

Sleep disordered breathing in Silver–Russell syndrome patients: a new outcome

Eloïse Giabicani, Michèle Boulé, Guillaume Aubertin, Eva Galliani, Frédéric Brioude, Beatrice Dubern, Irène Netchine

► To cite this version:

Eloïse Giabicani, Michèle Boulé, Guillaume Aubertin, Eva Galliani, Frédéric Brioude, et al.. Sleep disordered breathing in Silver–Russell syndrome patients: a new outcome. Sleep Medicine, 2019, 64, pp.23-29. 10.1016/j.sleep.2019.05.020. hal-02433501

HAL Id: hal-02433501 https://hal.sorbonne-universite.fr/hal-02433501

Submitted on 9 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Sleep disordered breathing in Silver-Russell syndrome patients: a new outcome.
2	Éloïse Giabicani ¹ , Michèle Boulé ² , Guillaume Aubertin ^{3,4,5} , Eva Galliani ⁶ , Frédéric Brioude ¹ , Béatrice
3	Dubern ^{7,8} , and Irène Netchine ¹
4	Corresponding author: eloise.giabicani@aphp.fr
5	Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau
6	26 avenue du Dr Arnold Netter, 75012 Paris, France
7	Phone : 0033171738032, Fax 0033144736127
8	
9	1. Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, APHP,
10	Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris,
11	France
12	2. APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Respiratoires et du Sommeil,
13	F-75012, Paris, France
14	3. APHP, Hôpital Armand Trousseau, Service de Pneumologie Pédiatrique, Centre de
15	Références des Maladies Respiratoires Rares de l'Enfant, F-75012, Paris, France
16	4. INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, 184 rue
17	du Faubourg-Saint-Antoine, 75012 Paris, France
18	5. Centre de Pneumologie de l'Enfant, Ramsay Générale de Santé, Clinique Chirurgicale, 92100
19	Boulogne-Billancourt, France
20	6. AP-HP, Hôpital Necker Enfants Malades, Chirurgie Maxillo-Faciale et Chirurgie Plastique,
21	75015, Paris, France
22	7. APHP, Hôpital Armand Trousseau, Service de Nutrition et de Gastroentérologie Pédiatriques,
23	F-75012, Paris, France
24	8. Sorbonne Université, INSERM, Nutriomics, F-75013, Paris, France
25	Abbreviated title: Sleep disordered breathing in Silver-Russell syndrome
26	Keywords: Silver-Russell syndrome, sleep disordered breathing, growth hormone, sleep apnea
27	syndrome, sleep recording
28	Declaration of interests: none.

29 Abstract

30 *Context:* Imprinting disorders (ID), such as Prader-Willi syndrome (PWS), are associated with sleep-31 disordered breathing (SDB). No data are available for Silver-Russell syndrome (SRS), another ID 32 which shares clinical features with PWS, although many patients describe excessive daytime 33 sleepiness, disturbed sleep, and snoring.

Objective: to characterize sleep in children with SRS and evaluate the impact of recombinant growth
 hormone (rGH) therapy.

Patients and Methods: we performed a retrospective analysis of sleep recordings in 40 patients with molecularly-proven SRS (methylation anomaly in 11p15 (n=32) or maternal uniparental disomy of chromosome 7 (n=16)). Sleep recordings were either polygraphy or polysomnography (n=16). 34 patients received rGH therapy.

40 *Results:* We collected 61 sleep recordings. The mean apnea-hypopnea index (AHI) was 3.4 41 events/hour (0-12.4), with a mean central AHI of 0.5 events/hour (0-2.4). SDB was identified in 42 73.8% (n=45) of the recordings and was severe in 4.9%. SDB was present in 86.4% of patients before 43 rGH therapy and was severe in 13.6%. AHI worsened for five of 12 patients with sleep recordings 44 before and after rGH therapy initiation, reaching mild impairment. The mean rGH dose was 45 32.3µg/kg/day (12.9-51.4), with a mean IGF-I plasma levels of 1.7 SDS (-1.9-6.6).

46 *Conclusion:* Most patients with SRS present SDB with an obstructive profile, possibly explained by 47 narrowing of the airways and lymphoid organ hypertrophy. We recommend systematic ear-nose-throat 48 evaluation of SRS patients and polysomnography if there are clinical anomalies, preferably before 49 initiating rGH therapy, to monitor and adapt the management of patients with SDB.

