individual PVs and does not have any interdepen-
dent relation with other elements in other PVs.

(3) Identifying variability metrics. We measure the com-
monality and variability by performing statistics that describe
behaviour of PVs based on the complete common, partial com-
mon and product exclusive blocks. We define a set of common-
ality and variability metrics to measure four characteristics: the
complete commonality in all PVs, the partial commonality
in subsets of PVs, the product exclusive variability and the
general variability degree.

1) Complete commonality across all PVs: this aims to
measure the interdependent code elements in all PVs. We
define two metrics: (i) percent of complete common block
(%CCB) and (ii) percent of complete common elements
(%CCE). We measure %CCB based the ratio between the
complete common block and the total number of identi-
fied blocks (#ofCompleteCommonBlocks

#ofIdentifiedBlocks ) and %CCE based
on the ratio between number of elements of common
block and number of elements of all identified blocks
(#ElementsInCompleteCommonBlock

#DistinctElementsInAllPV s ). %CCB and %CCE val-
ues are always situated in [0–1]. The higher values mean that
all PVs share more identical code elements and vice versa.

2) Partial commonality in subsets of PVs: this aims to
measure the interdependent code elements across a subset of
PVs. We define two metrics (i) percent of partial common-
ality block (%PCB) and (ii) percent of partial commonality
elements (%PCE). %PCB is the ratio between the number
of partial common blocks and the total number of iden-
tified blocks (#ofPartialCommonBlocks

#ofIdentifiedBlocks ), and %PCE is the
ratio between the number of elements of partial common
blocks and the total number of elements of all identified
blocks (#ElementsInPartialCommonBlocks

#DistinctElementsInAllPV s ), Values of %PCB
and %PCE are situated in [0–1]. The higher values mean that
PVs share more interdependent code elements and vice versa.

3) Product exclusive variability: it measures the code ele-
ments that are exclusive only for individual PVs. We define
two metrics (i) percent of product exclusive blocks (%PEB)
and (ii) percent of product exclusive elements (%PEE).
%PEB refers to the ratio between the number of product
exclusive blocks and the total number of identified blocks
(#ofProductExclusiveBlocks

#ofIdentifiedBlocks ). %PEE is calculated based on the
ratio between the number of elements of product exclusive
blocks to the total number of elements of all identified blocks
(#ElementsInProductExclusiveBlocks

#DistinctElementsInAllPV s ). Values of %PEB and
%PEE are situated in [0–1]. The higher values mean that PVs
are different from each others.

4) General variability degree (GVD): it aims to measure
the diversity between PVs of an android family based on
the ratio between the number of identified blocks and the
maximum number of possible blocks (

GVD = #ofIdentifiedBlocks
(2#ofPV s−1)

). The values of GVD are situated in [0–1]. The height value
refers to more diversity between PVs. If GVD = 1, then PVs
reach the maximum possible diversity level. If GVD = 0, then
PVs are identical in their source code.

We identify the seven commonality and variability metrics
for each android family for the three RQs. Then, we use the
XLSTAT tool to analyze these metrics.



Figure 3. Process to identify variability for answering the research questions

Figure 4. Commonality and variability using blocks of interdependent
elements

B. Specific Methodology for Research Questions

In this section, we present the specific methodology used to
answer each research question.

1) RQ1: What is the Commonality and Variability in the
Organization of Source Code Files of PVs: We compare PVs
based on packages and Java files constituting these PVs. We
consider packages and Java files as representative of the source
code organization (i.e., an android application is structured in
terms of .java files organized in packages based on their cate-
gories or functionalities). To understand the general behaviour
of cloning practices related to adding and deleting packages
and Java files across PVs, we study the amount of the com-
monality and variability of packages and Java files across PVs.
We identify if the cloning of PVs causes the resettlement of
the same packages and Java files from one package to another
across different PVs of the same family based on the analysis
of the commonality and variability based on two scenarios.
In the first scenario, we consider as interdependent pack-
ages and Java files those sharing exactly their full qualified
names across PVs (e.g., com.preminer...BitcoinIntegration.java
should be identical across PVs). In the other sce-
nario, we consider those sharing only the same base-

names across PVs (com.preminer...BitcoinIntegration.java and
de.schildbach.wallet...BitcoinIntegration.java8 are equal Java
files organized in different packages). We test the amount of
commonality and variability corresponding to packages and
Java files of the two scenarios by comparing the values of the
seven metrics. If the values of these metrics are different in
the two scenarios, then the resettlement of packages and Java
files across PVs exists. Otherwise, there are no resettlement
of packages and Java files across PVs.

