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Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive
intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20%
are refractory to medication and cognitive behavioral therapy. Refractory OCD is
associated with suicidal behavior and significant degradation of social and professional
functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a
reversible and controllable method to treat refractory patients, with meta-analyses
showing 60% response rate following DBS, whatever the target: anterior limb of the
internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens
(NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP).
But how do we choose the “best” target? Functional neuroimaging studies have shown
that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the
ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the
medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of
stimulation were found within the VC and primarily connected to the medial orbitofrontal
cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been
found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity
between NAcc and the lateral and medial prefrontal cortex. The amSTN effective
stimulation sites are located at the inferior medial border of the STN, primarily
connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex.
Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus.
Thus, these functional connectivity studies show that the various DBS targets lie within the
same diseased neural network. They share similar efficacy profiles on OCD symptoms as
estimated on the Y-BOCS, the amSTN being the target supported by the strongest
evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to
improve mood, behavioral adaptability and potentially both, respectively. Because OCD is
such a heterogeneous disease with many different symptom dimensions, the ultimate aim
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should be to find the most appropriate DBS target for a given refractory patient. This quest
will benefit from further investigation and understanding of the individual functional
connectivity of OCD patients.
Keywords: deep brain stimulation, obsessive compulsive disorder, connectivity, anterior limb of internal capsule,
subthalamic nucleus, ventral capsule, ventral striatum, inferior thalamic peduncle
INTRODUCTION

Obsessive-compulsive disorder (OCD) affects 2–3% of the
general population and is characterized by repetitive,
stereotyped, and intrusive thoughts (obsessions) and behaviors
(compulsions), leading to a significant disability (1, 2). Cognitive
behavioral therapy and medication with selective serotonin
reuptake inhibitors (SSRIs) are the two first-line treatments
currently recommended for OCD (3). However, 40–60% of
patients experience persistent symptoms despite these
treatments (2). About 20% of OCD patients are considered to
be refractory (4, 5). Even if there is no consensual definition of
refractory OCD, levels of non-response have been proposed (6).
Treatment-refractory OCD is associated with high comorbidities
(including major depression), suicidal behaviors, and severe
alterations in social, familial, and professional functioning
(leading to significant costs for society) (5).

Current therapeutic options for severe and treatment-
resistant OCD include neuromodulation by high-frequency
deep brain stimulation (DBS), which is a reversible
neurosurgical technique which can be modified and adapted
over time and targeted at different nuclei within the fronto-
striato-thalamo-cortical network (2). Recent meta-analyses
estimate that 60% of treatment-refractory OCD patients
respond well to DBS (>35% of decrease on the Y-BOCS
severity scale), irrespective of the chosen target (7, 8).

A network, including cognitive and limbic territories of basal
ganglia nuclei [ventral striatum (VS) (9), nucleus accumbens
(NAcc) (10), and anteromedial subthalamic nucleus (amSTN)
(11, 12)] and white matter bundles [anterior limb of the internal
capsule (ALIC) (13), ventral capsule (VC), and inferior thalamic
peduncle (ITP) (14, 15)] connecting frontal areas to basal ganglia
has been proposed to be at the core of OCD physiopathology
(16). Such a fronto-striato-thalamo-cortical network has been
found to be altered in neuroimaging (17) and anatomical
connectivity studies in OCD (18). A precise understanding of
functional connectivity of the patients undergoing DBS and of
the DBS sites before or after implantation is crucial since DBS
should be considered to be a technique to modulate circuits
rather than a mere focal target. Its effects are generally considered
to be both local via somato-dendritic stimulation and long-range
via orthodromic and antidromic axonal stimulation (19).

Anatomical connectivity can be determined in vivo using
diffusion-weighted imaging (DWI) acquired by magnetic
resonance imaging followed by tractography reconstructions
according to deterministic or probabilistic algorithms. It
provides streamlines between determined regions, which are
hypothetical fibers, estimating the trajectory and the density of
g 2
the white matter projections between anatomical regions. But the
validity of these estimates compared with anatomical reality is a
matter of debate (20). Functional connectivity can be determined
in vivo using resting-state functional MRI, which measures
correlation of spontaneous activity between several brain
regions (21). Such techniques have recently been used in the
field of DBS to guide neurosurgical procedure of DBS electrode
implantation (22).