51 Introduction

52 Imprinting disorders (IDs) are caused by the disruption of epigenetic marks (mainly DNA 53 methylation) in crucial regions where, normally, they allow gene expression from only one allele, 54 depending on the paternal or maternal origin. Some patients with IDs show a clinical overlap with 55 growth failure, metabolic issues (obesity, glucose intolerance, inappropriate body mass composition), 56 and impaired neurodevelopment (1). Recent studies suggest that these imprinted regions work together 57 as a network to explain these overlapping phenotypes (1,2). Prader-Willi syndrome (PWS) is due to 58 the loss of paternal expression of chromosome 15q11-13, resulting in severe hypothalamo-pituitary 59 dysfunction, severe hypotonia, and impaired neurodevelopment. Sleep disordered breathing (SDB) 60 was first identified in patients with PWS, although its prevalence appears to be widely variable (3–7). 61 A recent multicentric study of a large cohort reported a prevalence of 51% (4). These patients showed 62 both obstructive apnea syndrome and central apneas, although less common, which could be involved 63 in sudden death during sleep (3,8). Such obstructive apneas may be due to tonsil hypertrophy and/or 64 pharyngeal muscle hypotonia, but they appear to be independent of body mass index (BMI) (6). 65 Central apneas with sleep-related alveolar hypoventilation may reflect hypothalamic dysfunction, as 66 observed in PWS patients experiencing satiety dysregulation (9,10). Furthermore, 73% of PWS 67 patients have impaired sleep, even without clinical signs of sleep-apnea syndrome (SAS) (6). Some 68 studies have evaluated the impact of recombinant growth hormone (rGH) on sleep features and 69 showed possible worsening of sleep polysomnography parameters six to nine months after treatment 70 initiation, but no long-term effect (4,7,11–13). This could be explained by tonsil hypertrophy 71 subsequent to the introduction of rGH, which rapidly stabilizes. Thus, a score for the risk of rGH 72 therapy initiation has been proposed, taking into account polysomnographic data, tonsil size, and 73 circulating insulin-like growth factor 1 (IGF-I) levels (14). Other studies have reported improved 74 breathing parameters and better day activity levels with rGH therapy in PWS patients, probably due to 75 an improvement in airway muscular tonus (12,13). Some of these patients required nocturnal noninvasive ventilation, leading to an improvement in SDB parameters (15). The results of these studies
and the possible risk of sudden death led to the recommendation of performing a sleep recording of all
PWS patients before initiating rGH therapy (3,16).

79 Silver-Russell syndrome (SRS) is an imprinting disorder that results in intrauterine growth restriction 80 (IUGR), poor postnatal growth, with feeding difficulties (often requiring early nutritional support), 81 and facial dysmorphism (relative macrocephaly at birth, protruding forehead, body asymmetry) 82 (17,18). The clinical diagnosis may be challenging because of non-specific signs. Azzi et al. thus 83 developed a clinical score (Netchine-Harbison clinical scoring system, NH-CSS), which has been 84 validated in a recent international consensus, to prompt genetic investigation (17,19). Molecular 85 abnormalities are identified in approximately 60% of the patients and can consist of either 86 chromosome 7 maternal uniparental disomy (upd(7)mat) or loss of methylation (LOM) in the 87 H19/IGF2 intergenic differentially methylated region (IG-DMR) in 11p15 (2,17). rGH therapy is 88 recommended to increase their height and muscle mass and improve body composition (17).

89 No data on sleep has been reported for SRS patients before rGH therapy, but they often present with 90 excessive daytime sleepiness, snoring, and nocturnal sweating in our clinical experience. Furthermore, 91 frequent maxillofacial abnormalities, such as vertical and horizontal mandibular hypoplasia, 92 retrognathia, maxillary hypoplasia, or high arched palate, which result in narrowing of the upper 93 airways, could affect the sleep of SRS patients (20,21). These possibly obstructive features may be 94 worsened by gastric reflux, frequently experienced by these patients (22). They also experience an 95 impaired sensation of satiety, which may be the manifestation of a hypothalamic dysfunction 96 mechanism that could also be responsible for central apneas (9). Several publications have shown a 97 link between deep sleep and reduced GH secretion (23). SDB could thus directly impair GH secretion 98 in these patients.

Here, we investigated, for the first time, whether SRS patients experience SDB. Our objectives were toretrospectively assess sleep features in patients with SRS and see the possible impact of rGH therapy.

101 Patients and methods

102 1. Patients

We performed a monocentric, retrospective study of molecularly proven SRS patients, either upd(7)mat or LOM of 11p15. For one patient with typical clinical SRS but no methylation abnormalities in leukocytes, we performed a skin biopsy and identified LOM in *H19/IGF2*:IG-DMR in her fibroblasts. All patients had at least one clinical evaluation in the unit to assess their NH-CSS (19). All patients regularly followed in our clinic between January 2010 and June 2015 underwent at least one sleep recording, regardless the presence of clinical symptoms or the treatment they received.

109 rGH therapy was initiated in most of the patients and the dose was adjusted to growth velocity. IGF-I 110 levels were monitored before and during treatment. IGF-I is known to be spontaneously elevated in 111 these patients (despite their poor nutritional status), consistent with an IGF-I insensitivity profile (24). 112 Thus, rGH doses were not adapted to IGF-I serum levels, as recommend by the international 113 consensus (25). Most patients had a gastroenterological, maxillofacial, and ear-nose-throat (ENT) 114 clinical evaluation by specialists experienced with SRS. Some patients also had an evaluation by a 115 pulmonologist, depending on the results of their sleep recording results or if they had respiratory 116 symptoms.

117 2 Methods

118 <u>2.1 Sleep recordings</u>

Polygraphy or polysomnography were performed in these patients, either before or during rGH therapy. Patients and their parents had a consultation concerning their sleep environment and sleep characteristics to assess the presence of clinical features consistent with SDB prior to the sleep recording. Sleep recordings were analyzed by trained doctors specialized in sleep disorders. A clinical evaluation was performed before the recording to rule out any acute upper airway infections. Data 124 were analyzed, taking into consideration the height, weight, and body mass index (BMI) of the 125 patients.

