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Abstract Climate forcing, sensitivity, and feedback metrics are evaluated in both the United Kingdom's
physical climate model HadGEM3‐GC3.1 at low (‐LL) and medium (‐MM) resolution and the United
Kingdom's Earth SystemModel UKESM1. The effective climate sensitivity (EffCS) to a doubling of CO2 is 5.5
K for HadGEM3.1‐GC3.1‐LL and 5.4 K for UKESM1. The transient climate response is 2.5 and 2.8 K,
respectively. While the EffCS is larger than that seen in the previous generation of models, none of the
model's forcing or feedback processes are found to be atypical of models, though the cloud feedback is at the
high end. The relatively large EffCS results from an unusual combination of a typical CO2 forcing with a
relatively small feedback parameter. Compared to the previous U.K. climate model, HadGEM3‐GC2.0, the
EffCS has increased from 3.2 to 5.5 K due to an increase in CO2 forcing, surface albedo feedback, and
midlatitude cloud feedback. All changes are well understood and due to physical improvements in the
model. At higher atmospheric and ocean resolution (HadGEM3‐GC3.1‐MM), there is a compensation
between increased marine stratocumulus cloud feedback and reduced Antarctic sea‐ice feedback. In
UKESM1, a CO2 fertilization effect induces a land surface vegetation change and albedo radiative effect.
Historical aerosol forcing in HadGEM3‐GC3.1‐LL is −1.1 W m−2. In HadGEM3‐GC3.1‐LL historical
simulations, cloud feedback is found to be less positive than in abrupt‐4xCO2, in agreement with
atmosphere‐only experiments forced with observed historical sea surface temperature and sea‐ice variations.
However, variability in the coupled model's historical sea‐ice trends hampers accurate diagnosis of the
model's total historical feedback.

Plain Language Summary A new generation of climate models—called HadGEM3‐GC3.1 and
UKESM1—have been developed in the United Kingdom and will be used widely in the Coupled Model
Intercomparison Project Phase 6 (CMIP6). Evaluating the models' benchmark climate sensitivity and
feedback metrics is a useful first step to understanding their characteristic response to forcing. The effective
climate sensitivities are found to be higher than that seen in the previous generation of models, in common
with other recently developed climate models. Reasons for this are discussed.

1. Introduction

Comprehensive models of the global climate system, known as coupled atmosphere‐ocean general circula-
tion models (AOGCMs), are essential tools for understanding climate processes and projecting future
climate changes (e.g., Collins et al., 2013; Flato et al., 2013). Diagnosing a model's radiative forcings, feed-
backs, and climate sensitivities is a useful first step to understanding its characteristic behavior in response
to forcing (e.g., Andrews, Gregory, et al., 2012). In particular, such metrics can be used to understand a
climate model's simulation of historical global temperature change as well as its projection of 21st‐century
climate change for a given emission scenario (e.g., Forster et al., 2013). For example, a model with a rela-
tively large climate sensitivity is expected to provide a relatively large temperature change both globally
and regionally for a given 21st‐century emission scenario (Grose et al., 2018).

A new generation of climate models have recently been developed by the international community and will
be widely used in the Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016). In the
previous generation of climate models, CMIP5 (Taylor et al., 2012), the effective climate sensitivity
(EffCS) to a doubling of CO2 ranged from 2.1 to 4.7 K across the model ensemble (Andrews, Gregory,
et al., 2012; Flato et al., 2013). In the CMIP6 generation of models, some modelling centers are reporting
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increased sensitivities relative to this range, with EffCS values closer to ~5.0 K and greater, for example,
CNRM‐CM6‐1 (Voldoire et al., 2019), CESM2 (Gettelman et al., 2019), and E3SMv1 (Golaz et al., 2019).
Here, we will show that a new generation of U.K. physical and Earth system climate models (HadGEM3‐
GC3.1 and UKESM1, respectively, see below) are likewise simulating higher climate sensitivities relative
to the previous generation of models.

A move to higher climate sensitivities has important consequences. For example, larger climate sensitivities
will lead to greater 21st‐century warmings for a given emissions scenario (e.g., Grose et al., 2018), increase
the risk of state‐dependent feedbacks (e.g., Bloch‐Johnson et al., 2015), and impact on allowable carbon bud-
gets for a given target (Rogelj et al., 2019). However, determining whether such sensitivities are plausible is a
challenging task, since it requires evaluating and combining many lines of evidence, such as from the histor-
ical record, process understanding, and paleorecords, all of which have particular difficulties in constraining
the upper bound on climate sensitivity (e.g., Stevens et al., 2016).

Here, we document benchmark climate sensitivity metrics—such as the transient climate response (TCR),
EffCS, and radiative feedback parameter (see below)—as well as radiative forcings, in the new generation of
U.K. climate models being used in CMIP6:

1. HadGEM3‐GC3.1 is the third Hadley Centre Global Environmental Model (HadGEM3) run under the
latest coupled configuration (GC3.1; Williams et al., 2017). We make use of two atmosphere‐ocean reso-
lutions: a low atmosphere and ocean resolution (N96ORCA1; 135 km atmosphere and 1° ocean) termed
HadGEM3‐GC3.1‐LL and a medium atmosphere and ocean resolution (N216ORCA025; 60 km atmo-
sphere and 0.25° ocean) termed HadGEM3‐GC3.1‐MM (Kuhlbrodt et al., 2018). Details of the model's
configuration and performance are given elsewhere within this special issue of JAMES. For instance,
Williams et al. (2017) describe the atmosphere, ocean, sea‐ice, and land surface configurations in detail;
Mulcahy et al. (2018) describe the developments in aerosol processes; and Kuhlbrodt et al. (2018) and
Menary et al. (2018) provide a comprehensive description of the model's climatology and variability.
Hardiman et al. (2019) describe an ozone redistribution scheme that is included in the climate change
simulations used here.

2. UKESM1 is the latest state‐of‐the‐art U.K. Earth System Model. It builds on the low‐resolution “physical
climate”model HadGEM3‐GC3.1‐LL with the inclusion of, amongst other things, terrestrial carbon and
nitrogen cycles—including an interactive vegetation model—ocean biochemistry and a unified
tropospheric‐stratospheric chemistry scheme (Sellar et al., 2019). Details of the model components, cou-
plings, performance, and evaluation are given in Sellar et al. (2019).

An important characteristic of our model development process is traceability and consistency in physical
parameters across the model hierarchy. For example, when changing horizontal resolution between
HadGEM3‐GC3.1‐LL and HadGEM3‐GC3.1‐MM, only a small number of changes—mostly in the ocean
(see table 1. of Kuhlbrodt et al., 2018)—are explicitly required and a retuning of the model (e.g., to the
top‐of‐atmosphere [TOA] radiative balance) is not needed since resolution‐dependent parameterizations
are avoided (Williams et al., 2017). This mean differences in forcing, feedback, and climate sensitivity
between the ‐LL and ‐MM configurations can confidently be attributed to differences in horizontal resolu-
tion between the configurations rather than any change in physical parameters that might have arisen if
the models had needed to be retuned. The one exception is that the ‐LL configuration uses a slightly lower
albedo for snow on sea ice compared to the ‐MM resolution to compensate for a sea‐ice bottom melt that is
too weak in the Arctic (Kuhlbrodt et al., 2018). However, we do not believe this parameter change has a
significant impact on our results (see section 4). Similarly, in the construction of UKESM1, no retuning of
the HadGEM3‐GC3.1‐LL physical parameters was required (Sellar et al., 2019). Hence, we interpret the
differences in results between HadGEM3‐GC3.1‐LL and UKESM1 as due to the inclusion of Earth system
processes. The one exception is a difference in the model parameterization related to the partial burying
of vegetation by snow, which we discuss the impacts in section 5.

