
HAL Id: hal-02436287
https://hal.sorbonne-universite.fr/hal-02436287

Submitted on 15 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking discrete optimization heuristics with
IOHprofiler

Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer Shir, Thomas Back

To cite this version:
Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer Shir, et al.. Benchmarking dis-
crete optimization heuristics with IOHprofiler. Applied Soft Computing, 2020, 88, pp.106027.
�10.1016/j.asoc.2019.106027�. �hal-02436287�

https://hal.sorbonne-universite.fr/hal-02436287
https://hal.archives-ouvertes.fr

BENCHMARKING DISCRETE OPTIMIZATION HEURISTICS WITH
IOHPROFILER

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France
Carola.Doerr@mpi-inf.mpg.de

Furong Ye
Leiden University

Leiden, The Netherlands
f.ye@liacs.leidenuniv.nl

Naama Horesh
Migal - The Galilee Research Institute

Upper Galilee, Israel
naamah@migal.org.il

Hao Wang
Leiden University

Leiden, The Netherlands
h.wang@liacs.leidenuniv.nl

Ofer M. Shir
Computer Science Department, Tel-Hai College

The Galilee Research Institute
Upper Galilee, Israel

ofersh@telhai.ac.il

Thomas Bäck
Leiden University

Leiden, The Netherlands
t.h.w.baeck@liacs.leidenuniv.nl

December 20, 2019

ABSTRACT

Automated benchmarking environments aim to support researchers in understanding how different
algorithms perform on different types of optimization problems. Such comparisons provide insights
into the strengths and weaknesses of different approaches, which can be leveraged into designing
new algorithms and into the automation of algorithm selection and configuration. With the ultimate
goal to create a meaningful benchmark set for iterative optimization heuristics, we have recently
released IOHprofiler, a software built to create detailed performance comparisons between iterative
optimization heuristics.
With this present work we demonstrate that IOHprofiler provides a suitable environment for automated
benchmarking. We compile and assess a selection of 23 discrete optimization problems that subscribe
to different types of fitness landscapes. For each selected problem we compare performances of
twelve different heuristics, which are as of now available as baseline algorithms in IOHprofiler.
We also provide a new module for IOHprofiler which extents the fixed-target and fixed-budget results
for the individual problems by ECDF results, which allows one to derive aggregated performance
statistics for groups of problems.

Keywords combinatorial optimization · black-box optimization · randomized search heuristics · benchmarking ·
evolutionary computation

1 Introduction

Benchmarking optimization solvers aims at supporting practitioners in choosing the best algorithmic technique
and its optimal configuration for a given problem. It is achieved through a systematic empirical assessment and
comparison amongst competing techniques on a set of carefully selected optimization problems. Benchmarking
may also benefit theoreticians by enhancing mathematically-derived ideas into techniques being broadly appli-
cable in practical optimization. It also constitutes a catalyst in formulating new research questions. More re-

ar
X

iv
:1

91
2.

09
23

7v
1

 [
cs

.N
E

]
 1

9
D

ec
 2

01
9

A PREPRINT - DECEMBER 20, 2019

cently, carefully chosen benchmark problems covering various of the multifaceted characteristics of real-world
optimization challenges are also needed as training sets for the automation of algorithm configuration and selec-
tion [Kerschke et al.(2018)Kerschke, Hoos, Neumann, and Trautmann].

The fact that there already exists a broad range of available benchmarking environments demonstrates that the
performance assessment of optimization solvers over a set of representative test-problems serves several complementary
purposes. The nature of the Application Programming Interface, or the identity of the benchmark problems, define
together the implementation, and are usually rooted in the sought target(s). In the context of discrete optimization,
several attempts to construct widely accepted benchmarking environments have been undertaken, but these (1) are
typically restricted to certain problem classes (often classical NP-hard problems such as SAT, TSP, etc.), (2) strongly
focus on constructive heuristics, which are assumed to have access to the instance data (in contrast to black-box
optimization heuristics, which implicitly learn about the problem instance only through the evaluation of potential
solutions), or (3) aim to bundle efforts on solving specific real-world problem instances, without the attempt to generate
a set of scalable or otherwise generalizable optimization problems. Benchmark competitions and crowd-sourcing
platforms such as [Wasik et al.(2016)Wasik, Antczak, Badura, Laskowski, and Sternal] fall into this latter category.

The few attempts to create a sound benchmarking platform for discrete black-box optimization heuristics, e.g.,
Weise’s optimization benchmarking platform [Weise(2016)], have not yet received significant attention from the
scientific community. In December 2018, Facebook announced its own benchmarking environment for black-box
optimization [Rapin and Teytaud(2018)]. While their focus is mostly on noisy continuous optimization, the platform
also comprises a few discrete problems.

Interestingly, the situation significantly differs in continuous optimization, where the BBOB work-
shop series [Hansen et al.(2010)Hansen, Auger, Ros, Finck, and Pošík] and its software framework
COCO [Hansen et al.(2016)Hansen, Auger, Mersmann, Tušar, and Brockhoff] constitutes a well-established
and widely recognized platform for benchmarking derivative-free black-box optimization heuristics.
The COCO framework is under constant development. Apart from a noisy test bed, it has in recent
years been extended multi-objective [Tusar et al.(2016)Tusar, Brockhoff, Hansen, and Auger] and mixed-
integer [Tusar et al.(2019)Tusar, Brockhoff, and Hansen] problems. While COCO has been designed to analyze
iterative optimization heuristics (IOHs) on different types of problems, its designers have chosen to pre-select these
problems that the user can test his/her algorithms on. Benchmarking new problems with COCO requires substantial
knowledge of its software design, and is therefore quite time-consuming.

For the design of IOHPROFILER [Doerr et al.(2018)Doerr, Wang, Ye, van Rijn, and Bäck], we have chosen a different
way. Our goal is to make the software as flexible as possible, so that the user can easily test his/her algorithms on the
problems and with respect to performance criteria of his/her choice, see Section 2 for a brief discussion. The original
framework, however, only provided the experimental setup, but did not fix any benchmark problems nor reference
algorithms.

With this work, we contribute to the development of IOHPROFILER by compiling and evaluating a set of 23 functions
for a possible inclusion to a reference set of benchmark problems. We also contribute a set of twelve different heuristics
that can serve as a first baseline for the performance evaluation of user-defined heuristics. All problems and algorithms
have been implemented and integrated in the environment of IOHPROFILER, so that they are easily accessible for
future comparative studies. All performance data is available in our data repository, and can be straightforwardly
assessed through the web-based version of IOHANALYZER at http://iohprofiler.liacs.nl/. An important by-product
of our contribution is the identification of additional statistics, which should be included within the IOHPROFILER
environment. In this respect we contribute a new module for IOHPROFILER, which can aggregate performance data
across different benchmark problems. More precisely, our extension allows to compute ECDF curves for sets of
benchmark problems, which complements the previously available statistics in IOHPROFILER for the assessment of
individual benchmark problems.

This report is an extension of [Doerr et al.(2019a)Doerr, Ye, Horesh, Wang, Shir, and Bäck], which has been presented
at the 2019 ACM GECCO workshop on Black Box Discrete Optimization Benchmarking (BB-DOB).

2 The IOHprofiler Environment

IOHPROFILER is a new benchmarking environment for detailed, highly modular performance-analysis of iterative opti-
mization heuristics. Given algorithms and test problems implemented in C++, Python, or R, IOHPROFILER outputs a sta-
tistical evaluation of the algorithms’ performances in the form of the distribution of the fixed-target running time and the
fixed-budget function values. In addition, IOHPROFILER also permits tracking the evolution of the algorithms’ parame-
ters, which is an attractive feature for the analysis, comparison, and design of (self-)adaptive algorithms. The user selects

2

http://iohprofiler.liacs.nl/

A PREPRINT - DECEMBER 20, 2019

which information (on top of performance data) is tracked per each algorithm and controls the granularity of the generated
records. A documentation of IOHPROFILER is available at [Doerr et al.(2018)Doerr, Wang, Ye, van Rijn, and Bäck]
and at https://iohprofiler.github.io/IOHanalyzer(Post-Processing)/GraphicUserInterface/.1

IOHPROFILER consists of two components: IOHEXPERIMENTER, a module for processing the actual experiments and
generating the performance data, and IOHANALYZER, a post-processing module for compiling detailed statistical evalua-
tions. Data repositories for algorithms, benchmark problems, and performance data are currently under construction. For
the time being, the algorithms used for this work as well as the here-described benchmark problems are available in the
GitHub repository of IOHPROFILER, which is available at [Doerr et al.(2019b)Doerr, Wang, Ye, van Rijn, and Bäck].
Performance data can be assessed through a web-based interface at http://iohprofiler.liacs.nl/.