Indeed, despite the numerous advances leading to the current
DBS technique, some patients remain partially resistant to DBS.
For OCD, recent debates have focused on identifying the "best"
DBS target without any major adverse event. We review here and
analyze the various DBS targets used to treat refractory OCD
patients and highlight how determination of functional
connectivity profiles of each patient might be crucial to
determine which target might enable modulation of circuits of
interest for a given patient. Indeed, the clinical heterogeneity of
OCD (23, 24), linked to distinct neural correlates as witnessed by
functional neuroimaging (25), and by anatomical variations
revealed by connectivity analyses (26) encourage us to define a
more personalized target, taking into account the different
patterns of impaired neurocognitive processes across
OCD patients.
THE FRONTO-STRIATO-PALLIDO-
THALAMIC CIRCUIT

Understanding connectivity profiles of the various DBS targets
for OCD requires basic knowledge of the prefrontal cortex (PFC)
in humans and the fronto-striato-pallido-thalamic circuit. The
PFC is associated with central executive functions. It is involved
in selecting relevant information and ignoring irrelevant
information to drive goal-directed behaviors. Human PFC can
be divided into two functionally and anatomically different
regions: the medial (MPFC) and the lateral prefrontal cortex
(LPFC) (27, 28). The MPFC receives projections from sensory
cortices, the hippocampus and subiculum, the amygdala (29–31).
It is also connected with the NAcc, the posterior cingulate cortex,
the insula, and the hypothalamus (30, 32, 33). As a hub, it
integrates information within large-scale brain networks, such as
the default-mode network (DMN) and the salience network (SN)
(34, 35). The LPFC includes the dorsolateral prefrontal cortex
(DLPFC), the ventrolateral prefrontal cortex (VLPFC), and the
frontal eye field. The LPFC is involved in higher cognitive
functions. The DLPFC, especially, is crucial for the planning
and execution of complex temporal sequences of logical
reasoning, speech, and behavior supporting both short-term
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memory, preparatory set, and selective attention (36). The LPFC
receives a wealth of information from a large variety of cortical
and subcortical structures and in turn projects to the same
structures, but distinct areas in the LPFC receive and issue
topographically organized projections. More specifically, the
DLPFC is a crucial node in dorsal attention networks through
its connections with parietal cortex, thus supporting selection of
sensory information and response (37).

In healthy fronto-striato-thalamo-cortical circuits (Figure 1),
glutamatergic output from the orbitofrontal cortex (OFC) and
the anterior cingulate cortex (ACC) leads to striatal excitation
(38–40). Striatal activation through the direct pathway increases
inhibitory GABA signals to the globus pallidus internalis (GPi)
and the substantia nigra reticulata (SNr). It decreases the
inhibitory GABA output from the GPi and SNr to the
thalamus, thus enhancing excitatory glutamatergic output from
the thalamus to the frontal cortex. This positive-feedback direct
pathway is retrocontrolled by the so-called trans-striatal indirect
pathway: the striatum inhibits the globus pallidus externalis
(GPe) and decreases its inhibition of the subthalamic nucleus
(STN) through the indirect pathway. The STN then excites the
GPi and SNr, which inhibit the thalamus, and also receives
projections directly from the cortex forming a third pathway, the
so-called hyperdirect pathway (41).

In OCD patients, it was proposed that the direct pathway is
not sufficiently retrocontrolled by the indirect pathway (16).
With lower signals of activation, hyperactivation of the
orbitofrontal–subcortical pathway appears. Thus, excessive
concerns about hygiene or danger might lead to persistent
attention to the supposed threat (i.e., obsessions) and then to
compulsions, which are phenomenologically associated with the
neutralization of the putative threat.

Furthermore, it has been shown that the striatum, as other
nuclei of the basal ganglia, is made of three functionally and
Frontiers in Psychiatry | www.frontiersin.org 3
anatomically distinct territories: motor, limbic, and associative
(42–46). How these networks interact with each other is of
utmost importance for motivation and cognition to influence
decision-making and adaptive behavior. It has been shown that
the mesolimbic (through the ventral tegmental area, VTA) and
nigrostriatal pathways are an integral part of the basal ganglia
through their reciprocal connections to the ventral and dorsal
striatum, respectively (47, 48). These mesolimbic loops enable
the flow of striatal information from limbic to cognitive to motor
circuits through an ascending spiral of inputs and outputs
between the striatum and midbrain dopaminergic neurons (47)
(Figure 1).