Polygraphies were recorded during a night's sleep while the child was hospitalized. When impossible, a nap recording was performed for younger children. Polysomnography (polygraphy with electroencephalographic data) was available only for the most recent recordings. Nasal pressure, thoraco-abdominal movement, tracheal sound, pulse oximetry (polysomnography CID102L8 by CIDELEC), and transcutaneous carbon dioxide pressure (Radiometer TINA) were recorded.

Polysomnography recordings allowed the evaluation of sleep efficiency, the micro-awakening index,
and duration of slow and rapid-eye-movement (REM) sleep (as a percentage of the whole sleep
period).

134 <u>2.2 Interpretation of sleep parameters</u>

The classification of respiratory events was consistent with pediatric scoring rules of the American Academy of Sleep Medicine for the scoring of sleep and associated events (26). The apnea hypopnea index (AHI) was calculated as the sum of apnea and hypopnea events per hour of total sleep for all the recordings. We mainly performed polygraphies meaning that the AHI is possibly underestimated in our recordings since we did not include hypopnea associated with micro-awakening (see table 1 in supplemental data). The AHI was considered to be mild between 1.5 and 5 events/hour, moderate between 5 and 10 events/hour, and severe above 10 events/hour (27).

142 Central AHI values over 0.45 events/hour in patients between three and five years of age, and over
143 0.85 events/hour in patients older than six years were considered to be abnormal. No reference values
144 have been validated for younger children (27).

Transcutaneous oxygen and carbon dioxide pressures were recorded and interpreted to be abnormal (*i.e.* hypoxemia and hypercapnia) if there was a difference of more than 10 mmHg between the pressures when asleep and awake (27). 148 Data are expressed as the mean (min-max). Distributions were compared using Student's test and 149 correlations were performed with Pearson's test.

150 <u>2.3 Biological assay</u>

151 Serum IGF-I concentrations were measured using a specific immunoradiometric assay (IGF-I 152 RIACT) purchased from CIS-BIO INTERNATIONAL (Gif- sur- Yvette, FRANCE). The sensitivity 153 threshold was 1 ng/ml and the intra-assay and inter-assay coefficients of variation were 3.2- 3.8% and 154 3.8- 8.2%, respectively. Data were transformed into age-related SDS values on the basis of previously 155 obtained data on controls.

156

157 **Results**

158 <u>1. Recordings</u>

A total of 61 sleep recordings (45 polygraphies and 16 polysomnographies) were analyzed, all but two (for the same patient) in our hospital (Figure 1). Recordings were performed between January 1, 2010 and June 30, 2015.We excluded one recording due to lack of quality (loss of electrodes). Night recordings lasted 481 minutes (210-654) and those for two naps lasted 70 and 84 minutes for one young patient at 1.7 and 2.8 years of age.

164 <u>2. Patients</u>

165 Data were available for 40 patients with SRS: 32 with LOM in the 11p15 region and eight with 166 upd(7)mat. The sex ratio was 0.5. All but one (with upd(7)mat) had a NH-CSS of SRS score of \geq 4. 167 The mean age at the first polygraphy was 6.0 years (1.7-15.3). We performed 21 sleep recordings in 20 168 patients without rGH therapy and sleep recording before and during rGH therapy in 12 patients. Most 169 patients received rGH therapy (n = 30) with a mean age at initiation of 3.6 years (1.5-7.5). Eight 170 patients had two sleep recordings during rGH therapy and two had sleep recording after rGH therapy 171 cessation. All but three patients were born small for gestational age (with birth weight and/or length below -2SDS at 37 (28-41) weeks of amenorrhea: birth weight was -2.8 SDS (-5.8;-0.3), birth length 4.1 SDS (-8.0;-0.9), and head circumference -1.0 SDS (-4.0;1.2) (28).

174 <u>3. Clinical features</u>

Twenty patients were screened for SDB with a questionnaire before the sleep recording (Table 1). All patients had a clinical gastro-intestinal evaluation and we found a high prevalence of reflux, even after 24 months of age. The respiratory, ENT and maxillo-facial features, known to affect sleep quality, are shown in Table 2.

179 <u>4. Sleep recordings</u>

180 The sleep recording parameters are shown in Table 3. The AHI for overall sleep recordings was 3.4 181 events/hour (0.0-12.4) with a central AHI of 0.5 events/hour (0.0-2.4). SDB was identified in 45 182 recordings (73.8%) and classified as mild for 33 (54.1%), moderate for nine (14.8%), and severe for 183 three (4.9%). The central AHI was abnormal in 22 recordings (36.0%) for 17 patients (42.5%). There 184 was no difference in the AHI between patients with upd(7) mat and those with 11p15 (p = 0.94). We 185 found mild negative correlation between age and AHI (ρ =-0.37, p=0.003). Before rGH treatment, 186 only three patients (14.3%) had a normal sleep recording; 13 had mild SDB (61.9%), three had 187 moderate SDB (14.3%), and two had severe SDB (9.5%). See Figure 2 for the complete data.

