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Abstract: Embedding learning on knowledge graphs (KGs) aims to encode all entities and
relationships into a continuous vector space, which provides an effective and flexible method to
implement downstream knowledge-driven artificial intelligence (AI) and natural language processing
(NLP) tasks. Since KG construction usually involves automatic mechanisms with less human
supervision, it inevitably brings in plenty of noises to KGs. However, most conventional KG
embedding approaches inappropriately assume that all facts in existing KGs are completely correct
and ignore noise issues, which brings about potentially serious errors. To address this issue, in this
paper we propose a novel approach to learn embeddings with triple trustiness on KGs, which
takes possible noises into consideration. Specifically, we calculate the trustiness value of triples
according to the rich and relatively reliable information from large amounts of entity type instances
and entity descriptions in KGs. In addition, we present a cross-entropy based loss function for model
optimization. In experiments, we evaluate our models on KG noise detection, KG completion and
classification. Through extensive experiments on three datasets, we demonstrate that our proposed
model can learn better embeddings than all baselines on noisy KGs.

Keywords: knowledge graph; embedding learning; cross entropy; noise detection; triple trustiness

I am convinced that the crux of the problem of learning is recognizing relationships and
being able to use them. Christopher Strachey in a letter to Alan Turing, 1954

1. Introduction

Knowledge graphs (KGs) provide effective well-structured relational information between entities.
A typical KG usually consists of a huge amount of knowledge triples in the form of (head entity,
relationship, tail entity) (denoted (h, r, t)), e.g., (Barack Obama, was_born_in, Hawaii). KG embedding
aims at learning embeddings of all entities and relationships, which usually are used to promote
down-stream knowledge-driven artificial intelligence (AI) and natural language processing (NLP) tasks,
such as human-like reasoning, semantic parsing [1], question answering [2,3], relation extraction [4,5],
speech generation [6], etc.

The past decade has witnessed great surge in building web-scale KGs, such as Freebase [7],
WordNet [8], YAGO [9], DBpedia [10], Google Knowledge Graph [11], and other domain-specific KGs.
Recently, open information extraction (Open IE) [12], automatic neural relation extraction [13] and
crowd-sourcing mechanism are widely used for KG construction, while these approaches inevitably
bring noises in KG due to insufficient human supervision [14,15]. For instance, the recent open IE
model on the benchmark achieves only 24% precision when the recall is 67% [16]. There are some
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existing approaches that have been proposed for knowledge graph embedding [17–21]. However,
most conventional methods inappropriately assume that all facts in existing KGs are completely
correct and ignore noise detection, which can lead to errors as the learning algorithm may treat
incorrect facts as true ones. Hence, it is crucial to consider noises in knowledge graph embedding and
down-stream tasks. As yet, the basic noise issue on knowledge graph embedding has not attracted
enough attention [22]. Recently Xie et al. [23] propose to deal with noisy triples for representation
learning. However, the calculation of its confidence value is not straightforward and needs too many
intermediate processes with high complexity, especially for global path confidence. Moreover, they
discard the external information which could provide rich information for judging triples.

In this paper, we concentrate on learning embeddings on noisy knowledge graphs, which can
deal with noises and embed all entries into low dimensional vector space. To address the noise
issue, following the translation assumption [17], we propose a novel translating embedding learning
approach with triple trustiness, called TransT, which takes possible noises into consideration.
The trustiness-based framework has been widely studied in the research field such as data
mining [24]. Figure 1 demonstrates a brief illustration of our work. KG suffers from noises after
automatic construction via OpenIE [12]. Such noises are expected to be considered and detected
in learning embeddings with triple trustiness on KGs. For example, there exists a noise <Hawaii,
belong_to, Indonesia> brought into the KG by OpenIE, which would be detected and ignored in
embedding learning.

Figure 1. A brief illustration of our work. Knowledge graph faces the noise issue (×) after automatic
construction via OpenIE. It’s expected to conduct knowledge graph (KG) embeddings learning with
triple trustiness for noise detection. For instance, the noise <Hawaii, belong_to, Indonesia> is detected
and updated to <Hawaii, belong_to, United States>. Moreover, our noisy KG embedding approach
can be used to improve KG completion, such as the incomplete fact <Barack Obama, nationality, ?> is
completed as a true fact <Barack Obama, nationality, United States> after noise correction, otherwise
as a false one <Barack Obama, nationality, Indonesia> according to the noisy triple <Hawaii, belong_to,
Indonesia>.