IOHEXPERIMENTER is designed to handle discrete optimization problems and to facilitate a user-defined se-
lection of benchmark problems. The first version of IOHEXPERIMENTER was built upon the COCO frame-
work [Hansen et al.(2016)Hansen, Auger, Mersmann, Tušar, and Brockhoff], but the software has now been restruc-
tured to allow for a more flexible selection of benchmark problems – adding new functions in COCO requires low-level
reprogramming of the tool, whereas functions can be added more easily in IOHPROFILER.

IOHANALYZER has been independently developed from scratch. This module can be utilized as a stand-alone tool for
the running-time analysis of any algorithm on arbitrary benchmark problems. It supports various input file formats,
among others the output formats of IOHEXPERIMENTER and of COCO. Extensions to other data formats are under
investigation. IOHANALYZER is designed for a highly interactive evaluation, enabling the user to define their required
precision and ranges for the displayed data. The design principle behind IOHANALYZER is a multi-dimensional view
on “performance”, which in our regard comprises at least three objectives: quality, time, and robustness. Unlike other
existing benchmark software, IOHANALYZER offers the user to chose which projections of this multi-dimensional
data to investigate. In addition to the web-based application at http://iohprofiler.liacs.nl/ and the version on GitHub,
IOHANALYZER is also available as CRAN package at https://cran.r-project.org/web/packages/IOHanalyzer/index.html.

As mentioned in the introduction, prior to this work IOHPROFILER only provided the experimental setup for discrete
optimization benchmarking, but did not provide a selection of built-in benchmark problems, nor algorithms – a gap that
we start to fill with our present work. Our objectives are two-fold. On the one hand, we want to make a step towards
identifying functions that are particularly suitable for discriminating the performance of different IOHs. On the other
hand, we also want to demonstrate that IOHPROFILER can handle large benchmarking projects; for the present work
we have performed a total number of 12 144 experiments: eleven runs of each of the twelve baseline algorithms on a
total number of 23 functions in 4 dimensions each. To test the influence of the different instances, an additional 12 144
runs have been performed.

3 Suggested Benchmark Functions

We evaluate a selection of 23 functions and assess their suitability for inclusion in a standardized discrete optimization
benchmarking platform. All problems have been implemented and integrated within the IOHPROFILER framework, and
are available at [Doerr et al.(2019b)Doerr, Wang, Ye, van Rijn, and Bäck].

Following the discussion in [Shir et al.(2018)Shir, Doerr, and Bäck], we restrict our attention to pseudo-Boolean
functions; i.e., all the suggested benchmark problems are expressed as functions f : {0, 1}n → R. We also pay
particular attention to the scalability of the problems, with the idea that good benchmark problems should allow to
assess performances across different dimensions.

Conventions Throughout this work, the variable n denotes the dimension of the problem that the algorithm operates
upon. We assume that n is known to the algorithm; this is a natural assumption, since every algorithm needs to know
the decision space that it is requested to search. Note though, that the effective dimension of a problem can be smaller
than n, e.g., due to the usage of “dummy variables” that do not contribute to the function values, or due to other
reductions of the search space dimensionality (see Section 3.7 for examples). In practice, we thus only require that n is
an upper bound for the effective number of decision variables.

For constrained problems, such as the N-Queens problem (see Section 3.11), we follow common practice in the
evolutionary computation community and use penalty terms to discount infeasible solutions by the number and
magnitude of constraint violations.

1The arXiv paper is currently under revision and will be replaced by an updated version soon. Note that in particular the structure
of IOHEXPERIMENTER has evolved significantly – this module is not any more based on the COCO framework.

3

https://iohprofiler.github.io/IOHanalyzer(Post-Processing)/GraphicUserInterface/
http://iohprofiler.liacs.nl/
http://iohprofiler.liacs.nl/
https://cran.r-project.org/web/packages/IOHanalyzer/index.html

A PREPRINT - DECEMBER 20, 2019

We formulate all problems as maximization problems. For most, but not for all problems the value of an optimal solution
is known. Where these maximum function values are not known or are not achieved by any of the algorithms within
the allocated computational budget, we evaluate performances with respect to the best solution found by any of the
algorithms in any of the runs.

Notation A search point x ∈ {0, 1}n is written as (x1, . . . , xn). By [k] we abbreviate the set {1, 2, . . . , k} and by
[0..k] the set [k] ∪ {0}. All logarithms are to the base 10 and are denoted by log. An exception is the natural logarithm,
which we denote by ln. Finally, we denote by id the identity function, regardless of the domain.

3.1 Rationale Behind The Selection

We briefly discuss the ambition of our work and the requirements that drove the selection of the benchmark problems
used for our experiments.

Ambition Our ultimate goal is to construct a benchmarking suite that covers a wide range of the problem characteris-
tics found in real-world combinatorial optimization problems. A second ambition lies in building a suitable training set
for automated algorithm design, configuration, and selection.

A core assumption of our work is that there is no room for a static, “ultimate” set of benchmark problems. We rather
anticipate that a suitable training set should be extendable, to allow users to adjust the selection to their specific needs,
but also to reflect advances of the field and to correct misconceptions. We particularly foresee a need for augmenting
our set of functions, in order to cover landscape characteristics that are not currently present in the problems assessed in
this work. To put it differently, we present here a first step towards a meaningful collection of discrete optimization
benchmarks, but do not claim that that this selection is “final”. In addition, we do not rule out the possibility of
removing some of the functions considered below – for example, if they do not contribute to our understanding of
how to distinguish among various heuristics, or if they can be replaced by other problems showing similar effects.
Indeed, as we will argue in Section 5, some of the 23 assessed functions do not seem to contribute much to a better
discrimination between the tested algorithms, and are therefore evaluated as being obsolete. Note though that this
is evaluation crucially depends on the collection of algorithms, so that these functions may have their merit in the
assessment of other IOHs. As we shall discuss in Section 6, we are confident that further advances in the research
on exploratory landscape analysis [Mersmann et al.(2011)Mersmann, Bischl, Trautmann, Preuss, Weihs, and Rudolph]
could help identify additional problems to be included in the benchmark suite.

Problem Properties As mentioned, we are mostly interested in problems that are arbitrarily scalable with respect to
the dimension n. However, as will be the case with the N -queens problem, we do not require that there exists a problem
instance for each and every n, but we are willing to accept modest interpretations of scalability.

For the purposes of our work we demand that evaluating any search point is realizable in reasonable time. As a rule
of thumb, we are mostly interested in experimental setups that allow one cycle of evaluating all problems within 24
hours for each algorithm. In particular, we do not address with this work settings that feature expensive evaluations. We
believe that those should be treated separately, as they typically require different solvers than problems allowing for
high level of adaption between the evaluations.

3.2 Problems vs. Instances

While we are interested in covering different types of fitness landscapes, we care much less about their actual embedding,
and mainly seek to understand algorithms that are invariant under the problem representation. In the context of pseudo-
Boolean optimization f : {0, 1}n → R, a well-recognized approach to request representation invariance is to demand
that an algorithm shows the same or similar performance on any instance mapping each bit string x ∈ {0, 1}n to
the function value f(σ(x⊕ z)), where z is an arbitrary bit string of length n, ⊕ denotes the bit-wise XOR function,
and σ(y) is to be read as the string (yσ(1), . . . , yσ(n)) in which the entries are swapped according to the permutation
σ : [n] → [n]. IOHPROFILER supports such analysis by allowing to use these transformations (individually or
jointly) with randomly chosen z and σ. Using these transformations, we obtain from one particular problem f
a whole set of instances {f(σ(· ⊕ z)) | z ∈ {0, 1}n, σ permutation of [n]}, all of which have fitness landscapes
that are pairwise isomorphic. For further discussions of these unbiasedness transformations, the reader is referred
to [Lehre and Witt(2012), Doerr et al.(2018)Doerr, Wang, Ye, van Rijn, and Bäck].