Section 2 describes the experiments used and methods. Section 3 diagnoses the global climate sensitivity and
feedback metrics of each model to idealized CO2 changes. Section 4 identifies which feedback processes
depend on the atmospheric and ocean resolution. Section 5 identifies Earth system feedbacks from the cou-
pling between CO2 and vegetation changes in UKESM1. Section 6 investigates the linearity of feedbacks to
evolving patterns of temperature change. Section 7 diagnoses the radiative forcing and feedbacks in
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HadGEM3‐GC3.1‐LL historical simulations and contrasts them to feedbacks found in abrupt‐4xCO2

simulations as well as to observed sea surface temperature (SST) and sea‐ice variations. Finally, section 8
presents a summary and discussion.

2. Experiments and Methods

We predominantly make use of core CMIP6 “DECK” simulations (Eyring et al., 2016) with HadGEM3‐
GC3.1 at two different resolutions and UKESM1 but additionally explore historical forcing and feedback
in HadGEM3‐GC3.1‐LL with Radiative Forcing Model Intercomparison Project (RFMIP; Pincus et al.,
2016) and Cloud Feedback Model Intercomparison Project (CFMIP; Webb et al., 2017) simulations.
CMIP5 data used for comparison purposes are the same as that used in Forster et al. (2013) and Andrews
et al. (2015).

2.1. Control Simulations

The AOGCM control of each model configuration is piControl—that is, a spun‐up control simulation with
constant year 1850 forcing conditions (Eyring et al., 2016). The control climatology and variability of
HadGEM3‐GC3.1 is analyzed and evaluated in Menary et al. (2018). For diagnosing in HadGEM3‐GC3.1‐
LL (section 7), we also have an atmosphere‐only GCM (AGCM) configuration of the piControl, called
piClim‐control (Pincus et al., 2016). This is a 30‐year AGCM simulation using constant 1850 forcing condi-
tions (e.g., year 1850 greenhouse gas concentrations and aerosol emissions) and a monthly climatology of
SST and sea ice derived over the first 50 years of the piControl simulation as boundary conditions for the
atmospheric model, following the RFMIP protocol (Pincus et al., 2016).

2.2. Climate Change Simulations and Calculations

All climate change simulations used—along with their purpose in this study—are listed in Table 1., follow-
ing CMIP6 experiment names. Details of each experimental protocol are given in Eyring et al. (2016) for the
DECK abrupt‐4xCO2, 1pctCO2, and historical simulations; Pincus et al. (2016) for the suite of piClim RFMIP
radiative forcing experiments; andWebb et al. (2017) for the CFMIP amip‐piForcing simulation, though each
will be briefly introduced where relevant in the following analysis.

All calculations that follow are based on annual mean quantities, and differences between control and per-
turbation simulations are calculated in parallel (i.e., year by year) before calculating global means. If one was
only interested in global mean quantities, it might be preferable to remove a linear fit of the global annual
mean piControl time series (e.g., Andrews, Gregory, et al., 2012; Forster et al., 2013). This would remove
interannual piControl noise and unforced model drift (assuming it to be linear and equal in the control

Table 1.
Summary of Climate Change Simulations Used in This Study and Their Purpose

Experiment name MIP Purpose (to calculate) Model Ensemble size Run length (years)

abrupt‐4xCO2 DECK “Long‐term” effective sensitivities: EffCS, EffF2x, λ, F2x HadGEM3‐GC3.1‐LL 1 150
HadGEM3‐GC3.1‐MM 1 150
UKESM1 1 150

1pctCO2 Transient sensitivities: TCR, T140 HadGEM3‐GC3.1‐LL 4 150
HadGEM3‐GC3.1‐MM 1 150
UKESM1 4 150

historical Historical feedbacks and temperature change HadGEM3‐GC3.1‐LL 4 1850–2014
abrupt‐4xCO2‐rad n/a Biogeochemical feedbacks/CO2 fertilization effects UKESM1 1 150
piClim‐anthro RFMIP 1850–2014 FANT timeslice HadGEM3‐GC3.1‐LL 1 30
piClim‐ghg 1850–2014 FWMGHG timeslice HadGEM3‐GC3.1‐LL 1 30
piClim‐aer 1850–2014 FAER timeslice HadGEM3‐GC3.1‐LL 1 30
piClim‐lu 1850–2014 FLU timeslice HadGEM3‐GC3.1‐LL 1 30
piClim‐4xCO2 F4xCO2 HadGEM3‐GC3.1‐LL 1 30
piClim‐histall Historical F(t) time series HadGEM3‐GC3.1‐LL 1 1850–2014
piClim‐histnat Historical FNAT(t) time series HadGEM3‐GC3.1‐LL 1 1850–2014
piClim‐histghg Historical FWMGHG(t) time series HadGEM3‐GC3.1‐LL 1 1850–2014
piClim‐histaer Historical FAER(t) time series HadGEM3‐GC3.1‐LL 1 1850–2014
amip‐piForcing CFMIP Historical λ(t) in response to observed SST and sea‐ice changes HadGEM3‐GC3.1‐LL 1 1870–2014
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and perturbation run). However, assuming linear drift at a grid box level might introduce errors. Hence,
since we are interested in regional results as well as global means, we prefer our method as this removes
unforced model drift and ensures regional results are consistent with global mean analysis. However, this
is at the expense of including interannual piControl noise in the results.

Details of how the benchmark forcing, feedback, and sensitivity metrics are calculated are given in the cap-
tion of Table 2. All our radiative flux and sensitivity terms are defined as positive downwards, so a positive
number represents a heat gain with warming (a positive, destabilizing, feedback), and a negative number
represents a heat loss to space with warming (a negative, stabilizing, feedback). Thus, for example, the total
climate feedback parameter (λNET, in W m−2 K−1) is negative using our sign convention, since the climate
system is overall stable.

3. Global Sensitivity and Feedbacks Metrics to Idealized CO2 Changes

Figures 1a and 1b show the global annual mean surface air temperature change, ΔT, from the 1pctCO2

and abrupt‐4xCO2 experiments, respectively. Compared to the CMIP5 generation of models, both
HadGEM3‐GC3.1‐LL and UKESM1 warm more in response to increased CO2. Indeed, both benchmark
sensitivity metrics—the TCR (2.48 to 2.76 K) and EffCS (5.54 to 5.36 K; Table 2)—are at or above the
CMIP5 5–95% ranges of 1.2 to 2.5 K (for TCR) and 1.9 to 4.5 K (for EffCS; see caption of Table 2 for
details of calculations and definitions). This is found to be the case in other CMIP6 models too, such
as CNRM‐CM6‐1 (Voldoire et al., 2019), CESM2 (Gettelman et al., 2019), and E3SMv1 (Golaz et al.,
2019). Indeed, both TCR and EffCS are found to be very similar to the E3SMv1 model (TCR = 2.9 K;
EffCS = 5.3 K; Golaz et al., 2019).