Specifically, TransT calculates the trustiness value of triples by considering two external auxiliary
information: entity type instances and entity descriptions, which provide rich pragmatic and semantic
information. Correspondingly, we build two novel sub-models for them. Moreover, we present a cross
entropy based objective function for training all parameters of our model. We evaluate our model
on three tasks including KG noise detection, KG completion, and triple classification. Experimental
results demonstrate that our proposed model outperforms all baselines on all tasks, which confirms
the capability of TransT in noisy KG embedding. The main work in this paper is concluded as follows:

• We propose a novel translating embedding model, TransT, for learning with triple trustiness on noisy
knowledge graph by considering two external information, i.e., entity types and entity descriptions.

• Under this strategy, we propose two sub-models for calculating triple trustiness, one of which is
estimated on newly generated entity type triples and another is measured with synthetic entity
description triples.



Entropy 2019, 21, 1083 3 of 16

• We present a cross entropy based approach for training model. The experimental results on three
noisy datasets including FB15K-N1, FB15K-N2 and FB15K-N3 demonstrate the effectiveness of
our proposed model.

The structure of the paper is as following. In Section 2, we will provide a brief review of related
works. In Section 3, we describe the methodology of our model. In Section 4, we present cross
entropy learning method. Section 5 presents experimental results followed by their discussion. Finally,
Section 6 gives the conclusion and future directions of this research.

2. Related Work

2.1. Kg Noise Detection

There are various ways of building knowledge graphs, such as edited by crowdsourcing
like Freebase [7], extracted from the large-scale semi-structured web like DBpedia [10], and open
information extraction methods like Knowledge-Vault [11]. However, all of them inevitably suffer
from noise interference due to insufficient human supervision when automatic mechanisms involve.
Therefore, noise detection is essential and significant in knowledge automatic construction and
knowledge-driven intelligent applications. Most knowledge graph noise detection works happen
when constructing knowledge graphs [15,25,26]. These approaches are usually involved with huge
human efforts, which are extremely labor-intensive and time-consuming. Recently, there are some
works focusing on automatic KG noise detection [27]. Pellissier Tanon et al. [28] select features from
contents, users, items [29], and P. et al. [30] propose to judge importance in graphs for nodes and
edges. Paulheim and Bizer [31] propose the heuristic link-based type inference mechanism SDType,
which can handle noisy and incorrect data. Melo and Paulheim [26] investigate the problem of error
detection in relation assertions of knowledge graphs, and propose an error detection method which
relies on path and type features used by a classifier for every relation in the graph exploiting local
feature selection. Recently, Xie et al. [23] propose an embedding method (CKRL) with confidence to
deal with noise detection, however, it ignores the rich semantic information in external nonstructural
information which is strong evidence to judge triple quality. In this paper, we propose a knowledge
graph embedding learning method with trustiness considering rich auxiliary information.

2.2. Knowledge Graph Embedding

In recent years knowledge graph embedding (see more in this survey [22]) has become a hot
research topic. The key idea is to encode all the entities and relations in KG into a latent semantic
vector space, so as to predict the probable truth of additional facts purely based on the existing
triples in knowledge bases. Various embedding methods have been proposed in recent years.
Bordes et al. [32] proposed a structured embedding model (SE), in which the basic idea was to
transform the head entity and tail entity into a common latent space by the corresponding left and
right projection matrices of the relation and then measured the similarity of the triple by L1-norm
distance in the embedding space. Bordes et al. [33] propose a semantic matching model (SME) for
KGC. The main motivation of the model was that entities and predicate relations would share the same
form of representation. It mapped all entities and predicate relations into a common latent space to
delete the semantic difference between them. Socher et al. [19] propose a neural tensor network model
(NTN), which tackled the issue of weak entity vector interaction through replacing a standard linear
neural network layer with a bilinear tensor layer that directly relates left entity and right entity across
multiple dimensions. The main intuition of the model was that each predicate relation would have
different parts of semantic representation. Each slice of the predicate relation tensor was responsible
for one class of entity pairs. Bordes et al. [17] propose a translating method (TransE) to model predicate
relations by interpreting them as translations operating on the low-dimensional embedding of the left
entity and right entity. Wang et al. [18] proposed a translating model (TransH), which builds predicate
relation as a hyperplane with a translation operation on it. There are more models to conduct KG
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embedding, such as PIDE [34], RESCAL [35], TransG [21], TransR [36], TransD [37], Analogical [38],
Convolutional2D [39], ProjE [40], ComplexE [20] and SSP [41], etc.