Apart from unbiasedness, we also focus in this work on ranking-based heuristics, i.e., algorithms which only make use
of relative, and not of absolute function values. To allow future comparisons with non-ranking-based algorithms, we
test all algorithms on instances that are shifted by a multiplicative and an additive offset. That is, instead of receiving

4

A PREPRINT - DECEMBER 20, 2019

the values f(σ(x⊕ z)), only the transformed values af(σ(x⊕ z)) + b are made available to the algorithms. We use
here again the built-in functionalities of IOHPROFILER to obtain these transformations.

In the following subsections we describe only the basic instance of each problem, which is identified as instance 1
in IOHPROFILER. We then test all algorithms on instances 1-6 and 51-55, which are obtained from this instance by
the transformations described above. In theses instances the ⊕ and σ transformations are separated. More precisely,
instances 2-6 are obtained from instance 1 by a ‘⊕z’ rotation with a randomly chosen z ∈ {0, 1}n, and random fitness
offsets a ∈ [1/5, 5], b ∈ [−1000, 1000]. For instances 51-55 there is no ‘⊕z’ rotation, but the strings are permuted by a
randomly chosen σ and the ranges for the random fitness offset are chosen as for instances 2-6. For each function and
each dimension the values of z, σ, a, and b are fixed per each instance, but different functions of the same dimensions
may have different z and σ transformations.

For the reader’s convenience we recall that IOHEXPERIMENTER uses as pseudo-random number generator the linear
congruential generator (LCG), using Schrage’s method, the user can find and replace it by other generators in the file
IOHprofiler_random.hpp.

3.3 Overview of Selected Benchmark Problems

We summarize here our selected benchmark problems, on which we will elaborate in the subsequent subsections.

• F1 and F4-F10: ONEMAX and W-model extensions; details in Sections 3.4 and 3.7
• F2 and F11-F17: LEADINGONES; see Sections 3.5 and 3.7
• F3: HARMONIC; see Section 3.6
• F18: LABS: Low Autocorrelation Binary Sequences; see Section 3.8
• F19-21: Ising Models; see Section 3.9
• F22: MIVS: Maximum Independent Vertex Set; see Section 3.10
• F23: NQP: N-Queens; see Section 3.11

3.4 F1: OneMax

The ONEMAX function is the best-studied benchmark problem in the context of discrete evolutionary computation
(EC), often referred to as the “drosophila of EC”. It asks to optimize the function

OM : {0, 1} → [0..n], x 7→
n∑
i=1

xi.

The problem has a very smooth and non-deceptive fitness landscape. Due to the well-known coupon collector effect
(see, for example, [Dubhashi and Panconesi(2009)] for a detailed explanation of this effect), it is relatively easy to make
progress when the function values are small, and the probability to obtain an improving move decreases considerably
with increasing function value.

With the ‘⊕z’ transformations introduced in Section 3.2, the ONEMAX problem becomes the problem of minimizing
the Hamming distance to an unknown target string z ∈ {0, 1}n.

ONEMAX is easily solved in n steps by a greedy hill climber that flips exactly one bit in each iteration, e.g.,
the one recursively going through the bit string from left to right until no local improvement can be obtained.
This algorithm is included in our set of twelve reference algorithms as gHC, see Section 4. Randomized lo-
cal search (RLS) and several classic evolutionary algorithms require Θ(n log n) function evaluations on ONE-
MAX, due to the mentioned coupon collector effect [Garnier et al.(1999)Garnier, Kallel, and Schoenauer]. The
(1 + (λ, λ)) GA from [Doerr et al.(2015)Doerr, Doerr, and Ebel] is the only EA known to optimize ONEMAX
in o(n log n) time. The self-adjusting version used in our experiments (see Section 4.1.9) requires only a
linear expected number of function evaluations to locate the optimum [Doerr and Doerr(2018)]. The best ex-
pected running time that any iterative optimization algorithm can achieve is Ω(n/ log n) [Erdős and Rényi(1963)].
However, it is also known that unary unbiased algorithms cannot achieve average running times better than
Ω(n log n) [Lehre and Witt(2012), Doerr et al.(2016)Doerr, Doerr, and Yang]. A more detailed survey of theoreti-
cal running-time results for ONEMAX can be found in [Doerr et al.(2018)Doerr, Ye, van Rijn, Wang, and Bäck], and a
survey of lower bounds (in terms of black-box complexity results) can be found in [Doerr(2018)]. That ONEMAX is
interesting beyond the study of theoretical aspects of evolutionary computation has been argued in [Thierens(2009)].
We believe that ONEMAX plays a similar role as the sphere function in continuous domains, and should be added to
each benchmark set: it is not very time-consuming to evaluate, and can provide a first basic stress test for new algorithm
designs.

5

A PREPRINT - DECEMBER 20, 2019

3.5 F2: LeadingOnes

Among the non-separable functions, the LEADINGONES function is certainly the one receiving most attention in the
theory of EC community. The LEADINGONES problem asks to maximize the function

LO : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1} =

n∑
i=1

i∏
j=1

xj ,

which counts the number of initial ones.

Most EAs require quadratic running time to solve LEADINGONES, see
again [Doerr et al.(2018)Doerr, Ye, van Rijn, Wang, and Bäck] or the full version of [Doerr(2018)] for a sum-
mary of theoretical results. It is known that all elitist (1+1)-type algorithms [Doerr and Lengler(2018)]
and all unary unbiased [Lehre and Witt(2012)] are restricted to an Ω(n2) expected running time. How-
ever, some problem-tailored algorithms optimizing LEADINGONES in sub-quadratic expected optimiza-
tion time have been designed [Afshani et al.(2019)Afshani, Agrawal, Doerr, Doerr, Larsen, and Mehlhorn,
Doerr and Winzen(2012), Doerr et al.(2011)Doerr, Johannsen, Kötzing, Lehre, Wagner, and Winzen]. It is
also known that the best-possible expected running time of any iterative optimization heuristic is
Θ(n log log n) [Afshani et al.(2019)Afshani, Agrawal, Doerr, Doerr, Larsen, and Mehlhorn]. Similar to ONE-
MAX, we argue that LEADINGONES should form a default benchmark problem: it is fast to evaluate and can point at
fundamental issues of algorithmic designs, see also the discussions in Section 5.

3.6 F3: A Linear Function with Harmonic Weights

Two extreme linear functions are ONEMAX with its constant weights and binary value BV(x) =
∑n
i=1 2n−ixi with its

exponentially decreasing weights. An intermediate linear function is

f : {0, 1}n → R, x 7→
∑
i

ixi

with harmonic weights, which was suggested to be considered in [Shir et al.(2018)Shir, Doerr, and Bäck]. We add this
linear function to our assessment as F3.

Several results mentioned in the paragraph about ONEMAX apply more generally to linear functions, and hence to the
special case F3. For example, it is well known that the (1 + 1) EA and RLS need Θ(n log n) function evaluations,
on average, to optimize any linear function [Droste et al.(2002)Droste, Jansen, and Wegener]. No unary unbiased
black-box algorithm can achieve a better expected running time [Lehre and Witt(2012)]. It is also known that for the
(1 + 1) EA the best static mutation rate for optimizing any linear function is 1/n [Witt(2013)]. The (unrestricted)
black-box complexity of linear functions, however, is not known. However, we easily see that the mentioned greedy hill
climber gHC described in Section 3.4 optimizes F3 in at most n+ 1 queries.