The modulation of the fronto-striato-pallido-thalamic circuit
of OCD patients has been tested with repeated transcranial
magnetic stimulation (rTMS) of different cortical areas (49).
Connectivity of the various proposed rTMS targets for OCD
could be compared with the connectivity of DBS targets for
OCD. Indeed, most rTMS studies targeted the DLPFC (50, 51),
the supplementary motor area (SMA) (52–54), and the OFC (55,
56) of OCD patients. The results of these studies have been
inconsistent for the DLPFC [(57, 58) vs. (59, 60)], the SMA or
OFC. Replication trials following high-quality methodology will
help clarify the therapeutic potential of these last two targets.
Even though, these three main targets for rTMS seem to share
relevant connectivity with the DBS targets for OCD, and amSTN
especially (61–63).
STRIATAL REGION

Anterior Limb of the Internal Capsule
Within the ventral striatal region, the ALIC was the first target to
be explored since, originally, ALIC stereotaxic lesions were
performed for OCD: ALIC-DBS led to a significant
FIGURE 1 | Schematic representation of the fronto-striato-thalamo-cortical circuit. Different frontal areas known to be involved in obsessive-compulsive disorder
(OCD) physiopathology are represented here: the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). The frontal
lobe is composed of limbic (pink), associative (green), and sensorimotor (blue) territories projecting on partially overlapping part of the striatum. The same functional
mapping has been shown for the ventral tegmental area (VTA), substantia nigra pars compacta–reticulata (SNc-r), and the subthalamic nucleus (STN). Red spots
represent the different targets of DBS in OCD discussed in this review. GPe, globus pallidus externalis; GPi, globus pallidus internalis.
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improvement in three out of four refractory OCD patients (13).
Case reports and open studies have reported that about 50% of
OCD patients respond favorably to ALIC-DBS (64–68). A recent
open-label study, including the largest cohort of 20 refractory
OCD patients stimulated in the ALIC, reported 40% of
responders 1 year after surgery (68). Adverse events were
limited to one case due to hardware infection, and transient
effects due to DBS settings, such as hypomania, disinhibition,
lack of concentration, transient loss of energy, sleep disturbances,
and >20% weight gain (68). If the clinical effects of ALIC-DBS on
refractory OCD were encouraging, a confirmation level I study is
still needed (69). The identification of clinical and anatomical
response predictors to DBS could contribute to a refinement of
the ALIC target, personalized targeting, better outcomes, and
make such level I studies stronger.

Recently, individual clinical features of OCD were not found
to be predictors of response to DBS in a large cohort (n = 20)
(68). Neuroimaging techniques such as resting-state functional
connectivity or DWI have shed a new light on the relationship
between anatomical locations of the DBS target and response to
st imulat ion. Using DWI fol lowed by tractography
reconstructions in six OCD patients undergoing ALIC-DBS,
Hartmann et al. (70) showed that the two best responder target
locations within ALIC had a stronger connectivity with the right
middle frontal gyrus (MFG), whereas for two non-responders
the DBS site had higher connectivity with the right thalamus and
the orbital part of the right inferior frontal gyrus. The right MFG
is known to be associated with executive functions and adapting
sets in response to changing task requests (71), whereas the
orbital part of the right inferior frontal gyrus is involved in task-
switching and maintenance of compulsive behavior (72–74), so
that successful ALIC-DBS might rely at least partially on
promoting adaptive responses, but this not yet been studied.
More recently, a study using DWI and tractography of
anatomical connectivity of ALIC-DBS sites for 22 OCD
patients (75) confirmed that a predictor of clinical
improvement was the connectivity between stimulation sites
within ALIC and the right MFG. More precisely, and as direct
guidance for neurosurgeons targeting ALIC, this study
highlighted the importance of modulating a fiber tract within
the ventral ALIC passing through the ventral striatum, bordering
the bed nucleus of the stria terminalis (BNST), the subthalamic
nucleus, the inferior thalamic peduncle, and connecting overall
the middle prefrontal cortex with the thalamus (Figure 2) (76).
This result suggests that the different DBS targets reviewed in this
manuscript might lie within the same neural network, the
modulation of which alleviates OCD core symptoms. On the
contrary, modulation of fibers projecting to the medial forebrain
bundle, the posterior limb of the anterior commissure, and
within the inferior lateral fascicle led to worse outcomes on
OCD symptoms. Furthermore, depressive scores were improved
when modulating fibers encompassing the cingulum,
ventromedial prefrontal cortex, and the fornix. Thus, ALIC-
DBS could improve adaptability and/or mood depending on the
various fiber pathways affected by DBS after electrical field
Frontiers in Psychiatry | www.frontiersin.org 4
diffusion at the vicinity of the active DBS site, but this
hypothesis remains to be investigated. When performing
ALIC-DBS, and after acquiring the anatomical connectivity
profile for a given patient, it might be possible to fine-tune and
personalize the stimulation parameters in order to address mood
or flexibility impairments in addition to OCD core symptoms
depending on each patient’s specific symptoms. Last but not
least, the high stimulation amplitudes used (median of 4.7 V) in
these studies can be questioned: do they simply indicate that the
target to be stimulated has a larger volume than the portion of
the STN to stimulate in Parkinson’s disease (PD) patients for
instance, or are they due to suboptimal electrode placement?