Moreover, the KG embedding approaches can be roughly classified into two categories according
to the information they used: (1) those which learn embeddings only with KG at hand [17,18,36];
(2) those learning embeddings by combining existing KG with external heterogeneous information,
e.g., entity hierarchical types [5,42], entity descriptions [41,43,44], plain text [45], and relation paths [46].
However, all these methods assume that all the facts in KG hold without noise, which is unreasonable
especially for KGs constructed automatically without sufficient human supervision. In this paper,
we concentrate on noisy KG embedding on the basis of the translation-based model (TransE), which is
not difficult to be replaced with other enhanced KG embedding model [18,36].

2.3. Knowledge Graph Refinement

Knowledge graph refinement (KGR) is essential after automatic KG construction [11], since the
result may never be perfect whichever approach is taken for constructing knowledge graph. Various
methods for KGR have been proposed [25], which can differ along three distinct orthogonal dimensions:
(i) the overall goal of the method, i.e., completion [17,19] vs. correction [15,26] of KG; (ii) the refinement
target (e.g., relations between entities [19], entity types [47]), and (iii) the data used by the approach (i.e.,
only KG itself [17], or further external information [42,43]). However, most conventional approaches
are only used for one goal as yet, while a combination between completion and error detection
methods could be of great value [25]. Dong et al. [11] propose a joint approach with both prior
knowledge stemmed from KG and external web content to estimate triple quality in KG construction,
but lacking flexible ability in scale and reasoning capability without embedding strategy. Jia et al. [48]
propose a crisscrossing neural network for KG completion and correction at the same time, while
having high complexity and computational cost. In this paper, we introduce the triple trustiness for
KGR, by considering the typical external heterogeneous source (i.e., entity type instances and entity
descriptions) beyond the KG itself.

3. Methodology

Notation. For each triple (h, r, t), the head entity and tail entity h, t ∈ E and the relation r ∈ R,
where E and R represent the sets of entities and relations respectively. D = {(h, r, t)} stands for
the overall training dataset with noises. τh and τt represent the hierarchical types of head and tail
respectively. T represents the set of all types, τh, τt ∈ T . dh and dt denote the descriptions of head and
tail respectively. w represents the keyword in entity descriptions. W represents the set of keywords,
w ∈ W .

To learn better embeddings on a noisy knowledge graph, we propose a concept triple trustiness
for each triple fact. Triple trustiness denotes the evidential reliability of a triple which can be measured
with the favor of external nonstructural auxiliary information.

3.1. Translating Embedding Model

To model entity triples, we first present a typical translating embedding model TransE [17],
which was proposed to model relationships by interpreting them as translations operating on the
low-dimensional embedding of the head entity and tail entity. The scoring function (the lower
the better for correct triple) was as follows:

M(h, r, t) = ‖h + r− t‖2
2 , (1)

using `2-norm, h, r, t ∈ Rκ .
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3.2. Translating Embedding with Triple Trustiness

In order to detect noises and learn better embeddings with triple trustiness, we concentrate more
on those triples with high evidential trustiness value. Following the translating assumption [17],
we build the energy function E(·) of our translating embedding model with triple trustiness (TransT)
as follows:

E(D) = ∑
(h,r,t)∈D

M(h, r, t) · T(h, r, t). (2)

The TransT energy function includes two parts. The first part M(h, r, t) represent the distance
between head and tail with relation under translation assumption. A lower M(h, r, t) indicates that the
embeddings of entities and relationships of this triple comply with the translation assumption well.
We design the triple trustiness T(h, r, t) as the second part of our energy function. A fact with higher
trustiness possesses higher quality, therefore, it should be more reasonably considered in learning
embedding. Next we introduce two novel methods to measure triple trustiness according to external
auxiliary sources, as in Figure 2.

Figure 2. A triple <Barack Obama, was_born_in, the State of Hawaii> with its entity hierarchical types
and entity descriptions. The left entity “Barack Obama” has a hierarchical type: “/people/person” and a
description: “Barack Obama was the 44h President of the United States...”. The right entity “the State of
Hawaii” possesses similar heterogeneous information.

3.3. Triple Trustiness

In this section, we introduce a novel method to measure triple trustiness with external nonstructural
auxiliary information including entity types and entity descriptions.