3.7 F4-F17: The W-model

In [Weise and Wu(2018)] a collection of different ways to “perturb” existing benchmark problems in order to obtain
new functions of scalable difficulties and landscape features has been suggested, the so-called W-model. These W-model
transformations can be combined arbitrarily, resulting in a huge set of possible benchmark problems. In addition, these
transformations can, in principle, be superposed to any base problem, giving yet another degree of freedom. Note here
that the original work [Weise and Wu(2018)] as well as the existing empirical evaluations [Weise(2018)] only consider
ONEMAX as underlying problem, but there is no reason to restrict the model to this function. We expect that in the
longer term, the W-model, similarly to the well-known NK-landscapes [Kauffman and Levin(1987)] may constitute
an important building block for a scalable set of discrete benchmark problems. More research, however, is needed to
understand how the different combinations influence the behavior of state-of-the-art heuristic solvers. In this work, we
therefore restrict our attention to instances in which the different components of the W-model are used in an isolated
way, see Section 3.7.3.. The assessment of combined transformations clearly forms a promising line for future work.

3.7.1 The Basic Transformations

The W-model comprises four basic transformations, and each of these transformations is parametrized, hence offering
a huge set of different problems already. We provide a brief overview of the W-model transformations that are
relevant for our work. A more detailed description can be found in the original work [Weise and Wu(2018)]. For
some of the descriptions below we deviate from the exposition in [Weise and Wu(2018)], because in contrast to

6

A PREPRINT - DECEMBER 20, 2019

there, we consider maximization as objective, not minimization. Note also that we write x = (x1, . . . , xn), whereas
in [Weise and Wu(2018)] the strings are denoted as (xn−1, xn−2, . . . , x1, x0). Note also that the reduction of dummy
variables is our own extension of the W-model, not originally proposed in [Weise and Wu(2018)].

1. Reduction of dummy variables W (m, ∗, ∗, ∗): a reduction mapping each string (x1, . . . , xn) to a substring
(xi1 , . . . , xim) for randomly chosen, pairwise different i1, . . . , im ∈ [n]. This modification models a situation
in which some decision variables do not have any or have only negligible impact on the fitness values. Thus,
effectively, the strings (x1, . . . , xn) that the algorithm operates upon are reduced to substrings (xi1 , . . . , xim)
with 1 ≤ i1 < i2 < . . . < im ≤ n.
We note that such scenarios have been analyzed theoretically, and different ways to deal
with this unknown solution length have been proposed. Efficient EAs can obtain al-
most the same performance (in asymptotic terms) than EAs “knowing” the problem dimen-
sion [Einarsson et al.(2018)Einarsson, Lengler, Gauy, Meier, Mujika, Steger, and Weissenberger,
Doerr et al.(2017)Doerr, Doerr, and Kötzing].
Dummy variables are also among the characteristics of the benchmark functions contained in Facebook’s
nevergrad platform [Rapin and Teytaud(2018)], which might be seen as evidence for practical relevance.
Example: With n = 10, m = 5, i1 = 1, i2 = 2, i3 = 4, i4 = 7, i5 = 10, the bit string (1010101010) is
reduced to (10010).

2. Neutrality W (∗, µ, ∗, ∗): The bit string (x1, . . . , xn) is reduced to a string (y1, . . . , ym) with m = n/µ,
where µ is a parameter of the transformation. For each i ∈ [m] the value of yi is the majority of the bit values
in a size-µ substring of x. More precisely, yi = 1 if and only if there are at least µ/2 ones in the substring
(x(i−1)µ+1, x(i−1)µ+2, . . . , xiµ).2 When n/µ /∈ N, the last n − µbn/µc remaining bits of x not fitting into
any of the blocks are simply deleted; that is, we have m = bn/µc and the entries xi with i > µbn/µc do not
have any influence on y (and, thus, no influence on the function value).
Example: With n = 10 and µ = 3 the bit string (1110101110) is reduced to (101).

3. Epistasis W (∗, ∗, ν, ∗): The idea is to introduce local perturbations to the bit strings. To this end, a string x =
(x1, . . . , xn) is divided into subsequent blocks of size ν. Using a permutation eν : {0, 1}ν → {0, 1}ν , each
substring (x(i−1)ν+1, . . . , xiν) is mapped to another string (y(i−1)ν+1, . . . , yiν) = eν((x(i−1)ν+1, . . . , xiν)).
The permutation eν is chosen in a way that Hamming-1 neighbors u, v ∈ {0, 1}ν are mapped to strings of
Hamming distance at least ν − 1. Section 2.2 in [Weise and Wu(2018)] provides a construction for such
permutations. For illustration purposes, we repeat below the map for ν = 4, which is the parameter used in our
experiments. This example can also be found, along with the general construction, in [Weise and Wu(2018)].

e4(0000) = 0000 e4(0001) = 1101 e4(0010) = 1011 e4(0011) = 0110

e4(0100) = 0111 e4(0101) = 1010 e4(0110) = 1100 e4(0111) = 0001

e4(1000) = 1111 e4(1001) = 0010 e4(1010) = 0100 e4(1011) = 1001

e4(1100) = 1000 e4(1101) = 0101 e4(1110) = 0011 e4(1111) = 1110

When n/ν /∈ N, the last bits of x are treated by en−νbn/νc; that is, the substring
(xνbn/νc+1, xνbn/νc+2, . . . , xn) is mapped to a new string of the same length via the function en−νbn/νc.
Example: With n = 10, ν = 4, and the permutation e4 provided above, the bit string (1111011101) is mapped
to (1110000110), because e4(1111) = 1110 and e4(0111) = 0001 and e2(01) = 10.

4. Fitness perturbation W (∗, ∗, ∗, r): With these transformations we can determine the ruggedness and decep-
tiveness of a function. Unlike the previous transformations, this perturbation operates on the function values,
not on the bit strings. To this end, a ruggedness function r : {f(x) | x ∈ {0, 1}n} =: V → V is chosen. The
new function value of a string x is then set to r(f(x)), so that effectively the problem to be solved by the
algorithm becomes r ◦ f .
To ease the analysis, it is required in [Weise and Wu(2018)] that the optimum vmax = max{f(x) | x ∈
{0, 1}n} does not change, i.e., r must satisfy that r(vmax}) = vmax and r(i) < vmax for all i < vmax.
It is furthermore required in [Weise and Wu(2018)] that the ruggedness functions r are permutations (i.e.,
one-to-one maps). Both requirements are certainly not necessary, in the sense that additional interesting
problems can be obtained by violating these constrains. We note in particular that in order to study plateaus of

2Note that with this formulation there is a bias towards ones in case of a tie. We follow here the suggestion made
in [Weise and Wu(2018)], but we note that this bias may have a somewhat complex impact on the fitness landscape. For our
first benchmark set, we therefore suggest to use this transformation with odd values for µ only.

7

A PREPRINT - DECEMBER 20, 2019

Figure 1: The ruggedness functions r1, r2, and r3.

equal function values, one might want to choose functions that map several function values to the same value.
We will include one such example in our testbed, see Section 3.7.3.
It should be noted that all functions of unitation (i.e., functions for which the function value depends only on
the ONEMAX value of the search point, such as TRAP or JUMP) can be obtained from a superposition of the
fitness perturbation onto the ONEMAX problem.
Example: The well-known, highly deceptive TRAP function can be obtained by superposing the permutation
r : [0..n]→ [0..n] with r(i) = n− 1− i for all 1 ≤ i ≤ n and r(n) = n.

3.7.2 Combining the Basic W-model Transformations

We note that any of the four W-model transformations can be applied independently of each other. The first three
modification can, in addition, be applied in an arbitrary order, with each order resulting in a different benchmark problem.
In line with the presentation in [Weise and Wu(2018)], we consider in our implementation only those perturbations that
follow the order given above. Each set of W-model transformations can be identified by a string ({i1, . . . , im}, µ, ν, r)
withm ≤ n, 1 ≤ i1 < . . . < im ≤ n, µ ∈ [n], ν ∈ [n], and r : V → V , all to be interpreted as in the descriptions given
in Section 3.7.1 above. Setting {i1, . . . , im} = [n], µ = 1, ν = 1, and/or r as the identity function on V corresponds to
not using the first, second, third, and/or forth transformation, respectively.