2) RQ2: What is the Commonality and Variability Related
to the Cloned Java Methods across PVs: We compare PVs
based on methods implemented in the cloned Java files across
different PVs (i.e., methods of classes having the same base-
name across the PVs). We focus on Java methods because they
implement the behaviour of functionalities of PVs.

We identify Java method variability based on similarities
and differences in their headers and bodies to allow main-
tainers to understand the types of variability existed in cloned
methods. We focus on two types of cloned methods: exact
cloned methods and modified cloned methods.

Exact cloned methods are methods having identical head-
ers and bodies across PVs of the same family. This represents
type-1 method cloning [10]. We identify these methods by
defining the similarity metrics of But4Reuse to detect as
interdependent methods only those having identical headers
and bodies except for white spaces.

Modified cloned methods are methods having the exact
identical headers but different bodies across cloned Java files
of PVs of the same family. This type of cloned methods
includes type-2 and type-3 method cloning [10] because we
consider bodies as different if they have at least one vari-
ation in their identifiers, literals, types, layout, comments or
statements. We give attention to these types of cloned methods
because they need a special processing corresponding to merge

8Real examples from the Bitcoin Wallet android families of 11 PVs



Figure 5. RQ1: the commonality and variability of packages and Java files across PVs

these method bodies while reengineering PVs to SPLs. To
identify these methods, we define the similarity metrics of
But4Reuse between any pair of methods as follows. Methods
are consider as interdependent ones if and only if they have
the exact identical headers and different bodies across PVs.

3) RQ3: What is the Variability in the Configuration Pa-
rameters of Android Applications of PVs: We compare PVs
based on the configuration parameters identified from XML
tags in the AndroidManifest.xml9 of each PV. Developers use
these XML tags to configure parameters for characterizing
important information concerning each PV to the Android
operating system, the build tools and the Google Play store. We
consider in our study configuration parameters that describe:

• The android application components of PVs including
Activities, Services, Broadcast Receivers and Content
Providers. This enables to identify the commonality and
the variability in application components of PVs.

• The permissions granted to PVs to access private user
data or to perform sensitive operations (e.g., send SMS,
access camera, etc.). This allows us to test how develop-
ers change permissions of PVs.

• The package names of PVs that are used by the Android
build tools to identify the directory of source code files.
This enables to check whether PVs source code files are
replaced or not while cloning them.

• The hardware and software features defining the device
compatibility of PVs. This allows us to identify if PVs
are customized to be compatible with different devices.

IV. RESULTS FOR ANSWERING RQS

A. RQ1: What is the Commonality and Variability in the
Organization of Source Code Files of PVs?

In Figure 5, we present the box plots of the seven metrics
corresponding to the two scenarios of the full qualified name
vs the base-name of packages and Java files of PVs in all
families. As all of the box plots are tall, families hold quite
different patterns compared to their commonality and variabil-
ity elements in both scenarios of base-name and full qualified
name. The results show that we have more commonality
(%CCE and %PCE are increased) and less variability (%PPE
is decreased) when the base-name is considered compared to

9https://developer.android.com/guide/topics/manifest/manifest-intro

the full name for 90.66% (68/75) families. We observe that the
reason behind these different values is that developers rename
some root packages in different PVs while keeping the same
sub-packages of cloned Java files. These cloned Java files are
identified as interdependent ones across PVs only when we
consider their base-names. We interpret this observation by
the Oracle’s naming conventions10 as a clone practice where
companies should start their package names by reversing their
Internet domain name. For example from 11 PVs of the Bitcoin
Wallet family, we find that 8 PVs have the same root packages
as de.schildbach.wallet while they have been changed in 3 PVs
to com.hivewallet, com.viacoin.wallet and com.preminer.