Concerning snoring, four patients (20.0%) had a pathological snoring index (\geq 50) before rGH therapy, and one a severe index (\geq 300); none had tonsil or adenoid hypertrophy. During rGH therapy, 10 patients (27.8%) had a pathological index, with severe SDB for two. Among them, eight (80%) had a normal ENT examination, one had a tonsillectomy three months before, and one had adenoid hypertrophy (with a snoring index of 68). There was no statistical difference of the AHI between patients with adenoid or tonsil hypertrophy and those with a normal ENT examination (mean of 3.2 events/hour (0.1;11.5) and 3.2 events/hour (0.0,12.4), respectively, p = 0.59).

There was no difference in the AHI in patients without treatment (before rGH therapy onset or after cessation) and those during rGH therapy (mean of 4.1 events/hour (0.3;12.4) and 3.1 events/hour (0.1,11.5), respectively, p = 0.18).

Transcutaneous carbon dioxide and oxygen pressures were measured in 30 recordings. Nine patients (30.0%) had hypoxemia and five had hypercapnia (16.7%). Minimal oximetry was under 90% in 25 recordings (45.5%) and minimal transcutaneous oxygen pressure was under 70 mmHg for 11 patients (36.7%). The maximal transcutaneous carbon dioxide pressure during sleep was above 45 mmHg in 12 recordings (40.0%). The time below 80 mmHg for transcutaneous oxygen pressure was null for all patients and only one patient under rGH therapy had a transcutaneous carbon dioxide pressure above 50 mmHg during 7% of the time recorded.

The results for sleep parameters of the 12 patients recorded before and during rGH therapy are shown in Table 4. All but one patient showed SDB at baseline and there was one case of relevant worsening of the AHI (case 4) after 13 months of rGH therapy, going from mild to moderate SDB. The mild SDB of two patients normalized after 21 and 22 months (cases 7 and 12, respectively), whereas one patient (case 1) showed a marked improvement of his severe SDB to a moderate level after nine months of treatment. These patients showed no difference in the AHI before and during rGH therapy (p = 0.52).

We collected 16 polysomnographies for 14 patients; six were performed before rGH therapy (Supplementary data Table 1). Among them, the proportion of deep sleep for the entire duration of sleep was 23.3% (11.6; 37.0), REM sleep represented 21.2% (10-36.4), and the micro-awakening index was 9.2 (1.0; 21.0). The mean sleep efficiency was 83% (66; 93).

215 <u>5. IGF-I serum levels</u>

We found spontaneously elevated IGF-I serum levels before rGH therapy, with a mean of 1.3 SDS (-1.9; 4.5) and nine patients (45.0%) had IGF-I serum levels above 2 SDS. These levels rose to 2.0 SDS (-0.6; 6.6) with rGH treatment and the IGF-I serum levels were above 2 SDS for 20 patients (50.0%).

There was no significant difference in IGF-I serum levels before or during rGH therapy, with a mean daily dose of $32.3 \ \mu g/kg$ (12.9-51.4). We failed to find a correlation between plasma IGF-I levels and AHI.

222 Discussion

Here, we show that SRS patients frequently exhibit SDB, as 24 patients (60.0%) in our cohort had mild to severe SDB. This is the first time that such data on the sleep of SRS patients has been collected and published. Although the data are retrospective and preliminary, this study highlights a previously unknown feature of SRS.

227 We observed mainly obstructive apnea in these children, suggesting that their SDB may be due to 228 narrowing of the upper airways and reflux. There was no direct link between lymphoid tissue 229 hypertrophy and SDB in our patients. Only one patient had an adenotonsillectomy between the first 230 and second polygraph, her AHI worsening from 1.5 to 11.5 after surgery. This finding suggests that 231 adenotonsillectomy may be less successful in SRS patients than in the general population, as already 232 reported for PWS patients (29-31). Furthermore, an ENT intervention concerning tonsils in SRS 233 patients can result in a voice change and worsen a preexisting high-pitched voice, quite common in 234 these patients. Such velopharyngeal insufficiency is well described in PWS and must be explored in 235 SRS. For maxillofacial malformations (skeletal class II, supraclusion, upper and lower crowding) 236 orthodontic treatment is possible, and some patients had symphysal distraction osteogenesis for severe 237 lower crowding and bilateral scissor bite. Changes in SDB after such interventions have yet to be 238 evaluated (21,30). In addition, we found the AHI to be no different between patients with clinical 239 signs of reflux and those without (p = 0.14). Hypotonia and constitutional narrowness of the upper 240 airways appear to be the best explanation for the obstructive features in SRS patients during sleep.

