A. D. Allu, A. M. Soja, A. Wu, J. Szymanski, and S. Balazadeh, Salt stress and senescence: identification of cross-talk regulatory components, Journal of Experimental Botany, vol.65, pp.3993-4008, 2014.

J. M. Alonso and A. N. Stepanova, T-DNA mutagenesis in Arabidopsis, Methods in Molecular Biology, vol.236, pp.177-188, 2003.

W. L. Araújo, K. Ishizaki, and A. Nunes-nesi, Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria, The Plant Cell, vol.22, pp.1549-1563, 2010.

D. I. Arnon, Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris, Plant Physiology, vol.24, pp.1-15, 1949.

D. E. Atkinson, Cellular energy metabolism and its regulation, 1977.

J. Barros, J. Cavalcanti, D. B. Medeiros, A. Nunes-nesi, T. Avin-wittenberg et al., Autophagy deficiency compromises alternative pathways of respiration following energy deprivation in Arabidopsis thaliana, Plant Physiology, vol.175, pp.62-76, 2017.

L. S. Bates, R. P. Waldren, and I. D. Teare, Rapid determination of free proline for water-stress studies, Plant and Soil, vol.39, pp.205-207, 1973.

K. Ben-rejeb, L. Vos, D. , L. Disquet, I. Leprince et al., Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana, The New Phytologist, vol.208, pp.1138-1148, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187624

V. Buchanan-wollaston, T. Page, and E. Harrison, Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis, The Plant Journal, vol.42, pp.567-585, 2005.

C. Cabassa-hourton, P. Schertl, and M. Bordenave-jacquemin, Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana, The Biochemical Journal, vol.473, pp.2623-2634, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01558869

D. Chrobok, S. R. Law, and B. Brouwer, Dissecting the metabolic role of mitochondria during developmental leaf senescence, Plant Physiology, vol.172, pp.2132-2153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494737

G. Clément, M. Moison, F. Soulay, M. Reisdorf-cren, and C. Masclaux-daubresse, Metabolomics of laminae and midvein during leaf senescence and source-sink metabolite management in Brassica napus L. leaves, Journal of Experimental Botany, vol.69, pp.891-903, 2018.

D. E. Collier and B. A. Thibodeau, Changes in respiration and chemical content during autumnal senescence of Populus tremuloides and Quercus rubra leaves, Tree Physiology, vol.15, pp.759-764, 1995.

J. Couturier, J. Doidy, F. Guinet, D. Wipf, D. Blaudez et al., , 2010.

, Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar, Annals of Botany, vol.105, pp.1159-1169

K. Dietrich, F. Weltmeier, A. Ehlert, C. Weiste, M. Stahl et al., Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress, The Plant Cell, vol.23, pp.381-395, 2011.

M. K. Engqvist, A. Kuhn, J. Wienstroer, K. Weber, E. E. Jansen et al., Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence, The Journal of Biological Chemistry, vol.286, pp.11382-11390, 2011.

P. Faës, C. Deleu, and A. Aïnouche, Molecular evolution and transcriptional regulation of the oilseed rape proline dehydrogenase genes suggest distinct roles of proline catabolism during development, Planta, vol.241, pp.403-419, 2015.

O. Fiehn, Metabolite profiling in Arabidopsis, Methods in Molecular Biology, vol.323, pp.439-447, 2006.

J. Finnemann and J. K. Schjoerring, Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction, The Plant Journal, vol.24, pp.171-181, 2000.

S. Fromm, J. Senkler, H. Eubel, C. Peterhänsel, and H. P. Braun, Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex, Journal of Experimental Botany, vol.67, pp.3079-3093, 2016.

D. Funck, S. Eckard, and G. Müller, Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis, BMC Plant Biology, vol.10, p.70, 2010.

D. Funck, B. Stadelhofer, and W. Koch, Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis, BMC Plant Biology, vol.8, p.40, 2008.

G. Gäde and L. Auerswald, Beetles' choice-proline for energy output: control by AKHs, Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, vol.132, pp.117-129, 2002.

S. Huang, N. L. Taylor, E. Ströher, R. Fenske, and A. H. Millar, Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis, The Plant Journal, vol.73, pp.429-441, 2013.

M. Z. Ihsan, S. J. Ahmad, Z. H. Shah, H. M. Rehman, Z. Aslam et al., The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves, Frontiers in Plant Science, vol.8, pp.1523-1534, 2007.

T. Kiyosue, Y. Yoshiba, K. Yamaguchi-shinozaki, and K. Shinozaki, A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis, The Plant Cell, vol.8, pp.1323-1335, 1996.

N. Kleinboelting, G. Huep, A. Kloetgen, P. Viehoever, and B. Weisshaar, GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database, Nucleic Acids Research, vol.40, pp.1211-1215, 2012.

J. Klodmann, M. Senkler, C. Rode, and H. P. Braun, Defining the protein complex proteome of plant mitochondria, Plant Physiology, vol.157, pp.587-598, 2011.

S. R. Law, D. Chrobok, and M. Juvany, Darkened leaves use different metabolic strategies for senescence and survival, Plant Physiology, vol.177, pp.132-150, 2018.