As mentioned, the W-model can in principle be superposed on any benchmark problem. The only complication is that
the search space on which the algorithm operates and the search space on which the benchmark problem is applied
are not the same when m < n or µ > 1. More precisely, while the algorithm operates on {0, 1}n, the base problem
has to be a function f : {0, 1}s → R with s = bm/µc. We call s the effective dimension of the problem. When f is a
scalable function defined for any problem dimension s—this is the case for most of our benchmark functions—we just
reduce to the s-dimensional variant of the problem. When f is a problem that is only defined for a fixed dimension n,
the algorithms should operate on the search space {0, 1}` with ` ≥ µs and `− µs depending on the reduction that one
wishes to achieve by the first transformation, the removal of dummy variables.

3.7.3 Selected W-Model Transformations

In contrast to existing works cited in [Weise and Wu(2018), Weise(2018)], we do not only study superpositions of
W-model transformations to the ONEMAX problems (functions F4-F10), but we also consider LEADINGONES as a
base problem (F11-17). This allows us to study the effects of the transformations on a well-understood separable
and a well-understood non-separable problem. As mentioned, we only study individual transformations, and not yet
combinations thereof.

We consider the reduction of [n] to subsets of size n/2 and 0.9n, i.e., only half and 90% of the bits, respectively,
contribute to the overall fitness. We consider neutrality transformations of size µ = 3, and we consider the epistasis
perturbation of size 4. Finally, we consider the following ruggedness functions, where we denote by s the size of
the effective dimension (see Section 3.7.2 for a discussion) and recall that both the s-dimensional ONEMAX and
LEADINGONES functions take values in [0..s]. These functions are illustrated for s = 10 in Figure 1.

• r1 : [0..s] → [0..ds/2e + 1] with r1(s) = ds/2e + 1 and r1(i) = bi/2c + 1 for i < s and even s, and
r1(i) = di/2e+ 1 for i < s and odd s.

• r2 : [0..s] → [0..s] with r2(s) = s, r2(i) = i + 1 for i ≡ s (mod 2) and i < s, and r2(i) = max{i − 1, 0}
otherwise.

• r3 : [0..s]→ [−5..s] with r3(s) = s and r3(s− 5j + k) = s− 5j + (4− k) for all j ∈ [s/5] and k ∈ [0..4]
and r3(k) = s− (5bs/5c − 1)− k for k ∈ [0..s− 5bs/5c − 1].

8

A PREPRINT - DECEMBER 20, 2019

We see that function r1 keeps the order of the function values, but introduces small plateaus of the same function value.
In contrast to r1, function r2 is a permutation of the possible function values. It divides the set of possible non-optimal
function values [0..s− 1] into blocks of size two (starting at s− 1 and going in the inverse direction) and interchanges
the two values in each block. When s is odd, the value 0 forms its own block with r1(0) = 0. Similarly, r3 divides the
set of possible function values in blocks of size 5 (starting at s− 1 and going in inverse direction), and reverses the
order of function values in each block.

Summarizing all these different setups, the functions F4-F17 are defined as follows:

F4: ONEMAX +W ([n/2], 1, 1, id) F11: LEADINGONES +W ([n/2], 1, 1, id)
F5: ONEMAX +W ([0.9n], 1, 1, id) F12: LEADINGONES +W (0.9n, 1, 1, id)
F6: ONEMAX +W ([n], µ = 3, 1, id) F13: LEADINGONES +W ([n], µ = 3, 1, id)
F7: ONEMAX +W ([n], 1, ν = 4, id) F14: LEADINGONES +W ([n], 1, ν = 4, id)
F8: ONEMAX +W ([n], 1, 1, r1) F15: LEADINGONES +W ([n], 1, 1, r1)
F9: ONEMAX +W ([n], 1, 1, r2) F16: LEADINGONES +W ([n], 1, 1, r2)
F10: ONEMAX +W ([n], 1, 1, r3) F17: LEADINGONES +W ([n], 1, 1, r3)

3.7.4 W-model vs. Unbiasedness Transformations and Fitness Scaling

To avoid confusion, we clarify the sequence of the transformations of the W-model and the unbiasedness and fitness
value transformations discussed in Section 3.2. Both the re-ordering of the string by the permutation σ and the XOR with
a fixed string z ∈ {0, 1}n are executed before the transformations of the W-model are applied, while the multiplicative
and additive scaling of the function values is applied to the result after the fitness perturbation of the W-model.

Example: Assume that the instance is generated from a base problem f : {0, 1}n → R, that the unbiasedness
transformations are defined by a permutation σ : [n] → [n] and the string z ∈ {0, 1}n, the fitness scaling by a
multiplicative scalar b > 0 and an additive term a ∈ R. Assume further that the W-model transformations are defined
by the vector (i1, . . . , im, µ, ν, r). For each queried search point x ∈ {0, 1}n, the algorithm receives the function value
af(W (σ(x)⊕ z)) + b, where σ(x) = (xσ(1), . . . , xσ(n)) and W : {0, 1}n → R denotes the function that maps each
string to the fitness value defined via the W-transformations (i1, . . . , im, µ, ν, r).

3.8 F18: Low Autocorrelation Binary Sequences

Obtaining binary sequences possessing a high merit factor, also known as the Low-Autocorrelation Binary
Sequence (LABS) problem, constitutes a grand combinatorial challenge with practical applications in radar
engineering and measurements [Shapiro et al.(1968)Shapiro, Pettengill, Ash, Stone, Smith, Ingalls, and Brockelman,
Pasha et al.(2000)Pasha, Moharir, and Rao]. It also carries several open questions concerning its mathematical na-
ture. Given a sequence of length n, S = (s1, . . . , sn) with si ∈ {−1,+1}, the merit factor is proportional to
the reciprocal of the sequence’s autocorrelation. The LABS optimization problem is defined as searching over the

sequence space to yield the maximum merit factor: n2

2E(S) with E(S) =
∑n−1
k=1

(∑n−k
i=1 si · si+k

)2
. This hard, non-

linear problem has been studied over several decades (see, e.g., [Militzer et al.(1998)Militzer, Zamparelli, and Beule,
Packebusch and Mertens(2016)]), where the only way to obtain exact solutions remains exhaustive search. As a
pseudo-Boolean function over {0, 1}n, it can be rewritten as follows:

FLABS (~x) =
n2

2
n−1∑
k=1

(
n−k∑
i=1

x′i · x′i+k

)2 where x′i = 2xi − 1. (1)

3.9 F19-F21: The Ising Model

The Ising Spin Glass model [Barahona(1982)] arose in solid-state physics and statistical mechanics, aiming to describe
simple interactions within many-particle systems. The classical Ising model considers a set of spins placed on a regular
lattice, where each edge 〈i, j〉 is associated with an interaction strength Ji,j . In essence, a problem-instance is defined
upon setting up the coupling matrix {Ji,j}. Each spin directs up or down, associated with a value±1, and a set of n spin
glasses is said to form a configuration, denoted as S = (s1, . . . , sn) ∈ {−1,+1}n. The configuration’s energy function
is described by the system’s Hamiltonian, as a quadratic function of those n spin variables: −

∑
i<j

Ji,jsisj −
∑n
i=1 hisi,

where hi is an external magnetic field. The optimization problem of interest is the study of the minimal energy configura-
tions, which are termed ground states, on a final lattice. This is clearly a challenging combinatorial optimization problem,

9

A PREPRINT - DECEMBER 20, 2019

which is known to be NP-hard, and to hold connections with all other NP problems [Lucas(2014)]. The Ising model has
been investigated in light of EAs’ operation, yielding some theoretical results on certain graph instances (see, e.g.,
[Briest et al.(2004)Briest, Brockhoff, Degener, Englert, Gunia, Heering, Jansen, Leifhelm, Plociennik, Röglin et al.,
Fischer and Wegener(2005), Sudholt(2005)]).

We have selected and integrated three Ising model instances in IOHPROFILER, assuming zero external magnetic
fields, and applying periodic boundary conditions (PBC). In order to formally define the Ising objective functions, we
adopt a strict graph perspective, where G = (V,E) is undirected and V = [n]. We apply an affine transformation
{−1,+1}n {0, 1}n, where the n spins become binary decision variables (this could be interpreted, e.g., as a coloring
problem; see [Sudholt(2005)]). A generalized, compact form for the quadratic objective function is now obtained:

FIsing (~x) =
∑

{u,v}∈E

[xuxv − (1− xu) (1− xv)] , (2)

thus leaving the instance definition within G.