ALIC seems a promising DBS target to treat refractory OCD.
ALIC-DBS ability to promote adaptability and/or mood
depending on the connectivity of the stimulation site remains
to be established. But this DBS target for OCD is lacking
confirmation by level I studies, and ALIC optimal targeting
seems challenging since it might require precise mapping of
ALIC-DBS sites with whole brain anatomical connectivity. This
neuroimaging procedure might not be available on a clinical
routine basis in all neurosurgical centres and therefore prevent
its widespread adoption.
Ventral Capsule/Ventral Striatum
DBS of the ventral capsule and adjacent ventral striatum (VC/
VS) has been investigated in refractory OCD based on the earlier
encouraging results following DBS of the ALIC (13) and
considering that an additional lesion of the ventral part of the
ALIC enhanced the clinical benefit (77). However, the only
randomized study available failed to show a significant
difference between patients under active (“on”) versus inactive
(“off”) stimulation (9). The short duration of the "on" phase in
the randomized part of the study, i.e., 2 months only, could
explain these negative results. Interestingly, four out of the six
OCD patients included were responders after a 1-year open-label
phase of DBS. Furthermore, a recent randomized study
comparing STN- to VC/VS-DBS in OCD for 12-week phases
found that six out of six patients responded to VC/VS-DBS (61).
Open studies also showed an improvement of OCD symptoms
after VC/VS-DBS over periods longer than 2 months of
stimulation (67, 77–80). Most of these studies with up to a 1-
year follow-up reached response rates around 50%. Four of four
patients were considered as responders in a recent study with a
follow-up of 2 years after surgery (79). The follow-up study of six
patients previously included in the cohort of Goodman (9) found
that 67% of the patients were responders 6 years after surgery
(80). In these studies, patients described an increase of OCD
symptom severity when the stimulator batteries were depleted
(67, 78). Taken together, these results support the efficacy of VC/
VS-DBS for patients suffering from refractory OCD with a
response rate increasing over time. But no level I study with a
long enough phase of active DBS has actually confirmed this
potential effect (8). Overall, VC/VS-DBS could be considered as a
reasonably safe surgical procedure. All but one patient of the
December 2019 | Volume 10 | Article 905
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Greenberg cohort (67) indicated that they would choose to have
DBS again (80).