To understand the simulated climate sensitivities of the HadGEM3‐GC3.1‐LL and UKESM1 configurations
further, we decompose EffCS into its effective radiative forcing from a doubling of CO2 (EffF2x) and climate
feedback parameter (λNET) following Andrews, Gregory, et al. (2012), noting that EffCS = −EffF2x/λNET. As
per Andrews, Gregory, et al. (2012), we further decompose the radiative feedback parameter into its radiative
components: longwave clear‐sky (λLWcs), shortwave clear‐sky (λSWcs), and cloud radiative effect (λCRE).
Cloud feedback (λCRE) in UKESM1 and the HadGEM3‐GC3.1‐LL configurations are found to be at the upper
end of the CMIP5 5–95% range (Table 2) but below the maximum found in CMIP5 (0.7 W m−2 K−1,
Andrews, Gregory, et al., 2012). The other feedback processes (λLWcs and λSWcs) are relatively close to the
CMIP5 mean, as is EffF2x (Table 2).

If none of the individual forcing or feedback processes in the model are unprecedented compared to CMIP5
models, what then leads to the relatively high EffCS in these two model configurations? First, in CMIP5,
there existed an anticorrelation between EffF2x and λNET (Andrews, Gregory, et al., 2012; Chung & Soden,

Table 2
Global Mean CO2 Forcing and Sensitivity Metrics

Model F2x TCR T140 EffCS EffF2x λNET λLWcs λSWcs λCRE

HadGEM3‐GC3.1‐LL 4.05 2.48 6.59 5.54 3.49 −0.63 −1.80 0.66 0.51
HadGEM3‐GC3.1‐MM 4.00 2.66 6.35 5.44 3.55 −0.65 −1.82 0.57 0.60
UKESM1 4.02 2.76 6.61 5.36 3.60 −0.67 −1.88 0.71 0.50
HadGEM3‐GC2.0 3.84 2.11 4.61 3.18 3.35 −1.05 −1.74 0.44 0.24
CMIP5 mean ± (5–
95%)

4.08 ±
0.80a

1.82 ±
0.63b

4.58 ±
1.18c

3.22 ±
1.32b

3.44 ±
0.84b

−1.13 ±
0.51b

−1.81 ±
0.25b

0.71 ±
0.24b

−0.04 ±
0.53b

Note. F2x is the radiative forcing from a doubling of CO2, calculated as theΔN‐axis intercept from the regression ofΔN againstΔT in the first 5 years of the abrupt‐
4xCO2 simulation, divided by 2 (Armour, 2017). TCR is theΔT at the point of CO2 doubling (year 70) in the 1pctCO2 simulation, calculated as themean over years
61–80 (Gregory & Forster, 2008). T140 is the ΔT at the point of CO2 quadrupling (year 140) in the 1pctCO2 simulation, calculated as the mean over years
131–150. This is a slightly different T140 calculation to that given in Gregory et al. (2015), since they were limited to CMIP5 simulations that only ran for 140
years. TCR and T140 values for HadGEM3‐GC3.1‐LL and UKESM1 represent the mean values from the four ensemble members. EffCS = −EffF2x/λNET is
the effective climate sensitivity, where EffF2x is the effective 2xCO2 forcing and λNET the climate feedback parameter, calculated from the regression
of ΔN against ΔT for all 150 years of the abrupt‐4xCO2 simulation (EffF2x is the ΔN‐axis intercept divided by 2; λNET is the slope of the linear fit; Andrews,
Gregory, et al., 2012). λLWcs, λSWcs, and λCRE are the longwave clear‐sky, shortwave clear‐sky, and cloud radiative effect components of the feedback
parameter, respectively, calculated by regressing the change in radiative component against ΔT for all 150 years of the abrupt‐4xCO2 simulation (Andrews,
Gregory, et al., 2012). CMIP5 values come from the studies indicated; the 5–95% uncertainty ranges represent ±1.645 standard deviations across the individual
model results.
aArmour (2017). bForster et al. (2013). cGregory et al. (2015).
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2017; Ringer et al., 2014). This tended to reduce the impact of a small λNET on EffCS, since models with a
small λNET also had a small EffF2x. This is evident in Figure 1d, which shows the relationship between
EffCS and λNET, the dotted line representing the multimodel mean EffF2x. All CMIP5 models with λNET <
0.9 W m−2 K−1 (six in total) have an EffF2x below that of the multimodel mean (dotted line) and
sometimes substantially so. In contrast, in UKESM1 and HadGEM3‐GC3.1‐LL, while λNET is small (but
not unprecedented), a small λNET and an EffF2x close to—or just above—the CMIP5 mean is
unprecedented. It is this unusual combination of forcing and feedback that leads to a larger EffCS than
seen in the CMIP5 generation of models. The results of Golaz et al. (2019; their figure 28) suggest this
may be true for the E3SMv1 CMIP6 model too.

What model developments have led to the models relatively high EffCS? Bodas‐Salcedo et al. (2019) tested
the impact of all atmospheric model developments on λNET between HadGEM3‐GC3.1‐LL and the previous
HadGEM configuration HadGEM3‐GC2.0 (Williams et al., 2015), which had a “typical” EffCS of ~3 K
(Senior et al., 2016). (Note that the CMIP5 configuration was HadGEM2‐ES, but the vast amount of model
developments since then means a traceable link between model development and changes in climate sensi-
tivity is impractical). Bodas‐Salcedo et al. (2019) found that cloud feedback in the midlatitudes substantially
increased between HadGEM3‐GC2.0 and HadGEM3‐GC3.1‐LL. This was due to (i) the inclusion of a mixed‐
phase cloud scheme that reduced the strength of preexisting negative cloud feedbacks in that region for phy-
sically well understood reasons, bringing the model more in line with observations, and (ii) the inclusion of a
new aerosol scheme that suppressed a strong negative feedback that operated through a reduction in cloud
droplet size with warming. However, Bodas‐Salcedo et al. (2019) were limited to understanding the atmo-
spheric response to prescribed SST increases only, necessarily omitting coupled atmosphere‐ocean effects
and sea‐ice feedbacks, which we now go on to evaluate here.

We compare the feedbacks in the HadGEM3‐GC2.0 and HadGEM3‐GC3.1‐LL coupled atmosphere‐ocean
abrupt‐4xCO2 simulations in Table 2 and total feedback, λNET, in Figure 1d. As expected, we find that the
total feedback has decreased (from −1.05 W m−2 K−1 in HadGEM3‐GC2.0 to −0.63 W m−2 K−1 in
HadGEM3‐GC3.1‐LL, Table 2) and that the results of Bodas‐Salcedo et al. (2019) pull through into the
coupled model's feedbacks and EffCS, that is, that cloud feedback has doubled from 0.24 to ~0.5 Wm−2 K−1

Figure 1. Global annual mean surface air temperature change (ΔT) in the (a) 1pctCO2 and (b) abrupt‐4xCO2 simulations.
(c) Gregory plot used to estimate the EffCS. (d) Relationship between EffCS and feedback parameter (EffCS =−F2x/λ); the
dotted line uses the CMIP5 multimodel mean EffF2x.
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(Table 2). As in Bodas‐Salcedo et al. (2019), the biggest changes in cloud
feedback is at midlatitudes (Figure 2), due to the reasons discussed above
(i.e., the inclusion of a mixed‐phase cloud scheme and improved aerosol‐
cloud interaction processes). However, we also identify two other reasons
for the increased EffCS of the HadGEM model that Bodas‐Salcedo et al.
(2019) were unable to identify: (i) the SW clear‐sky radiative feedback
parameter, λSWcs, is substantially more positive, and (ii) the effective
radiative forcing from a doubling of CO2 (EffF2x) has increased (Table 2).