In what follows, we specify their underlying graphs, whose edges are equally weighted as unity, to obtain their objective
functions using (2).

3.9.1 F19: The Ring (1D)

This basic Ising model is defined over a one-dimensional lattice. The objective function follows (2) using the following
graph:

GIs1D :

eij = 1 ⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} (3)
∨ j = n, i = 1

3.9.2 F20: The Torus (2D)

This instance is defined on a two-dimensional lattice of size N , using al-
together n = N2 vertices, denoted as (i, j), 0 ≤ i, j ≤ N − 1
[Briest et al.(2004)Briest, Brockhoff, Degener, Englert, Gunia, Heering, Jansen, Leifhelm, Plociennik, Röglin et al.].
Since PBC are applied, a regular graph with each vertex having exactly four neighbors is obtained. The objective
function follows (2) using the following graph:

GIs2D :

e(i,j)(k,`) = 1 ⇔ [k = (i+ 1) mod N ∧ ` = j ∀i, j ∈ {0, . . . , N − 1}]
∨ [k = (i− 1) mod N ∧ ` = j ∀i, j ∈ {0, . . . , N − 1}]
∨ [` = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]
∨ [` = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]

3.9.3 F21: Triangular (Isometric 2D Grid)

This instance is also defined on a two-dimensional lattice, yet constructed on an isometric grid (also known as triangular
grid), whose unit vectors form an angle of 2π

3 [Mellor(2011)]. The vertices are placed on integer-valued two-dimensional
n = N2 vertices, denoted as (i, j), 0 ≤ i, j ≤ N − 1, yielding altogether a regular graph whose vertices have exactly
six neighbors each (due to PBC):

GIsTR :

e(i,j)(k,`) = 1 ⇔ [k = (i+ 1) mod N ∧ ` = j ∀i, j ∈ {0, . . . , N − 1}]
∨ [k = (i− 1) mod N ∧ ` = j ∀i, j ∈ {0, . . . , N − 1}]
∨ [` = (j + 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]
∨ [` = (j − 1) mod N ∧ k = i ∀j, i ∈ {0, . . . , N − 1}]
∨ [` = (j + 1) mod N ∧ k = (i+ 1) mod N ∀j, i ∈ {0, . . . , N − 1}]
∨ [` = (j − 1) mod N ∧ k = (i− 1) mod N ∀j, i ∈ {0, . . . , N − 1}]

3.10 F22: Maximum Independent Vertex Set

Given a graph G = ([n], E), an independent vertex set is a subset of vertices where no two vertices are direct neighbors.
A maximum independent vertex set (MIVS) (which generally is not equivalent to a maximal independent vertex set)

10

A PREPRINT - DECEMBER 20, 2019

is defined as an independent subset V ′ ⊂ [n] having the largest possible size. Using the standard binary encoding
V ′ = {i ∈ [n] | xi = 1}, MIVS can be formulated as the maximization of the function

FMIVS (x) =
∑
i

xi − n ·
∑
i,j

xixjei,j , (4)

where ei,j = 1 if {i, j} ∈ E and ei,j = 0 otherwise.

In particular, following [Bäck and Khuri(1994)], we consider a specific, scalable problem instance, defining its Boolean
graph as follows:

eij = 1 ⇔ j = i+ 1 ∀i ∈ {1, . . . , n− 1} − {n/2}
∨ j = i+ n/2 + 1 ∀i ∈ {1, . . . , n/2− 1} (5)
∨ j = i+ n/2− 1 ∀i ∈ {2, . . . , n/2}.

The resulting graph has a simple, standard structure as shown in Figure 2 for n = 10. The global optimizer has an
objective function value of |V ′| = n/2 + 1 for this standard graph. Notably, n ≥ 4 and n is required to be even; given
an odd n, we identify the n-dimensional problem with the n− 1-dimensional instance.

Figure 2: A scalable maximum independent set problem, with n = 10 vertices and the optimal solution of size 6 marked
by the black vertices.

3.11 F23: N-Queens Problem

The N -queens problem (NQP) [Bell and Stevens(2009)] is defined as the task to place N queens on an N × N
chessboard in such a way that they cannot attack each other.3 Figure 3 provides an illustration for the 8-queens problem.
Notably, the NQP is actually an instance of the MIVS problem – when considering a graph on which all possible
queen-attacks are defined as edges. NQP formally constitutes a Constraints Satisfaction Problem, but is posed here as a
maximization problem using a binary representation:

maximize
∑
i,j

xij

subject to:∑
i

xij ≤ 1 ∀j ∈ {1 . . . , N}∑
j

xij ≤ 1 ∀i ∈ {1 . . . , N}∑
j−i=k

xij ≤ 1 ∀k ∈ {−N + 2,−N + 3, . . . , N − 3, N − 2}∑
i+j=`

xij ≤ 1 ∀` ∈ {3, 4, . . . , 2N − 3, 2N − 1}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}

This formulation utilizes n = N2 binary decision variables xij , which are associated with the chessboard’s coordinates,
having an origin (1, 1) at the top-left corner. Setting a binary to 1 implies a single queen assignment in that cell. This
formulation promotes placement of as many queens as possible by means of the objective function, followed by four
sets of constraints eliminating queens’ mutual threats: the first two sets ensure a single queen on each row and each
column, whereas the following two sets ensure a single queen at the increasing-diagonals (using the dummy indexing k)
and decreasing-diagonals (using the dummy indexing `). It should be noted that a permutation formulation also exists

3The NQP is traced back to the 1848 Bezzel article entitled “Proposal of the Eight Queens Problem”; for a comprehensive list of
references we refer the reader to a documentation by W. Kosters at
http://liacs.leidenuniv.nl/~kosterswa/nqueens/nqueens_feb2009.pdf.

11

http://liacs.leidenuniv.nl/~kosterswa/nqueens/nqueens_feb2009.pdf

A PREPRINT - DECEMBER 20, 2019

Figure 3: The 8-queens problem: [Left] all possible fields a queen can move to from position D4; [Right] a feasible
solution.

for this problem, and is sometimes attractive for RSHs. Due to chessboard symmetries, NQP possesses multiplicity
of optimal solutions. Its attractiveness, however, lies in its hardness. In terms of a black-box objective function, we
formulate NQP as the maximization of the following function:

FNQP(~x) =

N∑
i=1

N∑
j=1

xij −N ·

 N∑
i=1

max

0,−1 +

N∑
j=1

xij

+

N∑
j=1

max

{
0,−1 +

N∑
i=1

xij

}

+

N−2∑
k=−N+2

max

0,−1 +
∑

j−i=k
i,j∈{1,2,...,N}

xij

+

2N−1∑
`=3

max

0,−1 +
∑
j+i=`

i,j∈{1,2,...,N}

xij




(6)

4 Algorithms

We evaluate a total number of twelve different algorithms on the problems described above. We have chosen algorithms
that may serve for future references, since they all have some known strengths and weaknesses that will become apparent
in the following discussions. Our selection therefore shows a clear bias towards algorithms for which theoretical
analyses are available.

Note that most algorithms are parametrized, and we use here in this work only standard parametrizations (e.g., we
use 1/n as mutation rates, etc.). Analyzing the effects of different parameter values as was done, for example
in [Rodionova et al.(2019)Rodionova, Antonov, Buzdalova, and Doerr, Dang and Doerr(2019)], would be very inter-
esting, but is beyond the scope of this present work.

We also note that, except for the so-called vGA, our implementations (deliberately) deviate slightly from the text-
book descriptions referenced below. Following the suggestions made in [Carvalho Pinto and Doerr(2017)], we en-
force that offspring created by mutation are different from their parent and resample without further evaluation if
needed. Likewise, we do not evaluate recombination offspring that are identical to one of their immediate par-
ents. Since we use this convention throughout, we omit the subscript >0 used in [Carvalho Pinto and Doerr(2017),
Doerr et al.(2018)Doerr, Ye, van Rijn, Wang, and Bäck].

All algorithms start with uniformly chosen initial solution candidates.