For 9.33% (7/75) families, we identify that their PVs have
exactly the same commonality and variability level based on
the identical values of our commonality and variability metrics
in the two scenarios. This means that clone practices in these
families do not include any resettlement in the organization of
PVs and they do not adhere to the Oracle’s naming conventions
(they are anti-patterns).

We note that the complete commonality (%CCB and
%CCE) is decreased in favour to the partial commonality
(%PCB and %PCE) when the number of PVs is increased.
Also, the exclusive variability is decreased for families of
large number of PVs compared to those of small number of
PVs based on %PEB and %PEE. For GVD, it is decreased
as well as the number of PVs is increased. The GVD reaches
the peak (GVD = 1) for most of families of 2 PVs because
the maximum number of possible blocks is 3: common block
and 2 exclusive ones for each PV. We find that 2 families
have identical packages and Java files in their PVs (have one
interdependent common block) and 5 families that one PV is
subset of the other PV in terms of packages and Java files
(have 2 blocks: 1 common: 1 exclusive).

B. RQ2: What is the Commonality and Variability Related to
the Cloned Java Methods across PVs?

Based on the results of RQ1, we consider that Java files
having the identical base-names across PVs as the same cloned
Java files.

1) Exact Cloned Methods: Figure 6 shows the results of
the commonality and variability metrics corresponding to the
exact cloned methods across PVs. The results of these metrics

10https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html



Figure 6. RQ2: the commonality and variability of exact cloned methods

show that cloning exact method (type-1) is a common practice
used by developers of the 75 families.

The very short box plot of %CCB shows a sort of agreement
between families in terms of the existence of a common
block of exact cloned methods and its percentage compared
to shared and exclusive blocks identified in these families.
This percentage of the common block is relatively decreased
compared to the number of PVs composing the families. We
find that the centrality of this percentage is between 29% and
33% where the mean and the median are placed respectively.

The relatively tall box plot of %CCE shows a disagreement
in terms of the number of exact cloned methods in all PVs
of different families. The number of exact cloned methods
compared to the complete commonality is less than 8% for
24% (18/75) of the families, more than 72% for 20% (15/75)
of the families, and between 8% anf 72% for 56% (42/75)
of the families. We find that the number of the exact cloned
methods in all PVs of a given family is decreased relatively
when this family has more PVs.

Concerning the partial commonality, the box plots of %PCB
and %PCE show the percentages of the shared blocks com-
pared to common and exclusive blocks and the number of
exact cloned methods compared to the partial commonality.
As all families of 2 PVs do not have any partial commonality
naturally, the box plots of %PCB and and %PCE are very short
and their centrality is at 0. The values of %PCB and %PCE are
increased compared to the number of PVs composing families
(more PVs means more partial commonality). By comparing
%PCB with %CCB and %PCE with %CCE, we find that the
complete commonality of exact cloned methods is transformed
to the partial commonality as well as more PVs are cloned in
a given family. The reason is that new cloned PVs may not
consider a subset of exact cloned methods corresponding to
the complete commonality which transforms these methods
to be a part of the partial commonality. For instance, in the
family of 11 PVs, we identify that 1.8% of the methods are
exact cloned methods in the 11 PVs (complete commonality)
compared to 33.1% of the methods are extract cloned ones
across subsets of these 11 PVs (partial commonality).

Figure 7. RQ2: the commonality of modified cloned methods

The results of %PEB and %PEE indicate to product exclu-
sive methods that are not cloned across PVs. The short box
plot of %PEB means families have an agreement in terms
of the percentage of exclusive blocks compared to common
and shared blocks. The tall box plot of %PEE denots to that
families have different amounts of product exclusive methods.
This means that PVs have different amounts of product-
exclusive feature extensions. The box plot of GVD shows that
most of families reach a high variability degree compared to
the exact cloned methods across the PVs. Large families have
less general diversity compared to small ones, e.g., all families
of 2 PVs reach the maximum possible diversity level (GVL =
1), while the family of 11 PVs is considered relatively similar
(GVD is 4%).