We attribute the increase in λSWcs mostly to reductions in the Southern
Ocean SST warm bias and consequent increases (improvements) in
Antarctic sea‐ice extent and volume in HadGEM3‐GC3.1‐LL compared
to HadGEM3‐GC2.0 (Williams et al., 2017; see their figure 7); the
enhanced sea‐ice extent in the HadGEM3‐GC3.1‐LL climatology leading
to a greater sea‐ice feedback. The Antarctic sea‐ice volume and extent
was too low in HadGEM3‐GC2.0 (Williams et al., 2017) and resulted in

an unrealistically low sea‐ice feedback (Senior et al., 2016). A Southern Ocean warm bias is a common pro-
blem in AOGCMs (e.g., Sallée et al., 2013), and we have found that model developments aimed at improving
the climatology of this region may either directly (e.g., through changes to mixed‐phase cloud parameteriza-
tions and so feedback, e.g., Bodas‐Salcedo et al., 2019) or indirectly (through changes in SST and sea‐ice
climatology/feedback) affect climate feedbacks and sensitivity.

The increase in EffF2x can mostly be explained by improvements in the treatment of greenhouse gas absorp-
tion (see section 3.2.1 in Walters et al., 2019). Indeed, Figure 3 shows the CO2 radiative forcing at the tropo-
pause as determined from offline radiative transfer calculations averaged over varying background
humidities following the methodology of Pincus et al. (2015) using the treatment of greenhouse gas absorp-
tion in HadGEM3‐GC2.0 as well as in HadGEM3‐GC3.1‐LL, both compared to a reference 300 band case.
The CO2 radiative forcing in HadGEM3‐GC3.1‐LL is an improvement on that seen in HadGEM3‐GC2.0,
which had unrealistically low forcing compared to the reference case, and performs well in the context of
other radiative transfer schemes and parameterizations (Pincus et al., 2015). At 2xCO2, the offline radiative
transfer calculations give an increase in forcing of ~0.3Wm−2 going fromHadGEM3‐GC2.0 and HadGEM3‐
GC3.1‐LL. To see whether this difference in forcing due to the treatment of radiative transfer pulls through
to the effective radiative forcing, we eliminate any impact of nonlinearity in the regression method of calcu-
lating EffF2x by using only the first 5 years of abrupt‐4xCO2 following Armour (2017), termed F2x in Table 2.

F2x has increased by ~0.2 W m−2 in HadGEM3‐GC3.1‐LL compared to
HadGEM3‐GC2.0. This is slightly smaller than the difference in the offline
radiative transfer calculations, suggesting that other processes—such as
cloud adjustments perhaps—that are included in the effective radiative
forcing but not in the offline radiative transfer calculations also differ
and perhaps slightly compensate.

4. Feedback Dependence on Atmospheric and
Ocean Resolution

In this section, we make use of the traceability and consistency in physical
parameters across ourmodel hierarchy (discussed in section 1) to investigate
whether any of these feedback and sensitivity results depend on the horizon-
tal resolution of themodel.Wedo this by contrasting the results between the
HadGEM3‐GC3.1‐LL and HadGEM3‐GC3.1‐MM configurations.

Figure 4a and Table 2 show that the relatively high sensitivity of
HadGEM3‐GC3.1 is largely independent of its low (‐LL) and medium (‐
MM) atmosphere‐ocean resolution configurations. However, considering
EffCS alone masks compensating processes and regional differences.
Table 2 shows that λSWcs is smaller at the higher atmosphere‐ocean reso-
lution configuration (‐MM), but this is mostly compensated for by a larger

Figure 2. Zonal‐mean cloud feedback parameter (λCRE) in the HadGEM3‐
GC3.1‐LL and HadGEM3‐GC2.0 abrupt‐4xCO2 simulations.

Figure 3. CO2 radiative forcing at the tropopause from offline radiative
transfer calculations using the treatment of greenhouse gas absorption in
(blue) HadGEM3‐GC2.0 and (red) HadGEM3‐GC3.1 compared to a (black)
reference 300 band case. Note that the x axis has a logarithmic scale. Each
calculation is averaged over four different profiles with varying humidities
following the method of Pincus et al. (2015).
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cloud feedback (λCRE). Why is this? Contrasting Figures 4b and 4c reveals a more positive and extensive
cloud feedback in the regions of tropical marine stratocumulus decks, such as in the tropical southeast
Pacific (off the western coast of South America) and tropical southeast Atlantic (off the western coast of
Africa), in HadGEM3‐GC3.1‐MM. These are regions of oceanic upwelling and extensive climatological
low clouds that form above the relatively cold SSTs and sit under a temperature inversion that caps the
boundary layer. Kuhlbrodt et al. (2018) showed significant warm SST biases in these coastal upwelling
regions in the lower‐resolution configuration (‐LL), which were improved at higher atmosphere‐ocean reso-
lution due to the better representation of upwelling. Gent et al. (2010) provide a possible mechanism for this,
in which the better resolved orography at higher atmospheric resolution allows stronger winds to develop
closer to the coasts in the upwelling regions, increasing the upwelling and reducing the SST warm bias. A
consequence of the colder SSTs is to increase the cloudiness in these regions (Gent et al., 2010). Indeed,
Figures 4e and 4f show that the elimination of the warm bias in these upwelling regions has increased the
climatological cloudiness (measured by the climatological cloud radiative effect, which becomes more nega-
tive and extensive in the ‐MM configuration). The consequence of increased cloudiness in these regions is a
more positive and extensive low cloud feedback.

In contrast, the higher atmospheric‐ocean resolution configuration has a smaller cloud feedback in North
Atlantic (Figures 4b and 4c). This is because of a poorer representation of the North Atlantic Current—
which is too zonal—at the lower‐resolution model, leading to a significant SST cold bias (up to 6 K) in the
northwest Atlantic (see Kulhbrodt et al., 2019). This is a common problem for 1° ocean models
(Danabasoglu et al., 2014). The improved representation of the northward and eastward flow of the North
Atlantic Current in the higher ocean resolution configuration reduces this cold bias, reducing cloudiness
(Figures 4e and 4f) and cloud feedback (Figures 4b and 4c). This is dependent on the ocean resolution rather
than atmospheric resolution, since Storkey et al. (2018) showed significant improvements in the North
Atlantic Current with ocean‐only simulations at different resolutions, unlike the coastal upwelling regions
discussed previously that likely depend on the atmospheric resolution too.

Finally, while these differences are all expected to be improvements at higher resolution, Kulhbrudt et al.
(2019) also showed that the higher‐resolution configuration had a worse Southern Ocean warm SST bias
than the lower‐resolution model. Consequently, the ‐MM configuration has much less Antarctic sea‐ice
extent and volume than the ‐LL configuration (see Kuhlbrodt et al., 2018; their figure 15), which likely

Figure 4. (a) Global annual mean surface air temperature change (ΔT) in the 1pctCO2 and abrupt‐4xCO2 simulations using a low (‐LL) and medium (‐MM) atmo-
sphere‐ocean resolution configuration of HadGEM3‐GC3.1. Geographical distribution of the cloud feedback parameter (λCRE) in the (b) low‐ and (c) medium‐

resolution configurations, from abrupt‐4xCO2. (d) Comparison of the zonal‐mean SW clear‐sky feedback parameter (λSWcs) from abrupt‐4xCO2. Geographical
distribution of the piControl cloud radiative effect climatology in the (e) low‐ and (f) medium‐resolution configurations.
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impacts on the sea‐ice feedback in this region. Indeed, Figure 4d shows the zonal‐mean λSWcs feedback
parameter at the two resolutions; it is clear that the reduced Antarctic sea‐ice due to the SST warm bias in
the ‐MM configuration results in a much smaller albedo feedback in this region. As noted in section 1,
one physical parameter that is different between the ‐LL and ‐MM configurations is a slightly lower
albedo for snow on ice (Kulhbrodt et al., 2018; their table 1.). However, this ought to reduce (albeit only
very slightly) the radiative effect of a given sea‐ice fraction change in the ‐LL configuration, since the
contrast in albedo between snow‐covered ice and open water is reduced, which is the opposite of what
we find. Hence, we do not think this can explain the different sea‐ice feedback results between the ‐LL
and ‐MM configurations.