P. O. Lim, H. J. Kim, and H. G. Nam, Leaf senescence, Annual Review of Plant Biology, vol.58, pp.115-136, 2007.

J. Lin and S. Wu, Molecular events in senescing Arabidopsis leaves, The Plant Journal, vol.39, pp.612-628, 2004.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, The Journal of Biological Chemistry, vol.193, pp.265-275, 1951.

S. Mani, B. Van-de-cotte, M. Van-montagu, and N. Verbruggen, Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis, Plant Physiology, vol.128, pp.73-83, 2002.

C. Masclaux, M. H. Valadier, N. Brugière, J. F. Morot-gaudry, and B. Hirel, Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence, Planta, vol.211, pp.510-518, 2000.

C. Masclaux-daubresse, E. Carrayol, and M. H. Valadier, The two nitrogen mobilisation-and senescence-associated GS1 and GDH genes are controlled by C and N metabolites, Planta, vol.221, pp.580-588, 2005.

C. Masclaux-daubresse, F. Daniel-vedele, J. Dechorgnat, F. Chardon, L. Gaufichon et al., Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Annals of Botany, vol.105, pp.1141-1157, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203920

W. A. Mondal, B. B. Dey, and M. A. Choudhuri, Proline accumulation as a reliable indicator of monocarpic senescence in rice cultivars, Experientia, vol.41, pp.346-348, 1985.

K. Nakashima, R. Satoh, T. Kiyosue, K. Yamaguchi-shinozaki, and K. Shinozaki, A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis, Plant Physiology, vol.118, pp.1233-1241, 1998.

R. Narsai, K. A. Howell, A. H. Millar, N. O'toole, I. Small et al., , 2007.

, Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana, The Plant Cell, vol.19, pp.3418-3436

J. Pandhare, S. P. Donald, S. K. Cooper, and J. M. Phang, Regulation and function of proline oxidase under nutrient stress, Journal of Cellular Biochemistry, vol.107, pp.759-768, 2009.

E. Parre, M. A. Ghars, A. S. Leprince, L. Thiery, D. Lefebvre et al., Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis, Plant Physiology, vol.144, pp.503-512, 2007.

L. Pedrotti, C. Weiste, and T. Nägele, Snf1-RELATED KINASE1, 2018.

M. V. Pires, P. Júnior, A. A. Medeiros, and D. B. , The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis, Plant, Cell & Environment, vol.39, pp.1304-1319, 2016.

R. S. Rao, F. Salvato, B. Thal, H. Eubel, J. J. Thelen et al., The proteome of higher plant mitochondria, Mitochondrion, vol.33, pp.22-37, 2017.

Y. S. Rizzi, N. M. Cecchini, G. Fabro, and M. E. Alvarez, Differential control and function of Arabidopsis ProDH1 and ProDH2 genes on infection with biotrophic and necrotrophic pathogens, Molecular Plant Pathology, vol.18, pp.1164-1174, 2017.

R. Satoh, Y. Fujita, K. Nakashima, K. Shinozaki, and K. Yamaguchi-shinozaki,

, A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis, Plant & Cell Physiology, vol.45, pp.309-317

R. Satoh, K. Nakashima, M. Seki, K. Shinozaki, and K. Yamaguchi-shinozaki,

, ACTCAT, a novel cis-acting element for proline-and hypoosmolarityresponsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis, Plant Physiology, vol.130, pp.709-719

P. Schertl and H. P. Braun, Respiratory electron transfer pathways in plant mitochondria, Frontiers in Plant Science, vol.5, p.163, 2014.

C. Servet, T. Ghelis, L. Richard, A. Zilberstein, and A. Savouré, Proline dehydrogenase: a key enzyme in controlling cellular homeostasis, Frontiers in Bioscience, vol.17, pp.607-620, 2012.

S. Sharma, J. G. Villamor, and P. E. Verslues, Essential role of tissuespecific proline synthesis and catabolism in growth and redox balance at low water potential, Plant Physiology, vol.157, pp.292-304, 2011.

L. Szabados and A. Savouré, Proline: a multifunctional amino acid, Trends in Plant Science, vol.15, pp.89-97, 2010.

G. Székely, E. Abraham, and A. Cseplo, Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis, The Plant Journal, vol.53, pp.11-28, 2008.

O. Van-aken, B. Zhang, C. C. Uggalla, V. Paynter, E. et al., Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence, Plant Physiology, vol.2, pp.776-792, 2006.

N. Verbruggen, X. J. Hua, M. May, V. Montagu, and M. , Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator, Proceedings of the National Academy of Sciences, pp.8787-8791, 1996.

C. Y. Wang, S. H. Cheng, and C. H. Kao, Senescence of rice leaves. VII. Proline accumulation in senescing excised leaves, Plant Physiology, vol.69, pp.1348-1349, 1982.

F. Weltmeier, A. Ehlert, C. S. Mayer, K. Dietrich, X. Wang et al., Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors, The EMBO Journal, vol.25, pp.3133-3143, 2006.

H. Yu, X. Du, F. Zhang, F. Zhang, Y. Hu et al., A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle, Planta, vol.236, pp.387-399, 2012.

J. Yu, Y. Zhang, and C. Di, JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis, Journal of Experimental Botany, vol.67, pp.751-762, 2016.