The observed short-term worsening of SDB in PWS patients following the initiation of rGH therapy can be explained by rapid elevation of serum IGF-I levels, resulting in tonsil hypertrophy, which

243 worsens their obstructive SDB (3). Our work confirms spontaneously high serum IGF-I levels in SRS 244 patients and their increase with rGH therapy. These paradoxical findings in patients with malnutrition 245 suggest at least partial IGF-I insensitivity (24). Although rGH therapy can induce tonsil hypertrophy, it 246 is more likely to merely act as an aggravating factor rather than be completely responsible for the 247 worsening of SDB. We found no correlation between plasma IGF-I levels and AHI. Our data of 12 248 patients with sleep recordings before and after rGH therapy do not show major worsening of SDB with 249 rGH therapy. These data are however difficult to analyze because of the different time intervals 250 between the initiation of rGH therapy and the second sleep recording. We found no correlation 251 between either plasma IGF-I levels or the time after initiating rGH therapy and changes in the AHI 252 between the two sleep recordings. The only significant correlation was AHI decreasing with age as 253 already described. A larger standardized, longitudinal, prospective study will be necessary to properly 254 investigate the impact of rGH on SDB in these patients.

255 In our cohort, 17.5% of patients presented with pathological central apneas. Among them, all 256 but one had either enteral nutrition (n=3) or feeding disorders (n=3). The one patient without 257 nutritional or feeding disorders had an almost normal central AHI of 0.5 at 6.7 years of age. These data 258 support the hypothesis of hypothalamic dysfunction, which could alter the control of both 259 satiety/hunger and breathing (9,10). Involvement of the hypothalamus in the regulation of appetite, 260 mediated by oxytocin-neurons, has been described in PWS and, for some authors, almost all PWS 261 symptoms are caused by dysfunction of their hypothalamus (9). More recent work suggests direct 262 imprinting mechanisms in the regulation of hypothalamic function (10). These new insights suggest 263 that hypothalamic disturbances could be responsible for feeding difficulties in SRS patients. Hence, 264 both satiety and breathing hypothalamic centers could be impaired in these patients with imprinting 265 diseases.

Several studies have shown the benefit of nocturnal intermittent positive pressure ventilation
 (IPPV) on central alveolar hypoventilation in PWS patients. The presence of central apneas is the main
 11

feature which determines nocturnal IPPV, whereas continuous positive airway pressure (CPAP) is preferred in cases of obstructive SAS (4). None of our patients had nocturnal ventilation but it has since been introduced for case 5 (table 4). In cases of obstructive SDB without tonsil hypertrophy or persistent obstructive SDB after tonsillectomy, transient nocturnal CPAP is a therapeutic option, while waiting for the growth of the head to enlarge the narrowness of the upper airways caused by maxillofacial anomalies, combined with rGH to improve hypotonia.

274 PWS patients experience abnormalities in the organization of REM sleep during polysomnography 275 (32). Although we had only a small number of polysomnographies, we identified a high micro-276 awakening index in our patients. As mentioned in the methods, AHI is underestimated in polygraphies 277 since micro-awakening is not monitored. Consequently together the high micro-awakening index we 278 found in polysomnographies and the high prevalence of SDB we identified in polygraphies (even with 279 an underestimated AHI) should drive us exclusively assess sleep parameters with polysomnographies 280 for a more accurate diagnosis of SDB. Now that polysomnography is more widely available, it would 281 be informative to gather sufficient data to study this tendency, depending on the acceptance of younger 282 of this more uncomfortable method.

283 These data are preliminary and need to be validated to recommend guidelines for sleep evaluation in 284 SRS patients in the future (17). Our results should be confirmed in another cohort with prospective 285 protocol, a standardized method (PSG) and longer recordings (avoiding short naps when possible), 286 which were the limitations encountered here. Sleep quality should be investigated because of the 287 proven negative effect on psychological, behavioral, and global functioning of PWS patients with 288 sleep disorders (33). rGH therapy should have a positive effect on daytime sleepiness in SRS patients, 289 as shown for PWS patients (11,34). It may be informative to evaluate the effect of various types of 290 treatment, such as nocturnal CPAP or IPPV, orthodontic devices, distraction osteogenesis, or 291 adenotonsillectomy on the sleep of SRS patients and their global well-being.

292 Conclusion

Patients with SRS frequently present with SDB. Apneas are mainly obstructive and could be caused by hypotonia and narrowing of the upper airways due to their known maxillofacial abnormalities. Sleep features were not worsened by rGH therapy for 11 of 12 patients. We thus recommend an ENT evaluation of SRS patients before rGH therapy and, when possible, polysomnography. Clinical signs of SAS should be screened in consultation and if present should prompt a sleep recording. Persistent obstructive anomalies after ENT intervention should prompt the pulmonologist to consider the need of nocturnal ventilation.

Acknowledgments: We thank the patients, their families, the "Association Française des Familles
Ayant un Enfant Atteint du Syndrome Silver-Russell ou né Petit pour l'Âge Gestationnel
(AFIF/PAG)" for their support, and Mrs. Laurence Perin, Mrs. Nathalie Thibaut, Mrs. Cristina Das
Neves, and Mrs. Marilyne le Jule, the diagnostic and research technicians of the Pediatric
Endocrinology Department, Trousseau Pediatric Hospital.