In this section, we have shown that the high EffCS of the HadGEM3‐GC3.1 model is largely independent of
horizontal resolution, but this results from a fortuitous cancellation of changes to individual feedback pro-
cesses. There exists a compensation between an increased marine stratocumulus cloud feedback and a
reduced Antarctic sea‐ice feedback at the higher‐resolution configuration, both linked to changes in the
underlying climatology resulting from the change in resolution. While the more positive cloud feedback is
linked to an improved SST climatology in the regions of low clouds, the compensating sea‐ice feedback
change results from a Southern Ocean SST warm bias that is worse at the higher‐resolution configuration.

5. Earth System Feedbacks

Our model hierarchy also allows us to investigate the impact of including Earth system processes in our
model configuration on forcing, feedback, and sensitivity. We do this by comparing the results of
HadGEM3‐GC3.1‐LL and UKESM1 (see section 1). Similarity between the global forcing and feedback
metrics in HadGEM3‐GC3.1‐LL and UKESM1 (Table 2) suggests that—at the global scale—the inclusion
of Earth system processes in the physical climate model does not substantially alter the top‐level sensitivity
metrics. Andrews, Ringer, et al. (2012) found this to be the case with the previous Hadley Centre Earth
System Model HadGEM2‐ES also but due to compensating Earth system processes.

Here, we follow the methodology of Andrews, Ringer, et al. (2012) of performing an additional abrupt‐
4xCO2 experiment with UKESM1, but this time, only the radiation scheme sees the increased CO2 level
(the vegetation continues to see control CO2 levels)—termed abrupt‐4xCO2‐rad. Differencing abrupt‐
4xCO2 and abrupt‐4xCO2‐rad allows the impact of CO2 stomatal and fertilization effects to be quantified,
which has been identified as an important Earth system response in many models (e.g., Bala et al., 2006;
Matthews, 2007; O'Ishi et al., 2009). Assuming linearity, this difference is equivalent to the biogeochemi-
cally (BGC) coupled CO2 experimental designs of C4MIP (the Coupled Climate‐Carbon Cycle Model
Intercomparison Project; Jones et al., 2016) where only the carbon cycle sees the increased CO2, except
here, we have applied it to the abrupt‐4xCO2 simulation rather than the 1pctCO2 simulation used in
C4MIP. Hence, we refer to this difference as BGC. The assumption of linearity is supported by Gregory
et al. (2009); their figure 3a), who showed in 1pctCO2 simulations that the global temperature evolution,
ΔT, seen in “BGC coupled” and “rad coupled” simulations combined linearly to give ΔT evaluated in
“fully coupled” simulations.

When only the radiation scheme of UKESM1 is forced with 4xCO2 (abrupt‐4xCO2‐rad), the global ΔT
increase is smaller (Figure 5a), with the difference (BGC, averaged over the last 50 years of the simulations)
large (1 to 2 K and more) over most continental regions (Figure 5b). In other words, including the BGC
coupling with the CO2 change increases the warming in the model. Applying the same sensitivity analysis
of section 3 reveals that the EffCS reduces from 5.4 to 5.1 K in abrupt‐4xCO2‐rad, due to a reduction in
SW clear‐sky feedback (λSWcs; from 0.71 to 0.67Wm−2 K−1). This difference (the BGC feedback) is shown in
Figure 5c, showing more positive feedbacks over many continental regions and especially over the Northern
Hemisphere midlatitudes to high latitudes.

The increased EffCS and radiative feedback due to the BGC coupling come about due to CO2 fertilization
effects whereby the extra CO2 encourages growth of (darker) trees at expense of (brighter) grasses, reducing
the surface albedo and hence increasing the amount of solar radiation absorbed (e.g., Betts, 2000; Bala et al.,
2006; Matthews, 2007; O'Ishi et al., 2009). This is clear in Figures 5c–5f, which show substantial increases in
trees (Figure 5e) at the expense of grasses (Figure 5f; the area‐weighted spatial correlation r = −0.78),
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reducing the surface albedo (Figure 5d) and hence increasing the SW radiative feedback parameter
(Figure 5c). A particularly important region is the expansion of the boreal forest that co‐locates with
seasonal snow cover, reducing the surface albedo even more than when trees simply replace grasses. For
example, despite large vegetation changes in the tropics (Figures 5e and 5f), the albedo and radiative
effect is much smaller than found at midlatitudes to high latitudes (Figures 5c and 5d).

A potential issue with this vegetation‐snow BGC response in UKESM1 is that it co‐locates with a region of
model bias. Comparison of UKESM1 against satellite observations shows that this region is too bright in the
present day and is likely to be too bright in the piControl also (Sellar et al., 2019). This bias is related to model
parametrization of the partial burying of vegetation by snow, and Sellar et al. (2019) conclude that this effect
may be too strong in the model, for grasses in particular. If regions of partially snow‐covered vegetation are
too bright climatologically, then when the forests expand due to the CO2 fertilization effect in these regions,
the respective surface albedo change (and so λSWcs) maybe overstated. Unfortunately, there are difficulties in
the parameterization of surface albedo from snow‐vegetation interactions (e.g., Bright et al., 2015), and
Earth system processes are not as well understood or constrained as many other drivers of climate change
(Collins et al., 2011), so the fidelity of the BGC response is difficult to quantify. However, here, we have high-
lighted an Earth system response to CO2 change in UKESM1 that would be useful to quantify in other mod-
els, perhaps revealing an important source of uncertainty in Earth System Model feedbacks and land
temperature trends.

Here, we have highlighted a small but positive feedback associated with the inclusion of Earth system pro-
cesses, yet the top‐level sensitivity metrics (EffCS) are similar or—if anything—slightly smaller (Table 2).
Hence, there must be compensating negative feedback processes in the Earth System Model that are not
included in HadGEM3‐GC3.1‐LL that we are currently unable to identify. Table 2 shows that LW clear‐
sky feedback processes (λLWcs) are slightly more negative in UKESM1 compared to HadGEM3‐GC3.1‐LL
(λLWcs is equal to −1.88 and 1.80 W m−2 K−1, respectively). This term is typically associated with the
temperature (Plank and lapse rate) and water vapor feedbacks, yet there is no reason to suspect that the
inclusion of Earth system processes has altered these. Perhaps more likely are new feedback processes
included in UKESM1. In particular, UKESM1 includes a unified tropospheric‐stratospheric chemistry
scheme (Sellar et al., 2019) that would allow for changes in atmospheric composition with ΔT, from ozone,
for example, and will be the focus of future work.