VC/VS-DBS was associated with transient cognitive effects:
transient hypomania, possibly due a temporary electrode
lesioning effect, stimulation-induced memory experiences, and
a lasting major decrease of comorbid depressive symptoms (9,
67, 78, 79), suggesting a modulation of the reward and
motivational system. Preoperative predictors of clinical
Frontiers in Psychiatry | www.frontiersin.org 5
response to VC/VS-DBS remain to be determined in larger
studies. But a recent study suggested that the VC/VS effective
sites of DBS lay within the VC (ventral portion of the ALIC) and
were primarily connected to medial OFC, dorsomedial thalamus,
amygdala, and the habenula (61). In this study, VC/VS
specifically improved the mood of patients. Previously,
abnormal functional connectivity assessed by functional MRI
(fMRI) was found in OCD patients between the amygdala and
FIGURE 2 | Deep brain stimulation targets for patients with refractory obsessive-compulsive disorder. Basal ganglia structures and adjacent fiber bundles as
depicted on 3D reconstructions obtained with the computerized YeB atlas (76). (A) Left lateral view showing the structures of both sides. Some of the main DBS
targets for OCD are: the subthalamic nucleus (red), the anterior limb of internal capsule (light blue), the nucleus accumbens (purple), and the inferior thalamic
peduncle (yellow). The caudate nucleus (dark blue), medial forebrain bundle (green), and anterior commissure (light brown) are also shown. (B) Superior view showing
a schematic representation of hypothetical fibers identified by neuroimaging studies as responsible for the therapeutic effect of DBS for OCD: the fibers are shown as
orange dotted lines. These fibers, which extend from the brain stem to the prefrontal cortex, encompass the atlas-defined medial forebrain bundle. DBS, deep brain
stimulation; OCD, obsessive-compulsive disorder.
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medial OFC (81) and medial OFC was found to be
hyperresponsive to threat stimuli in OCD patients (82).

So, VC/VS-DBS might both improve OCD core symptoms
and mood and/or impair safety signaling depending on the fiber
pathways recruited in the vicinity of the active DBS stimulation
site. Moreover, it is interesting to note that the habeno-
interpeduncular tract is known to inhibit the serotonergic
raphe nuclei (83) while SSRIs are the mainstay of
pharmacological treatment for OCD.
Nucleus Accumbens
Several studies have investigated NAcc-DBS: the distinction
between VS and NAcc remains an open question in human
neurosurgical anatomy. In addition to several case reports or
small series [(84), n = 3 patients; (85), n = 1 patient; (86), n = 2
patients; (87), n = 1 patient], three larger studies investigated
NAcc-DBS for severe and refractory OCD. In Kohl et al. (n = 18
patients), bilateral NAcc-DBS was assessed with an open-label
design: there were on average 50% responders and 16.7% partial
responders at 1 year (88). In one double-blind sham-controlled
crossover study, 10 patients received unilateral right NAcc-DBS
(89): the mean Y-BOCS score decreased significantly by 21.1%
after 1 year of stimulation. In Denys et al. (90) (n = 16 patients),
bilateral NAcc-DBS was initially performed with an open-label
design yielding a 46% Y-BOCS score decrease after 8 months of
stimulation, followed by a double-blind crossover phase with a 2-
week period of active or sham stimulation enabling a significant
25% reduction of the Y-BOCS score. Permanent adverse events
were forgetfulness (31.2%) and word-finding problems (18.8%).

Resting-state fMRI scans in 16 OCD patients undergoing
NAcc-DBS and displaying subsequent OCD symptoms decrease
revealed reduced excessive fronto-striatal connectivity between
NAcc and the LPFC and medial PFC as measured by the blood
oxygen level-dependent (BOLD) fMRI signal (10). NAcc-DBS
also reduced excessive frontal low-frequency oscillations elicited
by symptom-provoking events and measured by scalp
electroencephalogram (EEG). Such oscillations are known to
appear during goal-directed behavior and to be linked to the
severity of some OCD symptoms (91). So, NAcc-DBS might
decrease a pathologically excessive fronto-striatal connectivity,
allowing the processing of behaviorally relevant stimuli.

Targeting NAcc is challenging since it is a rather large nucleus
(10.5 × 14.5 × 7 mm) (92) with complex connectivity (93).
Targeting the portions of the NAcc with strongest connectivity to
lateral and medial PFC might thus be a promising approach to
enhance the effects of NAcc-DBS on OCD symptoms (10). But
detailed functional connectivity studies for NAcc-DBS remain to
be performed to better understand how a personalized targeting
and parameter adjustments might be achieved. Additionally,
functional parcellation of NAcc using standard BOLD fMRI
protocols with 2-mm isotropic spatial resolution could be
already at hand (94), while high-field functional MRI could
offer soon spatial resolutions at the scale of DBS electrodes
contacts (95).
Frontiers in Psychiatry | www.frontiersin.org 6
SUBTHALAMIC NUCLEUS

The anteromedial subthalamic nucleus DBS (amSTN-DBS) is
another therapeutic option to treat severe and refractory OCD
and has the strongest evidence in the literature. To our
knowledge, amSTN-DBS is associated with the best response
rates in randomized and controlled trials, with best long-term
outcomes (75% full responders and 53% decrease in OCD
severity at 3 years post-surgery) and improvement in global
functioning, social, and familial disabilities (96).