We list here the twelve implemented algorithms, and provide further details and pseudo-codes thereafter:

1. gHC: A (1+1) greedy hill climber, which goes through the string from left to right, flipping exactly one bit per
each iteration, and accepting the offspring if it is at least as good as its parent.

2. RLS: Randomized Local Search, the elitist (1+1) strategy flipping one uniformly chosen bit in each iteration.
That is, RLS and gHC differ only in the choice of the bit which is flipped. While RLS is unbiased in the sense
of Section 3.2, gHC is not permutation-invariant and thus biased.

3. (1 + 1) EA: The (1+1) EA with static mutation rate p = 1/n. This algorithm differs from RLS in that the
number of uniformly chosen, pairwise different bits to be flipped is sampled from the conditional binomial

12

A PREPRINT - DECEMBER 20, 2019

distribution Bin>0(n, p). That is, each bit is flipped independently with probability p and if none of the bits
has been flipped this standard bit mutation is repeated until we obtain an offspring that differs from its parent
in at least one bit.

4. fGA: The “fast GA” proposed in [Doerr et al.(2017a)Doerr, Le, Makhmara, and Nguyen] with β = 1.5. Its
mutation strength (i.e., the number of bits flipped in each iteration) follows a power-law distribution with
exponent β. This results in a more frequent use of large mutation-strength, while maintaining the property that
small mutation strengths are still sampled with reasonably large probability.

5. (1 + 10) EA: The (1+10) EA with static p = 1/n, which differs from the (1+1) EA only in that 10 offspring
are sampled (independently) per each iteration. Only the best one of these (ties broken at random) replaces the
parent, and only if it is as least as good.

6. (1 + 10) EAr/2,2r: The two-rate EA with self-adjusting mutation rates suggested and analyzed
in [Doerr et al.(2017b)Doerr, Gießen, Witt, and Yang].

7. (1 + 10) EAnorm.: a variant of the (1 + 10) EA sampling the mutation strength from a normal distribution
N(pn, pn(1− p)) with a self-adjusting choice of p [Ye et al.(2019)Ye, Doerr, and Bäck].

8. (1 + 10) EAvar.: The (1 + 10) EAnorm. with an adaptive choice of the variance in the normal distribution
from which the mutation strengths are sampled. Also from [Ye et al.(2019)Ye, Doerr, and Bäck].

9. (1 + 10) EAlog-n. The (1+10) EA with log-normal self-adaptation of the mutation rate proposed
in [Bäck and Schütz(1996)].

10. (1 + (λ, λ)) GA: A binary (i.e., crossover-based) EA originally suggested
in [Doerr et al.(2015)Doerr, Doerr, and Ebel]. We use the variant with self-adjusting λ analyzed
in [Doerr and Doerr(2018)].

11. vGA: A (30, 30) “vanilla” GA (following the so-called traditional GA, as described, for example,
in [Goldberg(1989), Bäck(1996)]).

12. UMDA: A univariate marginal distribution algorithm from the family of estimation of distribution algorithms
(EDAs). UMDA was originally proposed in [Mühlenbein(1997)].

4.1 Detailed Description of the Algorithms

A detailed description of the algorithms follows. An operator frequently used in these descriptions is the flip`(·) mutation
operator, which flips the entries of ` pairwise different, uniformly at random chosen bit positions, see Algorithm 1.

Algorithm 1: flip` chooses ` different positions and flips the entries in these positions.
1 Input: x ∈ {0, 1}n, ` ∈ N;
2 Select ` pairwise different positions i1, . . . , i` ∈ [n] uniformly at random;
3 y ← x;
4 for j = 1, ..., ` do yij ← 1− xij ;

It is well known that standard bit mutation, which flips each bit in a length-n bit string with some probability p, can
be equivalently defined as the operator calling flip` for a mutation strength chosen from the binomial distribution
Bin(n, p). Since we want to avoid useless evaluations of offspring that are identical to their parents, we frequently
make use of the conditional binomial distribution Bin>0(n, p), which assigns probability Bin(n, p)(k)/(1− (1− p)n)
to each positive integer k ∈ [n], and probability zero to all other values. Sampling from Bin>0(n, p) is identical to
sampling from Bin(n, p) until a positive value is returned (“resampling strategy”).

4.1.1 Greedy Hill Climber

The greedy hill climber (gHC, Algorithm 2) uses a deterministic mutation strength, and flips one bit in each iteration,
going through the bit string from left to right, until being stuck in a local optimum, see Algorithm 2.

Algorithm 2: Greedy hill climber (gHC)
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 x∗ ← x;
4 Flip in x∗ the entry in position 1 + (t mod n) and evaluate f(x∗);
5 if f(x∗) ≥ f(x) then x← x∗;

13

A PREPRINT - DECEMBER 20, 2019

4.1.2 Randomized Local Search

RLS uses a deterministic mutation strength, and flips one randomly chosen bit in each iteration, see Algorithm 3.

Algorithm 3: Randomized local search (RLS)
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 create x∗ ← flip1(x), and evaluate f(x∗);
4 if f(x∗) ≥ f(x) then x← x∗;

4.1.3 The EA with Static Mutation Rate

The (1 + λ) EA is defined via the pseudo-code in Algorithm 4. We use λ = 1 and λ = 10 in our comparisons.

Algorithm 4: The (1 + λ) EA with static mutation rates
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample `(i) ∼ Bin>0(n, 1/n);
5 create y(i) ← flip`(i)(x), and evaluate f(y(i));

6 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken by selecting the first max f(y(i)));
7 if f(x∗) ≥ f(x) then x← x∗;

4.1.4 Fast Genetic Algorithm

The fast Genetic Algorithm (fGA) chooses the mutation length ` according to a power-law distribution Dβ
n/2, which

assigns to each integer k ∈ [n/2] a probability of Pr[Dβ
n/2 = k] = (Cβn/2)

−1
k−β , where Cβn/2 =

∑n/2
i=1 i

−β . We use
the (1+1) variant of this algorithm with β = 1.5.

Algorithm 5: Fast genetic algorithm (fGA) from [Doerr et al.(2017a)Doerr, Le, Makhmara, and Nguyen]
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , λ do
4 Sample `(i) ∼ Dβ

n/2;
5 create y(i) ← flip`(i)(x), and evaluate f(y(i));

6 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest index);
7 if f(x∗) ≥ f(x) then x← x∗;

4.1.5 The Two-Rate EA

The two-rate (1 + λ) EAr/2,2r was introduced in [Doerr et al.(2017b)Doerr, Gießen, Witt, and Yang]. It uses two
mutation rates in each iteration: half of offspring are generated with mutation rate r/2n, and the other λ/2 offspring

14

A PREPRINT - DECEMBER 20, 2019

are sampled with mutation rate 2r/n. The parameter r is updated after each iteration, from a biased random decision
favoring the value from which the best of all λ offspring has been sampled.

Algorithm 6: The two-rate EA with adaptive mutation rates proposed
in [Doerr et al.(2017b)Doerr, Gießen, Witt, and Yang]

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ/2 do
5 Sample `(i) ∼ Bin>0(n, r/(2n)), create y(i) ← flip`(i)(x), and evaluate f(y(i));
6 for i = λ/2 + 1, . . . , λ do
7 Sample `(i) ∼ Bin>0(n, 2r/n), create y(i) ← flip`(i)(x), and evaluate f(y(i));

8 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken uniformly at random);
9 if f(x∗) ≥ f(x) then x← x∗;

10 if x∗ has been created with mutation rate r/2 then s← 3/4 else s← 1/4;
11 Sample q ∈ [0, 1] uniformly at random;
12 if q ≤ s then r ← max{r/2, 2} else r ← min{2r, n/4};

4.1.6 The EA with normalized standard bit mutation

The (1 + λ) EAnorm., Algorithm 7, samples the mutation strength from a normal distribution with mean r = pn and
variance pn(1− p) = r(1− r/n), which is identical to the variance of the binomial distribution used in standard bit
mutation. The parameter r is updated after each iteration, in a similar fashion as in the 2-rate EA, Algorithm 6.