305 **References**

- Geoffron S, Abi Habib W, Chantot-Bastaraud S, Dubern B, Steunou V, Azzi S, et al.
 Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular
 Diagnosis of Silver-Russell Syndrome. J Clin Endocrinol Metab. 01 2018;103(7):2436 46.
- Mackay DJG, Eggermann T, Buiting K, Garin I, Netchine I, Linglart A, et al. Multilocus
 methylation defects in imprinting disorders. Biomol Concepts. mars 2015;6(1):47-57.
- Tauber M, Cutfield W. KIGS highlights: growth hormone treatment in Prader-Willi
 Syndrome. Horm Res. 2007;68 Suppl 5:48-50.
- Pavone M, Caldarelli V, Khirani S, Colella M, Ramirez A, Aubertin G, et al. Sleep
 disordered breathing in patients with Prader-Willi syndrome: A multicenter study.
 Pediatr Pulmonol. 7 avr 2015;
- 5. Festen D a. M, de Weerd AW, van den Bossche R a. S, Joosten K, Hoeve H, HokkenKoelega ACS. Sleep-related breathing disorders in prepubertal children with Prader-

- Willi syndrome and effects of growth hormone treatment. J Clin Endocrinol Metab. déc
 2006;91(12):4911-5.
- 321 6. Vandeleur M, Davey MJ, Nixon GM. Are sleep studies helpful in children with Prader322 Willi syndrome prior to commencement of growth hormone therapy? J Paediatr Child
 323 Health. mars 2013;49(3):238-41.
- Al-Saleh S, Al-Naimi A, Hamilton J, Zweerink A, Iaboni A, Narang I. Longitudinal
 evaluation of sleep-disordered breathing in children with Prader-Willi Syndrome during
 2 years of growth hormone therapy. J Pediatr. févr 2013;162(2):263-268.e1.
- Manni R, Politini L, Nobili L, Ferrillo F, Livieri C, Veneselli E, et al. Hypersomnia in the Prader Willi syndrome: clinical-electrophysiological features and underlying factors.
 Clin Neurophysiol Off J Int Fed Clin Neurophysiol. mai 2001;112(5):800-5.
- 330 9. Swaab DF. Prader-Willi syndrome and the hypothalamus. Acta Paediatr Oslo Nor 1992
 331 Suppl. nov 1997;423:50-4.
- Ivanova E, Kelsey G. Imprinted genes and hypothalamic function. J Mol Endocrinol. oct
 2011;47(2):R67-74.
- Bridges N. What is the value of growth hormone therapy in Prader Willi syndrome?
 Arch Dis Child. 1 févr 2014;99(2):166-70.
- Haqq AM, Stadler DD, Jackson RH, Rosenfeld RG, Purnell JQ, LaFranchi SH. Effects
 of growth hormone on pulmonary function, sleep quality, behavior, cognition, growth
 velocity, body composition, and resting energy expenditure in Prader-Willi syndrome. J
 Clin Endocrinol Metab. mai 2003;88(5):2206-12.
- Lindgren AC, Hellström LG, Ritzén EM, Milerad J. Growth hormone treatment
 increases CO(2) response, ventilation and central inspiratory drive in children with
 Prader-Willi syndrome. Eur J Pediatr. nov 1999;158(11):936-40.
- Salvatoni A, Berini J, Chiumello G, Crinò A, Di Candia S, Gargantini L, et al. POI: a
 score to modulate GH treatment in children with Prader-Willi syndrome. Horm Res
 Pædiatrics. 2012;78(3):201-2.
- Hoyos CM, Killick R, Keenan DM, Baxter RC, Veldhuis JD, Liu PY. Continuous
 Positive Airway Pressure Increases Pulsatile Growth Hormone Secretion and Circulating
 Insulin-like Growth Factor-1 in a Time-Dependent Manner in Men With Obstructive
 Sleep Apnea: A Randomized Sham-Controlled Study. SLEEP [Internet]. 1 avr 2014 [cité
 21 mai 2015]; Disponible sur:
- 351 http://www.journalsleep.org/ViewAbstract.aspx?pid=29403

- 352 16. Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M.
 353 Recommendations for the Diagnosis and Management of Prader-Willi Syndrome. J Clin
 354 Endocrinol Metab. nov 2008;93(11):4183-97.
- Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, et al.
 Diagnosis and management of Silver–Russell syndrome: first international consensus
 statement. Nat Rev Endocrinol [Internet]. 2 sept 2016 [cité 6 sept 2016]; Disponible sur:
 http://www.nature.com/doifinder/10.1038/nrendo.2016.138
- Azzi S, Brioude F, Le Bouc Y, Netchine I. Human imprinting anomalies in fetal and
 childhood growth disorders: clinical implications and molecular mechanisms. Curr
 Pharm Des. 2014;20(11):1751-63.
- Azzi S, Salem J, Thibaud N, Chantot-Bastaraud S, Lieber E, Netchine I, et al. A
 prospective study validating a clinical scoring system and demonstrating phenotypicalgenotypical correlations in Silver-Russell syndrome. J Med Genet. 7 mai 2015;
- 20. Vo Quang S, Galliani E, Eche S, Tomat C, Fauroux B, Picard A, et al. Contribution of a
 better maxillofacial phenotype in Silver-Russell syndrome to define a better orthodontics
 and surgical management. J Stomatol Oral Maxillofac Surg. 2 nov 2018;
- 368 21. Kisnisci RS, Fowel SD, Epker BN. Distraction osteogenesis in Silver Russell syndrome
 369 to expand the mandible. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its
 370 Const Soc Am Board Orthod. juill 1999;116(1):25-30.
- 371 22. Marsaud C, Rossignol S, Tounian P, Netchine I, Dubern B. Prevalence and management
 372 of gastrointestinal manifestations in Silver-Russell syndrome. Arch Dis Child. avr
 373 2015;100(4):353-8.
- 374 23. Van Cauter E, Copinschi G. Interrelationships between growth hormone and sleep.
 375 Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. avr 2000;10 Suppl
 376 B:S57-62.
- 377 24. Iliev DI, Kannenberg K, Weber K, Binder G. IGF-I sensitivity in Silver-Russell
 378 syndrome with IGF2/H19 hypomethylation. Growth Horm IGF Res Off J Growth Horm
 379 Res Soc Int IGF Res Soc. oct 2014;24(5):187-91.
- 25. Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R, Rogol A.
 Management of the child born small for gestational age through to adulthood: a
 consensus statement of the International Societies of Pediatric Endocrinology and the
 Growth Hormone Research Society. J Clin Endocrinol Metab. mars 2007;92(3):804-10.
- Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring
 respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep
 and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the