In 2002, in two patients suffering from Parkinson’s disease
and OCD, STN stimulation for motor symptoms of PD was
found to improve preexisting OCD symptoms (11). In 2007, a
rationale for this observation was provided when the role of STN
in integrating emotional and motor aspects of behavior was
demonstrated by performing stimulation of subterritories of the
STN in PD patients (97). Indeed, the stimulation of the
dorsolateral part of the STN recruits mainly motor networks,
whereas stimulation of the anteromedial STN recruits limbic and
associative circuits. These authors then reported the first double-
blind crossover study performed on 16 OCD patients and
demonstrated that 3 months of amSTN-DBS (STOC Study)
was sufficient to decrease OCD severity by 39% and improve
global functioning by 23% (8, 12). Seventy-five percent of
patients were found to be responders. A recent meta-analysis
found that 44% of patients could be considered responders to
STN-DBS (7). Interestingly, it has been shown recently that
amSTN-DBS decreases OCD symptoms for up to 3 years, with a
53% decrease in OCD severity and 92% of patients being
considered responders at the final assessment (12 patients in
total at 3 years) (96). They also report a positive effect on social
activities with a significant improvement in social adjustment
(SAS-SR) and work, social, and familial disabilities (SDS).

Early-onset patients were found to have fewer OCD
symptoms with STN stimulation. Interestingly, the overall
improvement was continuous and progressive with time, with
a larger effect of amSTN-DBS on OCD symptoms 46 months
after surgery (−51.2% compared with baseline) as compared to
16 months (−16.8% at 46 months compared with 16 months)
(51) or 3 months (−39.4% compared with baseline) (12). This
highlights one of the major advantages of DBS: the possibility of
continuously adjusting the stimulation parameters over time in
accordance with patients’ condition to obtain optimal
therapeutic effects for each individual.

Nevertheless, psychiatric adverse events related to amSTN-
DBS highlight the narrowness of its therapeutic window. At 3
years post-surgery, transient episodes of hypomania and
impulsivity due to changes in DBS settings were reported in
33% of patients. However, these changes were short-lived and
resolved following stimulation adjustments, as previously
reported in 5 of 16 OCD patients (31%) with NAcc-DBS (90)
and in 6 of 24 OCD patients (25%) with stria terminalis
stimulation (98), suggesting that DBS of these limbic structures
may lead to the occurrence of these psychiatric signs (97). It is
important to note that no cognitive decline, verbal fluency deficit
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(99), apathy (100), or significant weight gain (101) was observed
in amSTN-DBS OCD patients. Finally, the high rate of suicidal
attempts (23%) is in agreement with those encountered in the
general population of patients with refractory OCD. DBS may
not be the cause since these patients display concomitant
increase of impulsivity, anxiety, or depression (96).

Using prospectively acquired DWI and tractography
reconstructions in six patients, Tyagi et al. (61) showed that
the effective site of stimulation within the STN was located at its
inferior medial border, which is directly connected to lateral
OFC, dorsal anterior cingulate (DACC), and DLPFC. Among
these regions, decreased OFC activity has been shown to be
linked to OCD improvement in personalized treatment (102). A
resting-state study further showed that abnormal connectivity
between lateral OFC and caudate nucleus is associated in OCD
patients with errors in the extra-dimensional set-shifting stage 8
(EDS) test, which probes cognitive flexibility (103). Moreover,
amSTN-DBS was found to decrease glucose metabolism in
lateral OFC with 8-fluorodeoxyglucose positron emission
tomography (FDG-PET) performed in 10 OCD patients in a
resting state (104). DACC and DLPFC’s activity is linked to the
severity of OCD: with fMRI, decreased connectivity between
DLPFC and putamen was found in OCD patients and associated
with impaired goal-directed planning (103). In addition, tracing
studies in non-human primate (NHP) found a hyperdirect
limbic pathway from OFC, DACC, and DLPFC to amSTN
(62). So, it might be possible that amSTN-DBS interrupts OCD
symptoms due to aberrant hyperdirect cortical processing of
information by promoting behavioral adaptability. Yet, the sour
spots of STN-DBS within STN and its vicinity as well as their
functional connectivity remain to be established.