3.3.1. Triple Trustiness with Entity Types

We first utilize the entity hierarchical types for triple trustiness value estimation. Entity hierarchical
types information implies different roles an entity may play in different scenarios [5]. Most typical
knowledge graphs (e.g., Freebase [7], DBpedia [10]) have entity type information. Entity types
usually consist of hierarchical structures, in which the lower granularity of semantic concepts is
considered as the sub-type of entities. Generally, most entities possess more than one hierarchical
type. For instance, in Figure 2, the State of Hawaii has a variety of types (e.g., /people/place_of_born,
/areas/sovereign_state and /areas/Administrative_area) and shows different attributes under different types.
The entity hierarchical types are strong evidence to estimate the triple trustiness. For instance, a living
thing (Type:/people/person) is more credible than a non-living thing (Type: /book/written_work) when
they suppose to be filled in the incomplete triple (?, was_born_in, the State of Hawaii). To put it another
way, although both triples (Donald Trump, was_born_in, the State of Hawaii) and (Pride and Prejudice,
was_born_in, the State of Hawaii) are not true, but we still believe that the type evidential trustiness of
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the former one is higher than the trustiness of the latter due to their distinct types, i.e., the type of
Donald Trump (/people/person) is more reasonable for it.

Entity Type Triple. The key motivation is based on the observation in the research of KG
embedding that the learned entity embeddings can be clustered well according to their entity types
in the embedding space [34]. For instance, Figure 3 shows that the entity embeddings cluster well
according to their entity types represented by different colors [49]. The blue dots indicate the entities
with the type: /film/film and the film entities appear close to each other in the embedding space.
Moreover, the more similar between entity types, the more close between corresponding entities in the
space, and vice versa. For instance, the group of entities with types: /tv/tv_actor and /book/author are
closer to each other than entities with other types, and they even show some overlap. These entities
share some common types including /person/person, which is the reason that they are close to each
other in the embedding space. Therefore, we believe that one of the premises of a triple (head entity,
relationship, tail entity) holds is that the corresponding entity types first conform to this relationship.
Hence, we build the entity type triple: (head type, relationship, tail type) by replacing both head entity
and tail entity with their corresponding hierarchical types: (h, r, t)→ (τh, r, τt).

Figure 3. A plot of entities with entity types (Red:/education/educational_institution, Blue:/film/film,
Purple: /tv/tv_actor, Orange:/book/author, Green:/tv/tv_program, Black:/music/instrument). Entities
with the same entity type tend to appear in well-defined clusters in the embedding space.

Entity Type Embedding. We encode the entity hierarchical type information into representation
learning with a general form. Suppose an entity e has hierarchical type: /τ

(1)
e /τ

(2)
e /.../τ

(m)
e , m is the

number of layers in the hierarchical structure, we utilize the weighted hierarchical embedding (WHE)
method, considering that different granularities of sub-type in hierarchical structures may vary in
significance in type representation, to build the entity type representation τe as follows:

τe =
m

∑
i=1

βi · τ
(i)
e = β1 · τ

(1)
e + · · ·+ βm · τ(m)

e , (3)

in which τ
(i)
e is the representation of i-th sub-type τ

(i)
e , βi is the corresponding weight of τ

(i)
e .

Entity Type Trustiness (TT). As mentioned above, we have entity type triple (τh, r, τt) by
replacing entity with entity type. We assume that the more a type triple fits the translation assumption,
the more convincing the corresponding entity triple should be considered. Hence, the distance G(·)
of entity type triple (τh, r, τt) under translation-framework with entity type embedding (calculated
by (3)), as follows:
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G(τh, r, τt) = ‖
m1

∑
i=1

βi · τ
(i)
h + r−

m2

∑
j=1

β j · τ
(j)
t ‖

2
2 , (4)

where m1 and m2 denote the number of layers in the hierarchical type structure of head entity and
tail entity respectively. τ

(i)
h is the representation of i-th sub-type τ

(i)
h , τ

(j)
t is the representation of j-th

sub-type τ
(j)
t , βi and β j are the corresponding weight of τ

(i)
h and τ

(j)
t respectively.

To measure the entity type trustiness during training, we first judge the current conformity of each
entity type triple with translation assumption. Following margin-based training strategy, we design a
function to estimate the type triple quality Qτ(τh, r, τt) as follows:

Qτ(τh, r, τt) = −(γτ + G(τh, r, τt)− G(τ′h, r, τ′t )), (5)

where γτ > 0 is a hyperparameter. (τ′h, r, τ′t ) is a negative entity type triple in which the head type or
tail type is replaced by a random one. A higher Qτ(τh, r, τt) value indicates a better entity type triple
judged by the translation framework. All entity type triples are supposed to be correct at the beginning
of learning, and set the entity type trustiness TT(h, r, t) = 1 for all triples. Since the embeddings of
both entity type and relation will be updated constantly in the learning process, the current entity type
trustiness for each triple should change according to how much this entity type triple comply with the
translation framework. Hence, we utilize the strategy for updating the entity type trustiness TT(h, r, t)
according to its type triple quality Qτ(τh, r, τt) as follows:

TT(h, r, t) =

{
µ · TT(h, r, t), Qτ(τh, r, τt) ≤ 0

min{TT(h, r, t) + ν, 1}, Qτ(τh, r, τt) > 0 ,
(6)

where µ ∈ (0, 1) and ν > 0 are hyper-parameters, TT(h, r, t) ∈ (0, 1]. The condition Qτ(τh, r, τt) ≤ 0
indicates that the current entity type triple doesn’t fit the translation rule well, and thus should cut
down the corresponding entity type trustiness, otherwise should increase it when Qτ(τh, r, τt) > 0
holds. Hence, a higher TT(h, r, t) implies that the triple is more convinced to hold according to entity
type constraints.