- American Academy of Sleep Medicine. J Clin Sleep Med JCSM Off Publ Am Acad
 Sleep Med. 15 oct 2012;8(5):597-619.
- Scholle S, Wiater A, Scholle HC. Normative values of polysomnographic parameters in
 childhood and adolescence: cardiorespiratory parameters. Sleep Med. déc
 2011;12(10):988-96.
- 392 28. Usher R, McLean F. Intrauterine growth of live-born Caucasian infants at sea level:
 393 standards obtained from measurements in 7 dimensions of infants born between 25 and
 394 44 weeks of gestation. J Pediatr. juin 1969;74(6):901-10.
- Sedky K, Bennett DS, Pumariega A. Prader Willi Syndrome and Obstructive Sleep
 Apnea: Co-occurrence in the Pediatric Population. J Clin Sleep Med [Internet]. 15 avr
 2014 [cité 21 mai 2015]; Disponible sur: http://www.aasmnet.org/jcsm/ViewAbstract.aspx?pid=29433
- 30. Won CHJ, Li KK, Guilleminault C. Surgical treatment of obstructive sleep apnea: upper airway and maxillomandibular surgery. Proc Am Thorac Soc. 15 févr 2008;5(2):193-9.
- 401 31. Padia R, Muntz H, Pfeffer K, Meier J. Effectiveness of Adenotonsillectomy and Risk of
 402 Velopharyngeal Insufficiency in Children With Prader-Willi Syndrome. Ann Otol
 403 Rhinol Laryngol. nov 2017;126(11):733-8.
- 404 32. Nixon GM, Brouillette RT. Sleep and breathing in Prader-Willi syndrome. Pediatr
 405 Pulmonol. sept 2002;34(3):209-17.
- 33. O'Donoghue FJ, Camfferman D, Kennedy JD, Martin AJ, Couper T, Lack LD, et al.
 Sleep-Disordered Breathing in Prader-Willi Syndrome and its Association with
 Neurobehavioral Abnormalities. J Pediatr. déc 2005;147(6):823-9.
- 409 34. Morselli LL, Nedeltcheva A, Leproult R, Spiegel K, Martino E, Legros J-J, et al. Impact
 410 of GH replacement therapy on sleep in adult patients with GH deficiency of pituitary
 411 origin. Eur J Endocrinol Eur Fed Endocr Soc. mai 2013;168(5):763-70.
- 412

413 Figures and tables

- 414 Table 1. Clinical features of sleep apnea syndrome collected at the sleep consultation (n = 20).
- 415 Table 2. Main clinical features of the cohort.

416 Table 3. Main sleep recording parameters of the cohort. rGH: recombinant growth hormone. SpO2:

417 pulse oximetry. TcPO2: transcutaneous oxygen pressure. TcPCO2: transcutaneous carbon dioxide

418 pressure. REM: rapid eye movement.

- 419 Table 4. Data for 12 patients before and after the initiation of rGH therapy. ¤ indicates that the sleep
- 420 recording was a polysomnography. * Delay between rGH therapy onset and second sleep recording.
- 421 Figure 1. Repartition of the patients and the sleep recordings regarding molecular anomalies, type of
- 422 recording and recombinant growth hormone therapy (rGH). LOM: loss of methylation; upd(7)mat:
- 423 maternal uniparental disomy of chromosome 7; PSG: polysomnography.
- 424 Figure 2. A) Representation of each sleep recording AHI in the entire cohort. B) Repartition of the
- 425 AHI depending on the corresponding SDB level (in percentage) in the entire cohort, before and during
- 426 rGH therapy.