Finally, STN-DBS has been shown to dramatically alleviate
motor symptoms in patients with Parkinson’s disease and can be
currently performed with optimal target localization within the
nucleus (105). The majority of functional neurosurgery centers
have experience in targeting STN in the context of movement
disorders, so that targeting amSTN for OCD is relatively a direct
extension of this technique. Since STN is a much smaller target
than ALIC or VC/VS, it also appears less challenging to stimulate
the appropriate subterritories displaying the optimal profile of
connectivity by adjusting the stimulation parameters and volume
of tissue activated (106). amSTN also has a well-characterized
electrophysiological signature (107, 108) that helps guide
appropriate DBS electrode placement.
INFERIOR THALAMIC PEDUNCLE

The ITP is a bidirectional fiber tract between the OFC and the
thalamus which is thought to play a role in selective attention
(109, 110). According to PET studies, OCD patients have
increased metabolic activity in the OFC, caudate, and thalamus
which is positively correlated with the severity of OCD
symptoms (111, 112). In addition, medical treatment of OCD
is accompanied with decreased metabolism within a cortico-
striato-thalamic circuit (113). Jimenez et al. (14) were the first to
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report a six-patient case series of ITP-DBS for OCD: all patients
were responders and a 51% improvement in Y-BOCS scores at 1
year was found (14). Lee et al. (15) later reported a five-patient
case series of ITP-DBS for OCD: all patients were responders
with 52% improvement in Y-BOCS at 1 year. FDG-PET imaging
in two patients revealed a decreased metabolic level in the
caudate, the putamen, and the cingulum after 3 months of
ITP-DBS, similar to that observed with SSRIs (113). It is worth
noting that adjacent structures, anterior to ITP, such as the
BNST, may also be activated during ITP stimulation, according
to volume of tissue activated analysis (106). Again, as a fiber
pathway, ITP might be challenging to target since there is no
known somatotopy or electrophysiological signature which
might guide the surgical procedure. Functional studies of this
DBS target are unavailable. Above all, larger studies and
especially randomized multicenter trials are needed to further
investigate this target for OCD treatment.
TOWARDS THE INDIVIDUALIZATION OF
THE OCD-DBS TARGET

OCD is a neuropsychiatric disorder encompassing diverse core
symptomatic dimensions variably expressed within each patient
(114) . Indeed , symmetry obsess ions/compuls ions ,
contamination and cleaning, aggressivity and checking
compulsions, sexual and religious obsessions, hoarding
obsessions, and compulsions have been observed in OCD
patients (115). These core symptomatic dimensions may be
unde rp inned by separab l e , par t i a l l y ove r l app ing
neurobiological roles that might respond differently to the
stimulation of the different targets we have reviewed (116).

Several recent studies have investigated the functional
connectivity of the various DBS targets for OCD in order to
define the neural networks to be modulated in order to reach the
best clinical response possible. Interestingly, it has been found
that the connectivity with the ventral striatum was modulated by
different OCD dimensions. Indeed, aggressive/checking
symptoms modulate the connectivity of the ventral striatum
with anterior amygdala and ventromedian prefrontal cortex
(vmPFC), sexual/religious symptoms with insula and inferior
frontal gyrus, and hoarding with the OFC (26) (Figure 3).
Consequently, instead of chasing the “most efficient/best
target” dream, one might look for the “most appropriate
circuit” for each patient, focusing on their symptom profile or
development, age of onset, biological markers, etc.