2) Modified Cloned Methods: We provide the results of
the complete and partial commonality metrics corresponding
to modified cloned methods in Figure 7. As all box plots are
comparatively short ones, we have a sort of agreement between
different android families in terms of the number of modified
cloned methods compared to all methods of the corresponding
family. %CCB and %CCE show that 98.6% (74/75) of android
families have applied modified cloned methods across all PVs
in which each PV has a different implementation of the same
method. The centrality of the box plot is between 1% and
6% of the methods are modified cloned methods. The outliers
of this centrality is realized in terms of 4 families that have
15%, 16.5%, 48.6%, and 57.8% of their methods as complete
modified cloned methods.

Based on %PCE, all families of 3, 4, 5, 6 and 11 PVs
contain modified cloned methods in subsets of their PVs. The
%PCE of families of 2 PVs is zero because families of 2 PVs
cannot have a partial commonality. In general, the centrality
pattern of %PCE for families of 4, 5, 6 and 11 PVs is between
6% and 17% of their methods as modified cloned methods in
subsets of the PVs. We have one outlier family that have 39.3%
of its methods. For families of 3 PVs, the centrality pattern of
%PCE is between 1.8% and 3.9%.



Figure 8. RQ3: The commonality and variability of configuration parameters

C. RQ3: What is the Variability in the Configuration Param-
eters of Android Applications of PVs?

The results of the commonality and variability metrics are
presented in Figure 8. %CCB is reduced in favor of %PCB
as well as families have more PVs. We find that the main
reason of this reduction in %CCB is mainly due to the
differences in the application components (Activities, Services,
Broadcast Receivers and Content Providers) compared to slice
differences in the other parameters in PVs of the same families.

The box plot of %CCB is comparatively short that means all
families have the same pattern in terms of the ratio between the
common block and the total number of identified blocks. On
the other hand, the box plot of %CCE is very tall. Therefore,
families hold quite different patterns in terms of the volume
of complete common configuration parameters. The reason
behind the tall box plot is the outliers of some families.
For examples, we identify one family that has no common
parameters in its PVs and 4 families that their PVs have exactly
the same configuration parameters.

Unlike %CCB and %PCB, %CCE is not reduced in favor
of %PCE by comparing %CCE and %PCE of the same
families. For example in the family of 11 PVs, the number
of configuration parameters in the common block are equal to
those in the shared blocks (%CCB = %PCB = 32). Therefore,
it is not important to have less complete commonality if we
have extra partial commonality. Based on the comparatively
tall box plots of % PEE, families have disagreement in terms
of variability degree in their configuration parameters.

V. DISCUSSIONS

A. How the Results Help Maintainers?

The results obtained in our empirical study provide useful
information for maintainers of cloned android families. As we
find that most of android families follow the Oracele’s name
convention that makes packages and Java files that have the
exact identical base-names and different full qualified names
across PVs are the same cloned Java files, we recommend to
ignore the differences in full qualified names related to the

variability of root packages of PVs of these families to be
able to identify cloned method variability.

The cloning exact method is a common practice used by
developers of all families. This produces a large number of
methods that have the exact headers and bodies across all or
a subset of PVs. To better maintain (e.g., fixing bugs) these
cloned methods, we recommend to reengineer these cloned
methods to construct reusable software libraries (i.e., APIs).

The presence of modified cloned methods in PVs highlights
challenges to be encountered during reengineering these PVs
to SPLs. Such challenges are related to merge the different
implementations (bodies) of the same cloned methods by
creating reusable and representative abstractions for the SPL
core assets. We recommend to reuse existing approaches that
contribute to cope with method merging challenges [11] [12].
Also, configuration parameters of PVs of android families are
varied and it is essential to consider their commonality and
variability while migrating these families to SPLs.

B. Threats to Validity

Internal validity. While measuring the partial commonality
using %PCB and %PCE metrics, we treat all shared blocks
equally without considering the number of PVs represented by
each shared block. This means that our results do not represent
this dimension in a deep way.

To obtain the commonality and variability metrics, we
extend the But4Reuse tool by adding two components for
parsing Java source code and XML files of PVs. We rely
on the Eclipse Java development tools and the DOM parsers
that are well-tested, evaluated and used in several tools and
research papers. DOM is officially recommended by the World
Wide Web Consortium (W3C). For identifying blocks, we
use But4Reuse intersection algorithms that are also tested in
several research papers [?] [9]. To mitigate related threats, we
validate the correctness of our extension of But4Reuse based
on the Java unit test and the manual validation of toy examples.