	Prior rGH therapy						During rGH therapy						
	PG n=17				PSG n=6		PG n=28			PSG n=10			
	Mean Min Max			Mean	Min	Max	Mean Min Max		Mean	Min	Max		
AHI (events/h)	3.0	0.0	10.0	5.9	1.6	12.4	3.2	0.1	11.5	2.9	0.5	6.1	
Obstructive AHI (events/h)	2.5	0.0	9.1	4.8	1.5	10.2	2.9	0.0	9.6	10.6	0.4	4.7	
Central AHI (events/h)	0.5	0.0	1.7	1.2	0.0	2.4	0.4	0.0	1.8	0.5	0.0	1.9	
Sleep efficiency				87.1	83.0	93.0				76.4	66.0	91.0	
Percentage of time in slow sleep (%)				27.8	18.0	37.0				21.1	11.6	27.0	
Percentage of time in REM sleep (%)				16.0	10.0	26.0				23.8	17.0	36.4	
Micro-awakenings				10.6	10.0	21.0				9.2	3.0	17.0	

SDTable 1: Comparison of AHI values obtained with polygraphies (PG) or polysomnographies (PSG) before and during rGH treatment.

	n	%
Asthenia	5	25
Snoring	7	35
Apnea	2	10
Disturbed sleep	7	35
Nocturnal sweat	10	50
Nightmares	8	40
Enuresia	4	20
Morning headaches	2	10
Excessive daytime sleepiness	2	10

		n	%
Respiratory	Asthma	13/36	36.1
	Treatment of asthma	8/13	61.5
Ear-nose-throat	Tonsil hypertrophy	11/33	33.3
	Adenotonsillectomy	6/11	54.5
Maxillofacial	Abnormalities	30/31	96.8
	Orthodontic treatment	8/30	26.7
	Surgical treatment	3/30	10.0
Nutrition	Gastric reflux	25/40	62.5
	Enteral nutrition	16/40	40.0
	Feeding difficulties	24/40	60.0

	With	out rGH 1 n= 23	therapy	During rGH therapy n=38			
	Mean	Min	Max	Mean	Min	Max	
AHI (events/h)	4.1	0.3	12.4	3.1	0.1	11.5	
Obstructive AHI (events/h)	3.4	0.0	10.2	2.7	0.0	10.6	
Central AHI (events/h)	0.7	0.0	2.4	0.4	0.0	1.9	
Minimum sleeping SpO2 (%)	90.0	80.0	96.0	91.0	82.0	96.0	
Percentage of time with sleeping SpO2<90% (%)	0.1	0.0	1.0	0.05	0.0	1.0	
TcPO2 difference between sleep and arousal (mmHg)	-6.4	-14.0	0.0	-4.9	-17.0	7.0	
Maximal TcPCO2 during sleep (mmHg)	43.6	39.0	49.0	43.8	34.0	51.0	
TcPCO2 difference between sleep and arousal (mmHg)	5.8	2.0	10.0	7.2	3.0	12.0	
Minimal TcPO2 during sleep (mmHg)	71.7	57.0	89.0	74.7	64.0	91.0	
Snoring index	105.6	0.0	1582.0	60.4	0.0	545.0	

			Age ((years)	AHI (events/h)		Obstructive AHI (events/h)		Central AHI (events/h)		IGF1 (SDS)		rGH therapy		
Cases	Sex	Genetic	1st recording	2nd recording	1st recording	2nd recording	1st recording	2nd recording	1st recording	2nd recording	1st recording	2nd recording	Age (vears)	Dose (mg/kg/week)	Delay* (vears)
1	М	Upd(7)mat	3.6	5.4	10	5.1	9.1	3.3	0.9	1.8	0.1	1.8	4.6	0.26	0.8
2	F	Upd(7)mat	2.8	5.7	4.1	3.4	4.1	3.0	0.0	0.4	0.3	-0.6	2.8	0.28	2.9
3	F	11p15	1.7	2.8	1.4	3.4	0.0	3.4	1.4	0.0	-1.9	0.4	2.2	0.26	0.6
4	F	11p15	3.3	4.6¤	3.4	6.1	1.7	4.7	1.7	1.4	1.0	2.8	3.5	0.22	1.1
5	М	11p15	2.1	3.3¤	2.9	3.9	2.1	3.9	0.8	0.0	3.2	2.3	0.4	0.25	2.9
6	М	11p15	6.1¤	6.6¤	4.3	0.7	3.4	0.4	0.9	0.3	0.9	1.8	6.3	0.23	0.3
7	Μ	11p15	4.1	6.1¤	3.9	0.9	3.9	0.8	0.0	0.1	-1.7	0.7	4.3	0.22	1.8
8	М	11p15	4.9	7.4¤	3.8	1.6	3.2	1.5	0.6	0.1	2.2	2.2	6.9	0.21	0.5
9	F	11p15	3.2	6.4¤	2.4	4.2	2.1	3.7	0.3	0.5	2.9	2.6	3.7	0.13	2.7
10	М	Upd(7)mat	4.1¤	5.0¤	4.0	4.1	-	-	-	-	1.2	3.8	4.3	0.19	0.7
11	М	11p15	3.2	4.7	3.6	1.8	3.5	1.8	0.1	0.0	2.2	2.9	3.1	0.36	1.6
12	М	Upd(7)mat	2.3	4.6¤	1.7	4.1	1.3	3.9	0.4	0.2	3.7	2.5	2.7	0.21	1.9

normal mild moderate severe