Figure 5. (a) Global annual mean surface air temperature change (ΔT) in the UKESM1 abrupt‐4xCO2 and abrupt‐4xCO2‐rad (only the radiation scheme sees the
increased CO2). (b) Difference in ΔT between abrupt‐4xCO2 and abrupt‐4xCO2‐rad, termed the biogeochemical (BGC) response, averaged over the last 50 years of
the simulation. (c) The difference in SW clear‐sky feedback parameter (λSWcs), for example, the BGC component of the radiative feedback. The BGC change
averaged over the last 50 years of the simulations in (d) surface albedo, (e) tree fraction, and (f) grass fraction.
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6. abrupt‐4xCO2 Pattern Effects

Recent work has shown feedbacks to vary within a given model due to an evolving pattern of surface warm-
ing in abrupt‐4xCO2 simulations (e.g., Andrews et al., 2015; Andrews, Gregory, et al., 2012; Geoffroy et al.,
2013; Rugenstein et al., 2016), referred to as “pattern effects” (Stevens et al., 2016). Andrews et al. (2015)
quantified this effect in CMIP5 models by comparing λ diagnosed from the first 20 years and remaining
130 years of the abrupt‐4xCO2 simulation. We repeat their analysis here with HadGEM3‐GC3.1‐LL and
UKESM1 and compare against CMIP5 AOGCMs in Figure 6, to see if these models are unusual in this beha-
vior given their high sensitivities.

Figure 6a shows that both models are rather linear, unlike most CMIP5 models: λNET from years 1–20 and
years 21–150 are similar (Figure 6b, i.e., these models lie close to the 1:1 line), while most CMIP5 models
show a decrease in λNET (i.e., fall below the 1:1 line; larger EffCS) in the later period. We therefore rule
out any large change in feedback strength as a reason for the large EffCS in HadGEM3‐GC3.1‐LL and
UKESM1. However, we see that the EffCS from the first 20 years of abrupt‐4xCO2 is larger than any
CMIP5 model, but the EffCS from years 21 to 150 is not (Figure 6c). It is therefore unusual (relative to
CMIP5) to have such a large EffCS early in the abrupt‐4xCO2 simulation but not unusual if using an
EffCS definition based on years 21–150 of abrupt‐4xCO2.

The reason for the increased EffCS sensitivity in the later (years 21–150) compared to the early (years 1–20)
part of the abrupt‐4xCO2 simulation (albeit only a small increase in HadGEM3‐GC3.1‐LL and UKESM1
models) follows that of other CMIP5 models. That is, SW cloud feedback increases during the simulation,
while other feedback processes mostly remain unchanged (Figure 6d). Note that Figure 6d also shows that
the LW and SW components of the model's cloud feedback are outside the CMIP5 range, while the net cloud
feedback is not (section 3). This has been a feature of the previous Hadley Centre model HadGEM3‐GC2.0
too and relates to reductions in high cloud with surface warming that have opposing LW and SW CRE
changes (Senior et al., 2016), though this cancellation need not be exact (e.g., Mauritsen & Stevens, 2015).

7. Historical Forcing and Feedback

In this final section, we make use of RFMIP experiments to diagnose the historical radiative forcings in
HadGEM3‐GC3.1‐LL and then use them in conjunction with the model's coupled atmosphere‐ocean histor-
ical simulation to determine themodel's historical feedbacks and EffCS.We then compare these feedbacks to
that found in abrupt‐4xCO2, as well as in response to observed historical SST and sea‐ice variations. Note that
evaluation of the model's historical simulation against observations—including a rigorous evaluation of its
temperature trends—will be given elsewhere in this special issue.

7.1. Historical Forcing

Table 3 documents the 1850–2014 effective radiative forcings (ERF) in HadGEM3‐GC3.1‐LL diagnosed from
the change in radiative balance in 30‐year fixed‐SST timeslice experiments following the RFMIP tier 1
experiments (Forster et al., 2016; Pincus et al., 2016). The ERFs represent the change in radiative balance
(averaged over the 30‐year experiments) between a fixed‐SST control experiment (piClim‐control, see section
2.1), based on 1850 forcing conditions and a perturbation experiment that is identical except the relevant for-
cing agent (e.g., aerosol emissions) changed to year 2014 levels. The present‐day aerosol ERF (equal to the
mean change in net TOA radiative balance between piClim‐control and a perturbation experiment—
piClim‐aer—with anthropogenic aerosol emissions of sulfur dioxide (SO2), black carbon, and organic carbon
changed from year 1850 to 2014) is −1.10 W m−2. This aerosol forcing is close to the CMIP5 multimodel
mean (−1.2 ± 0.5 Wm−2 [5–95%]) reported in Zelinka et al. (2014) and counter to the paradigm that models
with large climate sensitivities have large aerosol forcings (e.g., Kiehl, 2007), consistent with Forster et al.
(2013) who found no relationship between historical forcing and climate sensitivity in the CMIP5 ensemble.

The radiative components (LW/SW clear‐sky and CRE) of the ERF are also shown in Table 3 and are con-
sistent with physical expectations of how each climate driver perturbs the Earth's energy budget. For exam-
ple, the forcing from well‐mixed greenhouse gases (FWMGHG) acts predominantly in the LW clear‐sky (since
greenhouse gases principally reduce outgoing LW radiation), while aerosol forcing (FAER) has a large nega-
tive component in SW clear‐sky (due to aerosol‐radiation interactions, e.g., the direct scattering and
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absorption of SW radiation) and clouds (due to aerosol‐cloud interactions). Land use forcing (FLU;
predominantly from deforestation) increases the surface albedo, so its largest component is in SW clear‐sky
(Table 3).

Figure 7a shows the annual mean historical time series of the total (anthropogenic plus natural), WMGHG,
aerosol, and natural only (FNAT) forcings (natural forcings include time‐varying volcanic and solar forcings,
including their effect on stratospheric O3). These are derived from analogous fixed‐SST experiments but with
time‐varying forcing constituents following the RFMIP tier 2 transient experiments (Pincus et al., 2016) and
are found to agree with the 2014 timeslice experiments (Table 3) at the present day (filled circles, Figure 7a).
The model's negative aerosol forcing time series largely balances the positive forcing from increases in
WMGHGs up to the point in which aerosol forcing levels off around the 1970s (Figure 7a), after which

Figure 6. (a) Gregory plot separated at year 20, that is, a linear regression fit for years 1–20 and 21–150, for HadGEM3‐
GC3.1‐LL and UKESM1 abrupt‐4xCO2 simulations. (b) Comparison of the feedback parameter derived the two time
periods across models. (c) Comparison of the EffCS derived from the two time periods. (d) Comparison of the feedback
parameter components derived the two time periods across models.

Table 3
1850 to 2014 Effective Radiative Forcings Simulated by HadGEM3‐GC3.1‐LL

Forcing (W m−2) Includes FNET FLWcs FSWcs FCRE

FANT (total anthropogenic) WMGHGs, O3, aerosols, and land use 1.81 3.36 −1.08 −0.47
FWMGHG (well‐mixed GHGs) WMGHGs only 3.09 2.94 0.16 −0.01
FAER (anthropogenic aerosols) Anthropogenic SO2, OC, and BC −1.10 0.20 −0.82 −0.48
FLU (land use) Land use only −0.11 0.07 −0.27 0.09
F4x (4xCO2) 4xCO2 only 8.08 7.27 0.28 0.53

Note. Numbers are diagnosed from the change in radiative balance (averaged over the length of the experiment) between a 30‐year fixed‐SST control experiment
based on year 1850 conditions (piClim‐control) and a perturbation experiment that is identical except the relevant forcing agent changed to year 2014 levels, fol-
lowing RFMIP protocols (Forster et al., 2016; Pincus et al., 2016). The aerosol perturbation includes changing anthropogenic aerosol emissions of sulfur dioxide
(SO2), black carbon (BC), and organic carbon (OC) from year 1850 to 2014. Also included is the 4xCO2 forcing as well as the radiative components (LW/SW clear‐
sky/cloud).
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the increasing forcing fromWMGHGs increasingly dominates and historical ΔT in the coupled atmosphere‐
ocean simulation follows accordingly (Figure 7b). The large negative spikes in total and natural forcing are
consistent with volcanic eruptions. The total and natural forcing time series does not go to zero at 1850, since
piControl conditions are spun‐up with the historical time‐mean volcanic forcing to avoid long‐term ocean
drifts in response to historical volcanic forcing (Eyring et al., 2016). In practice, this means a lack of volcanic
activity in the historical period gives a small but positive (~0.2 Wm−2) volcanic forcing, compared to the his-
torical time‐mean volcanic forcing.