3.3.2. Triple Trustiness with Entity Descriptions

In the following, we introduce a novel approach to build triple trustiness with entity descriptions.
Entity Description Triple. TT would fail to work if the types of head and tail exactly match but the

fact is actually false, such as (Donald Trump, was_born_in, the State of Hawaii). However, the entity textual
descriptions can discover semantic relevance and offer precise semantic expression [41]. The semantic
relevance between entities is capable to recognize the true triples, and precise semantic expression
could promote the discriminative ability between two triples. Here, we design entity description triple
to estimate the triple trustiness by replacing both head and tail with their corresponding descriptions:
(h, r, t)→ (dh, r, dt).

Entity Description Embedding. From each short description, we generate a set of keywords,
which is capable of capturing the main ideas of entities, based on TFIDF. The assumption is that similar
entities should have similar descriptions, and correspondingly have similar keywords. Those triple
trustiness may be detected in the internal contact of their keywords. We formulate entity descriptions
as de := {w1, w2, ..., wn}. {w1, w2, ..., wn} is the set of keywords in entity description. n is the size
of words set. We take advantage of convolutional neural network (CNN) [43,50] to model entity
description de. The CNN model can take word orders, i.e., complicated local interactions of keywords
in entity description, into consideration. Specifically, the i-th output vector of convolution layer in
CNN is calculated as:

z(`)i = σ(W(`) ·w
′(`)
i + b(`)

i ) , (7)
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where W(`) is the convolution kernel for all input vectors of `-th convolution layer after window

process and b(l)
i is the optional bias. σ is the activation function such as tanh or ReLU. w

′(`)
i is the i-th

vector of w
′(`) which is obtained by concatenating κ column vectors in i-th window of the polling

output of (`-1)-th layer. The pooling process shrinks the parameter space of CNN and filter noises after
every convolution layer. We use n-max-pooling and mean-pooling strategies respectively in different
pooling layers. After the last pooling layer, we obtain the representation of entity description de.

Entity Description Trustiness (DT). Under translation-assumption, we build the distanceH(·)
of the entity description triple (dh, r, dt):

H(dh, r, dt) = ‖dh + r− dt‖2
2 , (8)

where dh and dt stand for the representation of head descriptions and tail descriptions respectively
which are calculated by CNN. To measure the entity description trustiness during training, like the
approach in (5), we design a function to estimate the description triple quality Qd(dh, r, dt) as follows:

Qd(dh, r, dt) = −(γd +H(dh, r, dt)−H(d′h, r, d′t)), (9)

where γd > 0 is a hyperparameter. (d′h, r, d′t) is a negative entity description triple in which the head
description or tail description is replaced by a random one. Formally, the entity description trustiness
DT(h, r, t) changes with its description triple quality Qd(dh, r, dt) as follows:

DT(h, r, t) =

{
u · DT(h, r, t), Qd(dh, r, dt) ≤ 0

min{DT(h, r, t) + ν, 1}, Qd(dh, r, dt) > 0 ,
(10)

where DT(h, r, t) ∈ (0, 1]. A higher DT implies that the triple is more probable to hold according to
entity semantic relevance learned by entity descriptions.

3.3.3. Overall Triple Trustiness Model

Here we introduce the overall triple trustiness. Specifically, the overall triple trustiness model
combines with two kinds of trustiness stated above: (1) entity types trustiness TT(h, r, t); (2) entity
descriptions trustiness DT(h, r, t). Hence, we have overall triple trustiness model T(h, r, t) as follows:

T(h, r, t) = λ · TT(h, r, t) + (1− λ) · DT(h, r, t), (11)

where λ ∈ (0, 1) are hyper-parameters.