External validity. The main concern against the gener-
alizability of our results is that we rely on a dataset of
open-source android families developed in GitHub repositories
based of fork-based development. Therefore, our results cannot
be generalized for android families developed using other
clone practices in the industrial companies.

VI. RELATED WORK

To the best of our knowledge, our study is the first empirical
study that performs a deeply analysis of the source code
variability of PVs of 75 android families. We identify two
crosscutting domains: analyzing reuse in android ecosystem
and reengineering PVs to SPLs.

Analyzing reuse in android ecosystem. Li et al. [13]
analyzed 1.5 million android applications and classified them
to 75,963 different families. They identified applications de-
veloped by the same company based on package name and the
certificate signed by developers. They only performed a high
abstract code comparison to remove potential outliers. The re-
sulting families are not open-source. Thus, we cannot include



them in our study. Businge et al. [1] identified 88 android
families by analyzing the fork-based clone-and-own in GitHub.
Businge et al. [1] studied four research questions to analyze:
the characteristics of android families, the behaviour of pull
requests, the diversity of developers of PVs, and the type of
product customization. Shatnawi et al. [14] [15] invested the
reuse practices of android APIs to identify reusable compo-
nents corresponding to functionalities of android APIs. They
extracted reuse practices in terms of frequent usage patterns of
API classes and methods by analyzing how developers reused
classes and methods of android APIs in their applications.
Mojica et al. [16] studied 200,000 applications (not families) to
analyze the inheritance, library and framework reuse practices
in these applications based on class signatures. However, none
of these existing studies performed a deep analysis of the
source code commonality and variability in android families
related to our RQs.

Reengineering PVs to SPLs. Different approaches were
proposed to support reengineering PVs to SPLs. These ap-
proaches aim to identify features [6] [9], software product
line architectures [4] [8], reusable assets [7] [17], and fea-
ture model synthesis [18] [19] . They analyze variability
between PVs based on several algorithms including FCA [4]
[19], interdependent element identification [9], latent semantic
indexing [6], clustering algorithm [17] and clone detection
[20]. Although these approaches contribute to manage the
commonality and variability of PVs by reengineering to SPLs,
their aim is not to understand the commonality and variability
patterns based on empirical studies on cloned android families.
We plan to adapt a number of these approaches to migrate
android families into SPLs in our future works.

VII. CONCLUSION AND FUTURE WORKS

We performed an empirical study on 75 android families
developed using clone-and-own approach in fork-based de-
velopment. We investigated three main RQs for analyzing
the commonality and variability of: (i) the organization of
source code files, (ii) the cloning of Java methods and (iii)
the configuration parameters in PVs of the 75 families.

We defined seven software metrics to measure the common-
ality and variability and proposed a methodology to extract
values of these metrics for corresponding to the three RQs. We
automated this methodology as an extension of But4Reuse.

The results of our empirical study show that developers of
90.66% of families rename root packages in different PVs
while keeping the same sub-packages of cloned Java files
following the Oracele’s name convention pattern. Regarding
the cloning of Java methods, we identify that cloning exact
method is a common practice used by developers of all
families and developers modify the body of cloned methods
but with low percentage in most of families. The presence
of modified cloned methods in PVs indicates that maintainers
should put efforts for merging the diverse implementations
(bodies) of the same cloned methods for creating reusable
abstracted methods for the SPL core assets. The variability
in configuration parameters are due to the differences in the

application components (Activities, Services, Broadcast Re-
ceivers and Content Providers) compared to slice differences
in the other parameters in PVs of the same families.

As future works, we plan to identify more cloned families
from open-source repositories, to analyze the variability over
time based on the version history and to reengineer the cloned
android families into SPLs.

ACKNOWLEDGMENT

This work was supported by the ITEA 3 REVaMP2 project.

REFERENCES

[1] J. Businge, M. Openja, S. Nadi, E. Bainomugisha ,and T. Berger, “Clone-
based variability management in the android ecosystem,” in ICSME.
IEEE, 2018, pp. 625–634.

[2] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in ICSME. IEEE, 2014, pp. 391–400.

[3] V. Saini, H. Sajnani, and C. Lopes, “Cloned and non-cloned java
methods: a comparative study,” Empirical Software Engineering, vol.
23, no. 4, pp. 2232–2278, Aug 2018.