7.2. Historical Feedbacks and EffCS

With the model's historical forcing time series known (Figure 7a and section 7.1), we can use it in conjunc-
tion with the change in net TOA radiation (Figure 7c)—and its LW/SW clear‐sky/CRE components—and

ΔT (Figure 7b) from coupled atmosphere‐ocean historical simulations to
estimate the model's climate feedbacks during its historical simulation,
via λ = (ΔN − ΔF)ΔT, fitted via ordinary least square regression of ΔN
− ΔF against ΔT (Figure 7d). Across the four‐member historical ensemble,
λNET =−0.86 ± 0.4 Wm−2 K−1 (5–95%), which is larger (smaller EffCS) in
the ensemble mean response than that found in the abrupt‐4xCO2 simula-
tion but not distinct when considering the variability across the ensemble
(Table 4). However, λLWcs is more negative, and λCRE less positive (both
tending to reduce EffCS in the historical simulation) compared to
abrupt‐4xCO2 (Table 4). This is consistent with recent studies (e.g.,

Figure 7. (a) Time series of the global annual mean historical effective radiative forcing, F, in HadGEM3‐GC3.1‐LL,
including its separation into WMGHGs (red), aerosols (blue), and natural forcings (grey). Circles at 2014 represent the
1850–2014 timeslice ERF experiments (Table 3). Note that black circle represents the total anthropogenic forcing, whereas
the black line (time series) includes anthropogenic and natural forcing (RFMIP protocol does not include a present‐day
natural ERF timeslice experiment). Global annual mean (b) surface air temperature change,ΔT, and (c) net TOA radiation
change, ΔN, in the HadGEM3‐GC3.1‐LL four‐member historical simulation. (d) The relationship between historical ΔN−

ΔF and ΔT for the ensemble mean.

Table 4
HadGEM3‐GC3.1‐LL Climate Feedback Parameters (W m−2 K−1)
in the abrupt‐4xCO2, amip‐piForcing, and historical Simulations

Experiment λNET λLWcs λSWcs λCRE

abrupt‐4xCO2 −0.63 −1.80 0.66 0.51
amip‐piForcing −1.32 −2.27 0.74 0.20
Historical mean ± (5–
95%)

−0.86 ±
0.40

−1.94 ±
0.06

0.88 ±
0.19

0.19 ±
0.15

Note. The 5–95% uncertainty ranges in the historical feedbacks represent
±1.645 standard deviations across the four‐member ensemble results.
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Andrews et al., 2018; Ceppi & Gregory, 2017; Gregory & Andrews, 2016; Zhou et al., 2016) that have argued
that historical LW clear‐sky and cloud feedbacks may be more stabilizing (smaller EffCS) during historical
climate change than long‐term EffCS experiments due to pattern effects. While accurately estimating
historical total feedback and EffCS in a single model is difficult due to large internal variability in the
simulated historical high‐latitude feedbacks (Adams & Dessler, 2019; Dessler et al., 2018), there is still of
course value in evaluating the relationship between historical and long‐term EffCS across a multimodel
ensemble, where the statistics will improve, such as CMIP6 when available.

Indeed, we find that determining the total pattern effect between the historical and abrupt‐4xCO2

simulations (i.e., the difference in feedbacks and EffCS) is primarily hindered by significant variability in

Figure 8. Historical (2000–2014 minus 1850) Southern Ocean sea‐ice fraction change in the four‐member ensemble his-
torical HadGEM3‐GC3.1‐LL simulations.
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the models historical sea‐ice feedback (since λSWcs = 0.88 ± 0.19 W m−2 K−1 [5–95%]) across the ensemble
(Table 4). This is due to significant decadal variability in the historical sea‐ice trends in this model,
particularly in the Antarctic. For example, Figure 8 shows the sea‐ice fraction change in each ensemble
member averaged over the final 15 years (2000 to 2014) of the historical simulation relative to the
piControl. Two ensemble members show significant sea‐ice loss, while two others show relatively little
change. This is consistent with Dessler et al. (2018) and Adams and Dessler (2019) who found large
uncertainties in historical feedbacks from high latitudes in the Max Planck Institute Earth System Model
(MPI‐ESM 1.1) 100‐member historical ensembles. Large decadal variability in historical sea‐ice trends is a
common feature of AOGCMs (e.g., Brown et al., 2016; Kay et al., 2011; Rosenblum & Eisenman, 2017)
and thus hinders our ability to accurately diagnose the total feedback and EffCS to forced climate change
in historical simulations within a single model.

Finally, we calculate the feedbacks in HadGEM3‐GC3.1‐LL to real‐world historical SST and sea‐ice varia-
tions following Andrews et al. (2018) using the amip‐piForcing simulation in CFMIP (Webb et al., 2017).
amip‐piForcing uses the atmospheric component of the model and forces it with observed monthly varying
SST and sea ice from 1870 to 2014 using the AMIP II data set (Hurrell et al., 2008), while keeping all forcing
agents (GHGs, aerosols etc.) constant at piControl conditions. Thus, λNET (and its components, calculated
analogously) can be diagnosed simply from the linear fit of ΔN and ΔT (Andrews et al., 2018). This is useful
quantity because Andrews et al. (2018) showed that AGCMs forced with real‐world historical SST and sea‐
ice variations simulate more stabilizing cloud and lapse‐rate feedbacks than those found in the same models
forced by long‐term CO2 changes, with substantially lower EffCS in amip‐piForcing than abrupt‐4xCO2. This
“pattern effect” between feedbacks in response to observed historical SST patterns and those simulated
under long‐term CO2 changes suggests observed EffCS constraints based on the historical record maybe
biased low compared to long‐term climate change (Andrews et al., 2018). With a move to higher EffCS in
abrupt‐4xCO2, it would be informative to calculate this pattern effect in HadGEM3‐GC3.1‐LL, to test
whether the historical pattern effect is larger in a higher EffCS model.

In common with other models, HadGEM3‐GC3.1‐LL simulates strongly stabilizing feedbacks in amip‐
piForcing compared to abrupt‐4xCO2, mostly due to differences in λLWcs and λCRE (Table 4). This is also
the case in the model's coupled atmosphere‐ocean historical simulation (Table 4). Using F2x = 4.05 W m−2

(Table 2) and λ = 1.32 W m−2 K−1 (Table 4), the historical EffCS in amip‐piForcing is found to be ~3.1 K, in
contrast to the 5.5 K estimated from abrupt‐4xCO2. However, the change in feedback (equal to λNET in
abrupt‐4xCO2 minus λNET in amip‐piForcing) ~0.7 W m−2 K−1 is close to the multimodel mean reported
by Andrews et al. (2018; they gave a mean and uncertainty of 0.6 ± 0.4 [5–95%] W m−2 K−1 across a six‐
model ensemble). Thus, there is little indication, from this single high EffCS model at least, that the range
of historical pattern effect determined by Andrews et al. (2018) needs significantly adjusting for higher‐
sensitivity models.