4. Cross Entropy Loss Function for Optimization

Cross entropy is an important measurement approach of information entropy (IE) (originally
proposed by Shannon in [51]). For training the model parameters, we minimize the following binary
cross entropy loss function in this work:

L(Θ) = {− ∑
(h,r,t)∈D

log p(h, r, t)− ∑
(h′ ,r,t′)∈D′

log(1− p(h′, r, t′))} · T(h, r, t),

in which we apply the logistic sigmoid function σ(·) to the model scores, that is p(h, r, t) =

σ(−M(h, r, t)). Θ are all the parameters of our model including the embeddings of all entities, relations,
sub-types, and keywords, i.e., Θ = {E, R, T, W}, initialized randomly. (h, r, t) are the observed triple
fact in the training set D and (h′, r, t′) are the negative one, the head or tail of which is replaced by
a random one. Note that we do not replace both head and tail with random one at the same time.
A triple will not be considered as a negative example if it is already in training set D. Here the triple
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trustiness T(h, r, t) are determined by (11), which instructs our model to pay more attention on those
more convincing facts. D′ represents the negative triple set.

D′ := {(h′, r, t)|(h, r, t) ∈ D ∩ h′ ∈ E ∩ h′ 6= h}
∪{(h, r, t′)|(h, r, t) ∈ D ∩ t′ ∈ E ∩ t′ 6= t} .

It is not absolutely necessary to use a entropy loss function [34]. However, it is very common to
use entropy loss for learning embeddings (like ConvE [39], FRN [52], etc) just as our model did.

Optimization. We use mini-batch stochastic gradient descent (SGD) for optimization. We perform
the following procedure iteratively for a given number of iterations. First, we sample a small set
(minibatch) of triples from the training set D, and then for each positive triple in it, we construct a
negative sample by replacing the head or tail with a random one. The parameters are then updated
by taking a gradient descent step gradually. Algorithm 1 shows the optimization algorithm in detail.
As pointed out by [53,54], it would be uneconomical to save all negative properties of an entity
or a concept. Therefore, we further require entities to have non-negative vectorial representations.
In fact, the distributed representations can be taken as the feature vectors for entities, with latent
semantics encoded in different dimensions. To better compare different entities on the same scale,
we further require entity representation to stay within the hypercube of [0, 1]κ , as approximately
Boolean embeddings. In most cases, non-negative will further induce sparsity and interpretability.

Algorithm 1 Learning TransT using cross entropy loss function.

Require: Training set D = {(h, r, t)}, the set of entity types, entity descriptions.
Ensure: The embeddings of all entities, relations, sub-types, and keywords: Θ = {E, R, T, W}.

1: Initialize
2: e← Gaussian(0, 1)/10 for each e ∈ E , e ∈ Rκ

3: r← Gaussian(0, 1)/10 for each r ∈ R, r ∈ Rκ

4: t← Gaussian(0, 1)/10 for each t ∈ T , t ∈ Rκ

5: w← Gaussian(0, 1)/10 for each w ∈ W , w ∈ Rκ

6: Loop
7: Dbatch ← sample(D, m)//minibatch size m
8: Abatch ∈ φ //initialize training set as null
9: for (h, r, t) ∈ Dbatch do

10: (h′, r, t′)← sample D //corrupted
11: Abatch ← Abatch ∪ ((h, r, t), (h′, r, t′))
12: end for
13: Update embeddings w.r.t.

∑
Abatch

∇[− log p(h, r, t)− log(1− p(h′, r, t′))] · T(h, r, t)

14:
15: End Loop

5. Experiments

We present three experiments: KG noise detection, KG completion and triple classification to
demonstrate the effectiveness of our proposed model. We first introduce the datasets, experimental
settings, and baselines for comparison, and then show the experimental results and discussions.

5.1. Datasets

Our experiments are conducted on three public benchmark datasets FB15K-N1, FB15K-N2, and
FB15K-N3 (The datasets can be accessed at https://github.com/thunlp/CKRL) which are generated
based on FB15K with different noise rates (i.e., 10%, 20%, and 40% respectively) to simulate the
real-world KG construction with errors [23]. FB15K [17] is a typical experimental dataset extracted
from Freebase. FB15K contains 14951 entities and 1345 relationships, in which all entities possess

https://github.com/thunlp/CKRL
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descriptions. Moreover, we collect 3851 entity types from FB15kET (The FB15kET can be accessed at
https://github.ncsu.edu/cmoon2/kg) [49].

Given a positive triple (h, r, t) in KG, the head or tail is randomly replaced to form a negative
one (h′, r, t) or (h, r, t′). In order to generate harder and more confusing noises, h′ (or t′) should have
appeared in the head (or tail) position with the same relation, which means that the tail entity of
relation was_born_of in negative triples should also be a place. All three noisy datasets share the same
entities, relations, validation and test sets with FB15K, and all generated negative triples fused into the
original training set of FB15K. The statistics are listed in Tables 1 and 2.