[4] A. Shatnawi, A.-D. Seriai, and H. Sahraoui, “Recovering software
product line architecture of a family of object-oriented product variants,”
Journal of Systems and Software, vol. 131, no. C, pp. 325–346, 2017.

[5] P. Clements and L. Northrop, “Software product lines: practices and
patterns,” 2002.

[6] A.-D. Seriai, M. Huchard, C. Urtado, S. Vauttier, H. Eyal-Salman et al.,
“Mining features from the object-oriented source code of a collection
of software variants using formal concept analysis and latent semantic
indexing,” in SEKE, 2013.

[7] C. Parra and D. Joya, “Split: An automated approach for enterprise
product line adoption through soa.” J. Internet Serv. Inf. Secur., vol. 5,
no. 1, pp. 29–52, 2015.

[8] A. Shatnawi, A. Seriai, and H. Sahraoui, “Recovering architectural
variability of a family of product variants,” in ICSR. Springer, 2015,
pp. 17–33.

[9] J. Martinez, T. Ziadi, T. F. Bissyandé, J .Klein, and Y. L. Traon, “Bottom-
up technologies for reuse: automated extractive adoption of software
product lines,” in ICSE Companion. IEEE Press, 2017, pp. 67–70.

[10] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[11] K. Narasimhan, C. Reichenbach, and J. Lawall, “Cleaning up copy-paste
clones with interactive merging,” Automated Software Engineering, vol.
25, no. 3, pp. 627–673, 2018.

[12] G. P. Krishnan and N. Tsantalis, “Unification and refactoring of clones,”
in CSMR-WCRE. IEEE, 2014, pp. 104–113.

[13] L. Li, J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Mining families of android applications for extractive spl adoption,” in
SPLC. ACM, 2016, pp. 271–275.

[14] A. Shatnawi, A.-D. Seriai, H. Sahraoui, and Z. Alshara, “Reverse
engineering reusable software components from object-oriented APIs,”
Journal of Systems and Software, vol. 131, pp. 442–460, 2017.

[15] A. Shatnawi, A. Seriai, H. Sahraoui, and Z. Al-Shara, “Mining software
components from object-oriented APIs,” in ICSR. Springer, 2015, pp.
330–347.

[16] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A.
E. Hassan, “A large-scale empirical study on software reuse in mobile
apps,” IEEE software, vol. 31, no. 2, pp. 78–86, 2014.

[17] A. Shatnawi and A.-D. Seriai, “Mining reusable software components
from object-oriented source code of a set of similar software,” in IRI.
IEEE, 2013, pp. 193–200.

[18] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P.
Heymans, “Feature model extraction from large collections of informal
product descriptions,” in FSE. ACM, 2013, pp. 290–300.

[19] J. Carbonnel, M. Huchard, A. Miralles, and C. Nebut, “Feature model
composition assisted by formal concept analysis,” in ENASE, 2017, pp.
27–37.

[20] T. Mende, F. Beckwermert, R. Koschke, and G. Meier, “Supporting the
grow-and-prune model in software product lines evolution using clone
detection,” in CSMR. IEEE, 2008, pp. 163–172.


	Introduction
	Dataset of Android Families
	Methodology for Answering Research Questions
	General Methodology to Identify Commonality and Variability
	Complete commonality across all PVs
	Partial commonality in subsets of PVs
	Product exclusive variability
	General variability degree (GVD)

	Specific Methodology for Research Questions
	RQ1: What is the Commonality and Variability in the Organization of Source Code Files of PVs
	RQ2: What is the Commonality and Variability Related to the Cloned Java Methods across PVs
	RQ3: What is the Variability in the Configuration Parameters of Android Applications of PVs


	Results for Answering RQs
	RQ1: What is the Commonality and Variability in the Organization of Source Code Files of PVs?
	RQ2: What is the Commonality and Variability Related to the Cloned Java Methods across PVs?
	Exact Cloned Methods
	Modified Cloned Methods

	RQ3: What is the Variability in the Configuration Parameters of Android Applications of PVs?

	Discussions
	How the Results Help Maintainers?
	Threats to Validity

	Related Work
	Conclusion and Future Works
	References