8. Summary and Discussion

A new generation of U.K. climate models has been developed and is being widely used in CMIP6. Here, we
have evaluated benchmark forcing, feedback, and climate sensitivity metrics from these models. The EffCS
to a doubling of CO2 is found to be 5.5 K for HadGEM3.1‐GC3.1‐LL and 5.4 K for UKESM1 using the bench-
mark method of Andrews, Gregory, et al. (2012) that was adopted in IPCC AR5 (Flato et al., 2013). The TCR
is 2.5 and 2.8 K, respectively. While the EffCS is larger than that seen in the previous generation of models, a
move to higher sensitivity is in common with some other recently published modelling centers (Gettelman
et al., 2019; Golaz et al., 2019; Voldoire et al., 2019).

The reasons for the increased sensitivity across the modelling ensemble will become clearer once CMIP6
data are widely available for analysis. For HadGEM3‐GC3.1‐LL and UKESM1, none of the individual forcing
or feedback processes are found to be atypical of that found in the previous generation of models (CMIP5),
though the net cloud feedback is towards the higher end and there exists a large high cloud response (which
tends to have opposing LW and SW effects and so cancels in the net, as in HadGEM3‐GC2.0, see Senior et al.,
2016). The relatively large EffCS results from an unusual (relative to CMIP5) combination of a typical effec-
tive CO2 forcing (close to the CMIP5 multimodel mean) with a relatively small feedback parameter (but
within the CMIP5 5–95% range). This also appears to be the case for the E3SMv1 model (Golaz et al.,
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2019; their figure 28). In CMIP5, an anticorrelation between CO2 forcing and feedback existed that tended to
minimize the impact of small feedback parameters on EffCS (i.e., models with small feedback parameters
[higher EffCS]—as in the case here—tended to have small effective CO2 forcings [lower EffCS]; Andrews,
Gregory, et al., 2012; Ringer et al., 2014; Chung & Soden, 2017). Given that HadGEM3‐GC3.1‐LL,
UKESM1, and E3SMv1 tend to go against this relationship, it would be useful to reinvestigate this
anticorrelation between CO2 forcing and feedback across the CMIP6 ensemble, when data are available,
as a potential reason for increased EffCS relative to CMIP5.

Compared to the previous U.K. physical climate model, HadGEM3‐GC2.0, the EffCS has increased from
3.2 to 5.5 K due to an increase in (i) CO2 radiative forcing, (ii) surface albedo radiative feedback, and
(iii) midlatitude cloud feedbacks. All changes are well understood—especially in the atmosphere (see
Bodas‐Salcedo et al., 2019)—and due to physical improvements in the model. For example, an improved
treatment of greenhouse gas absorption (Pincus et al., 2015; Walters et al., 2019) has led to an increase
in CO2 radiative forcing; a reduction in the southern ocean SST bias has increased Antarctic sea‐ice extent
(Williams et al., 2017) and radiative feedback; and the inclusion of a mixed‐phase cloud scheme and
improved aerosol‐cloud interaction processes (Mulcahy et al., 2018) has increased midlatitude cloud feed-
back (Bodas‐Salcedo et al., 2019).

At higher atmospheric and ocean resolution (HadGEM3‐GC3.1‐MM; 60 km atmosphere and 0.25° ocean),
the EffCS is largely unchanged compared to the lower‐resolution configuration (HadGEM3‐GC3.1‐LL; 135
km atmosphere and 1° ocean), but there exists a compensation between an increased marine stratocumulus
cloud feedback and a reduced Antarctic sea‐ice feedback at the higher‐resolution configuration (‐MM). The
increased cloud feedback arises from a better representation of coastal upwelling with higher resolution,
reducing a warm SST bias that existed at the lower‐resolution configuration (‐LL) and so increasing clima-
tological cloudiness and cloud feedback. In contrast, the reduced Antarctic sea‐ice feedback at higher reso-
lution maybe due to a Southern Ocean warm bias that is worse at higher resolution, reducing the
climatological sea‐ice amounts and feedback.

In UKESM1, we identified a CO2 fertilization effect that induces a land surface vegetation and albedo
change, which enhances the effective sensitivity of the model: The enhanced CO2 favors growth of (darker)
trees at the expense of (brighter) grasses, thus reducing the surface albedo and increasing the amount of solar
radiation absorbed (e.g., Betts, 2000; Bala et al., 2006; Matthews, 2007; O'Ishi et al., 2009). This effect is a par-
ticularly strong effect when co‐located with regions of seasonal snow cover, such as an expansion of the bor-
eal forest, since the contrast in the albedo of snow‐covered land to forest is even greater (e.g., Heinze et al.,
2019). While we have highlighted a small but positive feedback associated with the inclusion of Earth system
processes, the total feedback and EffCS between UKESM1 andHadGEM3‐GC3.1‐LL are similar, indicating a
compensating negative feedback process (or processes) in the Earth System Model that is not included in
HadGEM3‐GC3.1‐LL that we are currently unable to identify.

Historical aerosol forcing in HadGEM3‐GC3.1‐LL is −1.1 W m−2, close to the CMIP5 multimodel mean. In
HadGEM3‐GC3.1 historical simulations, cloud feedback is found to be less positive than in abrupt‐4xCO2, in
agreement with atmosphere‐only experiments forced with observed historical SST and sea‐ice variations.
However, variability in the coupled model's historical sea‐ice trends hampers accurate evaluation of the
model's total historical feedback and EffCS, as found in other models (e.g., Adams & Dessler, 2019;
Dessler et al., 2018). This hinders calculation of the “pattern effect” between historical climate change
and long‐term CO2 changes (e.g., Andrews et al., 2018) within a coupled atmosphere‐ocean single‐
model framework.

We highlight one final important characteristic of high‐sensitivity models. That is, the EffCS to a doubling
of CO2 is itself sensitive to small changes in feedbacks in the model, λNET, due to the inverse relationship
between EffCS and λNET (Figure 1d; Roe & Baker, 2007). This is important when quantifying the relative
importance of changes in feedback on EffCS. For example, imagine a model development that altered the
cloud feedback and climate sensitivity of that model, perhaps from the inclusion of a better representation
of mixed‐phase clouds (e.g., Tan et al., 2016) or tunings to aerosol‐cloud interactions (e.g., Gettelman
et al., 2019). Now imagine this development altered the cloud feedback of that model by +0.1 W m−2

K−1. For a typical CMIP5 model, with say λNET = −1.1 W m−2 K−1, this would alter the model's EffCS
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by only a small amount, from 3.1 K originally to 3.4 K (assuming a model mean EffF2x = 3.4 W m−2,
Table 2). In contrast, for higher‐sensitivity models, like UKESM1 and HadGEM3‐GC3.1, with say λNET
= −0.6 W m−2 K−1, the same small change in feedback process would lead to big swing in EffCS from
5.7 to 6.8 K. Hence, the impact of a model development on EffCS clearly depends on the baseline
sensitivity of that model. We therefore recommend reporting changes in model sensitivity in λ rather
than—or as well as—EffCS space.
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