Barcia et al. (117) pioneered this personalized approach
taking into account each patient’s symptom content. They
demonstrated that the optimal stimulating electrode contact
location for striatal-DBS in each OCD patient is not at a fixed
anatomical locus within the ventral striatum or NAcc. The sweet
spot lay within different portions of the striatum across patients.
In their study, symptom provocation activated specific sites of
the PFC. It was already known for example that patients with
contamination obsessions mainly activate the medial OFC
(ventromedial), while those who present checking symptoms
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mainly activate the DLPFC (25). They thus showed that
stimulating the patient-specific optimal contact location
instead of a fixed target increased the response rate to striatal-
DBS from 50% (7, 118) to 86%. This concept might also be
applicable to other DBS targets for OCD. For example, the ALIC
is topographically organized following the same pattern as the
fronto-striatal projections (119). The STN has been shown to be
segregated into motor, limbic, and associative territories:
behavioral functional mapping of STN has been performed in
PD patients by stimulation of STN subterritories (97), and
anatomical histological tracing of STN connectivity revealed in
the NHP connection between the amSTN and the limbic and
associative cortical areas as well as between the dorsolateral STN
and the motor cortical area (62). It remains to be seen whether
neuroimaging and neurostimulation techniques within these
STN subterritories will allow us to isolate which networks to
activate in order to address specific clinical dimensions based on
an individual assessment.
CONCLUSION

It appears that the various striatal, thalamic, and STN targets for
OCD-DBS that have been under investigation over the past 15
years lie along within same functional neural network. Modulating
this thalamo-striatal-frontal network appears crucial in order to
improve refractory OCD symptoms. All these DBS targets share
similar efficacy profiles when considering improvement of the Y-
BOCS score. amSTN-DBS is a therapeutic option for severe and
refractory OCD, and the only one with level 1 evidence in the
current literature, provided in a randomized controlled trial.
Furthermore, amSTN-DBS long-term outcomes are very
encouraging, with 75% full responders and 53% decrease in
OCD severity at 3 years post-surgery. Randomized double-blind
Frontiers in Psychiatry | www.frontiersin.org 8
studies comparing targets are not easy to perform, especially when
more than two targets are considered.

All things considered, there is room to optimize the choice of
targets and of stimulation parameter adjustments for each target
under investigation. Choosing the “best” of these targets might
require us to take into account at least four points. First, we
would like to stress the need for a better understanding of each
patient’s specific symptoms and underlying dysfunctional neural
networks in order to tailor neuromodulation procedures on an
individual basis after symptom provocation procedures and
neuroimaging studies for instance. Second, we believe that
even though DBS of these various targets might recruit a
common network, DBS of each of those targets might also
activate further distinct networks responsible for other
behavioral effects: amSTN-DBS improves cognitive flexibility,
while VC/VS-DBS improves mood and ALIC-DBS might
promote flexibility and/or mood (80). Individual characteristics
might be crucial when choosing the most appropriate target.
Third, surgical difficulty should be taken into account when
identifying the optimal target. The STN target is very attractive
for DBS since it is a small well-known nucleus with widespread
connectivity with the prefrontal cortex. STN-DBS enables
modulation of various neural networks that could correspond
to various aspects of OCD pathology by simply adjusting
the stimulation parameters in order to shape the appropriate
volume of tissue activated. For amSTN-DBS, it might thus not
be absolutely necessary to perform a preoperative functional
connectivity study in order to guide DBS electrode implantation
and/or stimulation parameter adjustments, whereas it is more
crucial for larger targets such as ALIC, VC/VS, or NAcc. New
generations of DBS electrode assemblies which enable steering of
the delivered electrical field in order to target therapeutic circuits
might thus be valuable for STN-DBS for OCD while at the same
time minimizing the stimulation of those circuits responsible for
FIGURE 3 | Schematic representation of the correlations between the strength of fronto-caudate connectivity and obsessive-compulsive disorder (OCD)
symptoms dimensions according to (26). Sagittal view representing the functional connectivity between different cortical areas known to be involved in OCD
physiopathology and the ventral part of the caudate nucleus. Correlations between that connectivity and the different dimensions of OCD symptoms are
represented by full or dot lines. SFG, superior frontal gyrus; IFG, inferior frontal gyrus; vmPFC, ventromedian prefrontal cortex; OFC, orbitofrontal cortex;
aAmygdala, anterior amygdala.
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side effects (120). Indeed, sophisticated individualized
connectivity studies might not be possible for clinical routine
in all DBS centers.

Last but not least, the question of the stimulation frequency
and pattern within the various targets mentioned is a question
that has not yet been addressed in literature since all targets have
been stimulated at high frequency: understanding whether one
expects to induce functional inhibition, synaptic plasticity, and
specific brain oscillations anterogradely or retrogradely is of the
utmost importance (121).
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In the future, research efforts should focus on determining the
functional connectivity biomarkers to identify best responders
and best patterns of stimulation on an individual basis.
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