Table 1. Statistics of FB15K and FB15kET. FB15kET provides entity type information: (<entity, entity
type>). We only use the training data of FB15kET, not valid and test data, to estimate type trustiness.

Dataset #Entities #Rel #Train #Valid #Test
FB15k 14,951 1345 483,142 50,000 59,071

Dataset #Ent #Type #Train #Valid #Test
FB15kET 14,951 3851 136,618 16,000 16,000

Table 2. Statistics of the FB15k-N1, FB15K-N2, FB15K-N3 used for experiments. #Negative triples
denotes the number of noises in them.

Datasets FB15k-N1 FB15k-N2 FB15k-N3

#Negative triples 46,408 93,782 187,925
#Training triples 529,550 576,924 671,067

#Valid triples 50,000 50,000 50,000
#Testing triples 59,071 59,071 59,071

5.2. Experimental Settings and Baselines

In the experiment, we evaluate our TransT model with two different combination strategies.
TransT (TT) considers entity type trustiness, while TransT(TT+DT) considers both entity type trustiness
and entity description trustiness. We choose two models as the baselines for comparison: (1) TransE
which is a typical model used for entity prediction [17], and (2) CKRL which is a state-of-the-art model
focusing on representation learning on noisy knowledge graph [23]. The results for the baselines are
directly taken from original literature. We train our TransT model using mini-batch SGD. We select the
learning rate in the stochastic gradient descent among {0.0001, 0.001, 0.01}, the dimension of entity,
relation, entity type, and keyword embedding κ in all models in a range of {50, 100} on the validation
set. For overall triple trustiness model, the hyperparameter λ set as 0.5, γτ = γd = 1, µ = 0.95, ν = 0.05.
For CNN, we set the parameters are: #window size=2, #convolution layer = 2, #dimension of feature
map = κ. Usually, m = 2 and set β1 = β2 = 1/m in FB15K.

5.3. Kg Noise Detection

To verify the capability of our TransT models in identifying noises in KGs, we conduct a
comparative experiment – KG noise detection according to their triple scores.

Evaluation Protocol. We utilize translation-assumption method TransE: M(h, r, t)=‖h + r− t‖2
2

as our triple model. Following the triple classification protocol in [19], we rank all triples in training
set with their model score. Therefore, the higher the model score, the more likely the triple is noise. We
use precision/recall curves to show the performances.

Experimental Results. Figure 4 demonstrates the evaluation results of KG noise detection, from
which we can observe that: (1) Our proposed trustiness-aware model TransTs broadly achieves the
best performances on all three datasets with different noise rates, which confirms the capability of
our TransT models in modeling tripe trustiness and detecting errors in knowledge graphs. (2) TransT
(TT+DT) has an impressive improvement in error detection compared to TransT (TT). It indicates

https://github.ncsu.edu/cmoon2/kg
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that the triple trustiness with entity descriptions can provide significant help for error detection.
(3) In addition, TransT (TT+DT) has 60∼78% in precision with different noise rates when the recall
approximately equals to 40%, which demonstrates the triple trustiness strategy could help for noisy
KG embedding. (4) With the noises level rising, TransT (TT+DT) performs better regarding to noise
detection. We believe the main reason is that the triples in FB15k-N3 has lower confidence than in
FB15k-N1, considering the datasets as bipartite graphs. For instance, there are 671,067 training triples
and 187,925 noises in FB15k-N3, while FB15k-N1 only has 529,550 triples and 46,408 noisy triples.
Due to higher noise rate, the knowledge in FB15k-N3 can be more easily disturbed by noisy data,
which can be significantly detected by our models.

Figure 4. KG noise detection results. Evaluation on FB15K-N1, FB15K-N2, and FB15K-N3.

5.4. Kg Completion

The classical KG completion task concentrates to complete a triple when one of its head,
relationship or tail is missing, i.e., to predict how likely some additional triples are held, which
aims to verify the capability of our proposed model for KG completion.

Evaluation Protocol. We conduct entity prediction determined by TransE [17]: h + r ≈ t. We use
the ranking criteria for evaluation. Firstly for each test triple, we remove the head entity and replace it
by each of the entities of the dictionary in turn. The function value M(h′, r, t) of the negative triples
would be computed by the related models and then sorted by descending order. We can obtain the
exact rank of the correct entity in the candidates. Similarly, we repeat the whole procedure while
removing the head entity instead of the tail entity of the test triple. Finally, we use two evaluation
metrics for comparison: the mean of those predicted ranks (Mean Rank) and the proportion of correct
entities ranked in the top 10 (Hits@10(%)). We also follow the different evaluation settings of “Raw”
and “Filter” utilized in [17].

Experimental Results. Table 3 shows the results of entity prediction with different noise rates,
from which we observe that: (1) All TransT models achieve better performance compared with
the baseline on all noisy datasets, which confirms the capability of our models in KG completion
beyond KG noise detection. (2) Our methods achieve more significant improvement as the noise
rate increases, compared with basic mode TransE between the three noisy datasets. It verifies that
considering the trustiness in noisy KG embedding is very essential especially when KGs have a high
rate of noises. Specifically, according to the metrics Mean Rank (Filter) and Hits10(%) (Filter), TrustT
(TT+DT) improves (7, 2.5%), (13,3.8%) and (23, 5.3%) on FB15kET-N1, FB15kET-N2, and FB15kET-N3
respectively. (3) TransT (TT+DT) perform better than TransT (TT). It demonstrates that the entity
description information could further benefit KG completion especially when TT fails.
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Table 3. Entity prediction results. Evaluation of different models on FB15K-N1, FB15K-N2,
and FB15K-N3.

Dataset FB15K-N1 FB15K-N2 FB15K-N3

Metrics Mean Rank Hits@10(%) Mean Rank Hits@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 240 144 44.9 59.8 250 155 42.8 56.3 265 171 40.2 51.8
CKRL (LT) 237 140 45.5 61.8 243 146 44.3 59.3 244 148 42.7 56.9
CKRL (LT+PP) 236 139 45.3 61.6 241 144 44.2 59.4 245 149 42.8 56.8
CKRL (LT+PP+AP) 236 138 45.3 61.6 240 144 44.2 59.3 245 150 42.8 56.6

TransT (TT) 233 137 45.8 61.2 239 143 44.6 58.1 249 153 42.4 55.2
TransT (TT+DT) 232 137 45.9 62.3 237 141 45.0 60.1 246 148 43.4 57.1

5.5. Triple Classification

Triple classification aims to judge whether a triple in test data holds or not, which could be viewed
as a binary classification problem, and also can be regarded as a noise detection task in test data.

Evaluation Protocol. Since there are no explicit negative triples in existing KGs, we build
negative triples in validation and test set with an equal number of positive and negative examples.
Following the same protocol in [19], we use the validation set to find a threshold ζ. If the model score
||h + r− t|| ≤ ζ in classification, the triple will be classified to be true, otherwise to be false. The final
accuracy is based on how many triples are classified correctly.

Experimental Results. Table 4 shows the accuracy of the evaluation result of different models.
We can find that: (1) The TransT models perform better than the baseline on three datasets, and the
improvements become more larger with higher noise rates, which prove that triple trustiness can be
helpful for relation triple classification as well. (2) Specifically, TransT (TT+DT) model improves 0.7%,
0.9% and 1.8% on FB15K-N1, FB15K-N2, and FB15K-N3 respectively, it reaffirms that our method
becomes more significant with higher noise rates. (3) However, the traditional model TransE may
also achieve comparable results, and the improvement our proposed model has over them in this task
seems to be unobvious. It may be because our proposed models mainly focus on calculating trustiness
for triples in training set, but not for negative triples that are generated in the testing set.

Table 4. Triple classification results. Evaluation of different models on FB15K-N1, FB15KN2 and
FB15K-N3.

Dataset FB15K-N1 FB15K-N2 FB15K-N3

TransE 81.3 79.4 76.9
CKRL(LT) 81.8 80.2 78.3
CKRL(LT+PP) 81.9 80.1 78.4
CKRL(LT+PP+AP) 81.7 80.2 78.3

TransT (TT) 82.2 80.8 79.1
TransT (TT+DT) 82.4 81.1 80.1

6. Conclusions and Future Work

In this paper, we concentrate on noisy knowledge graph embedding with triple trustiness.
We consider to estimate the triple trustiness according to the conventional external nonstructural
auxiliary information, i.e., entity type instances and entity descriptions. Correspondingly, we propose
two sub-models for calculating triple trustiness with entity types and entity descriptions respectively.
Through extensive experiments on three real-world datasets, we demonstrate TransT’s effectiveness
over the baselines. In the future, we will explore the following directions: (1) More external resources
can further improve our model. We will explore to combine more external heterogeneous information
with internal structural information to further enhance the performance. (2) Network embedding also
faces the noise issue. We will apply our proposed framework to improve network embedding as well.
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(3) Graph Signal Processing (GSP) [55,56], which aims to generalize the classical signal processing to
graph signals, could also benefit from KG embedding approaches as this work proposed.
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