Algorithm 7: The (1 + λ) EAnorm. with normalized standard bit mutation
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 Sample `(i) ∼ min{N>0(r, r(1− r/n)), n}, create y(i) ← flip`(i)(x), and evaluate f(y(i));

6 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [λ]}

}
;

7 r ← `(i);
8 if f(y(i)) ≥ f(x) then x← y(i);

4.1.7 The EA with normalized standard bit mutation and controlled variance

The (1+λ) EAvar., Algorithm 8 builds on the (1+λ) EAnorm. but uses, in addition to the adaptive choice of the mutation
rate, an adaptive choice of the variance.

Algorithm 8: The (1 + λ) EAvar. with normalized standard bit mutation and a self-adjusting choice of mean and
variance

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Initialize r ← rinit; // we use rinit = 2;
3 Initialize c← 0;
4 Optimization: for t = 1, 2, 3, . . . do
5 for i = 1, . . . , λ do
6 Sample `(i) ∼ min{N>0(r, F cr(1− r/n)), n}, create y(i) ← flip`(i)(x), and evaluate f(y(i));

7 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [λ]}

}
;

8 if r = `(i) then c← c+ 1; else c← 0;
9 r ← `(i);

10 if f(y(i)) ≥ f(x) then x← y(i);

15

A PREPRINT - DECEMBER 20, 2019

4.1.8 The EA with log-Normal self-adaptation on mutation rate

The (1 + λ) EAlog-n., Algorithm 9, uses a self-adaptive choice of the mutation rate.

Algorithm 9: The (1 + λ) EAlog-n. with log-Normal self-adaptation of the mutation rate

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 p = 0.2;
3 Optimization: for t = 1, 2, 3, . . . do
4 for i = 1, . . . , λ do
5 p(i) =

(
1 + 1−p

p · exp(0.22 · N (0, 1))
)−1

;
6 Sample `(i) ∼ Bin>0(n, p(i));
7 create y(i) ← flip`(i)(x), and evaluate f(y(i));

8 i← min
{
j | f(y(j)) = max{f(y(k)) | k ∈ [λ]}

}
;

9 p← p(i);
10 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the smallest index);
11 if f(x∗) ≥ f(x) then x← x∗;

4.1.9 The Self-Adjusting (1 + (λ, λ)) GA

The self-adjusting (1 + (λ, λ)) GA, Algorithm 10, was introduced in [Doerr et al.(2015)Doerr, Doerr, and Ebel] and
analyzed in [Doerr and Doerr(2018)]. The offspring population size λ is updated after each iteration, depending on
whether or not an improving offspring could be generated. Since both the mutation rate and the crossover bias (see
Algorithm 11 for the definition of the biased crossover operator cross) depend on λ, these two parameters also change
during the run of the (1 + (λ, λ)) GA. In our implementation we use update strength F = 3/2.

Algorithm 10: The self-adjusting (1 + (λ, λ)) GA
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Mutation phase:
4 Sample ` ∼ Bin>0(n, λ/n);
5 for i = 1, . . . , λ do create y(i) ← flip`(x), and evaluate f(y(i)) ;
6 x∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest index);
7 Crossover phase:
8 for i = 1, . . . , λ do create y(i) ← crossc(x, x

∗), and evaluate f(y(i)) ;
9 y∗ ← arg max{f(y(1)), . . . , f(y(λ))} (ties broken by favoring the largest index);

10 Selection phase:
11 if f(y∗) > f(x) then x← y∗; λ← max{λ/F, 1};
12 if f(y∗) = f(x) then x← y∗; λ← min{λF 1/4, n};
13 if f(y∗) < f(x) then λ← min{λF 1/4, n};

Algorithm 11: Crossover operation crossc(x, x
∗) with crossover bias c

1 y ← x;
2 Sample ` ∼ Bin>0(n, c);
3 Select ` different positions {i1, . . . , il} ∈ [n];
4 for j = 1, 2, . . . , ` do yij ← x∗ij ;

4.1.10 The “Vanilla” GA

The vanilla GA (vGA, Algorithm 13) constitutes a textbook realization of the so-called Traditional GA [Goldberg(1989),
Bäck(1996)]. The algorithm holds a parental population of size µ. It employs the Roulette-Wheel-Selection (RWS,
that is, probabilistic fitness-proportionate selection which permits an individual to appear multiple times) as the
sexual selection operator to form µ/2 pairs of individuals that generate the offspring population. 1-point crossover

16

A PREPRINT - DECEMBER 20, 2019

Algorithm 12: 1-Point crossover of two parents x(1) and x(2)

1 Sample ` ∈ [n] uniformly at random;
2 for i = 1, 2, . . . , ` do Set y(1)i ← x

(1)
i and y(2)i ← x

(2)
i ;

3 for i = `+ 1, . . . , n do Set y(1)i ← x
(2)
i and y(2)i ← x

(1)
i ;

(Algorithm 12) is applied to every pair with a fixed probability of pc = 0.37. A mutation operator is then applied to
every individual, flipping every bit with a fixed probability of pm = 2/n. This completes a single cycle.

Algorithm 13: The (µ, µ)-“Vanilla-GA” with mutation rate pm and crossover probability pc
1 Initialization:
2 for i = 1, . . . , µ do sample x(i) ∈ {0, 1}n uniformly at random and evaluate f(x(i));
3 Optimization: for t = 1, 2, 3, . . . do
4 Parent selection phase: Apply roulette-wheel selection to {x(1), . . . , xµ} to select µ parent individuals

y(1), . . . , y(µ);
5 Crossover phase:
6 for i = 1, . . . , µ/2 do with probability pc replace y(i) and y(2i) by the two offspring that result from a 1-point

crossover of these two parents, for a randomly chosen crossover point j ∈ [n] ;
7 Mutation phase:
8 for i = 1, . . . , µ do Sample `(i) ∼ Bin(n, pm), set y(i) ← flip`(i)(y

(i)), and evaluate f(y(i)) ;
9 Replacement:

10 for i = 1, . . . , µ do Replace x(i) by y(i);

4.1.11 The Univariate Marginal Distribution Algorithm

The univariate marginal distribution algorithm (UMDA, Algorithm 14) is one of the simplest representatives of the
family of so-called estimation of distribution algorithms (EDAs). The algorithm maintains a population of size s
(we use s = 50 in our experiments) and uses the best s/2 of these to estimate the marginal distribution of each
decision variable, by simply counting the relative frequency of ones in the corresponding position. These frequencies
are capped at 1/n and 1 − 1/n, respectively. In the t-th iteration, a new population is created by sampling from
these marginal distributions. Building upon previous work made in [Mühlenbein and Paaß(1996)], the UMDA was
introduced in [Mühlenbein(1997)]. Theoretical results for this algorithm are summarized in [Krejca and Witt(2018)].

Algorithm 14: The Univariate Marginal Distribution Algorithm (UMDA), representing the family of EDAs
1 Initialization:
2 for i = 1, . . . , s do sample x(0,i) ∈ {0, 1}n uniformly at random and evaluate f(x(0,i));
3 Let ~P0 be the collection of the best s/2 of these search points, ties broken uniformly at random (u.a.r.);
4 Optimization:
5 for t = 1, 2, 3, . . . do
6 for j = 1, . . . , n do
7 pj ← 2|{x ∈ ~Pt−1 | xj = 1}|/s;
8 if pj < 1/n then pj = 1/n;
9 if pj > 1− 1/n then pj = 1− 1/n;

10 for i = 1, . . . , s do sample x(t,i) ∈ {0, 1}n by setting, independently for all j ∈ [n], x(t,i)j = 1 with

probability pj and setting x(t,i)j = 0 otherwise. Evaluate f(x(t,i));
11 Let ~Pt be the collection of the best s/2 of the points x(t,1), x(t,2), ..., x(t,s), ties broken u.a.r.;

17

A PREPRINT - DECEMBER 20, 2019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5
1e+3

2

5
1e+4

2

5
1e+5

2

5
1e+6

2

5
1e+7

2

5
1e+8

(1+(λ,λ)) GA (1+1) EA_>0 (1+1) fGA (1+10) EA_>0

(1+10) EA_logNormal (1+10) EA_normalized (1+10) EA_var_ctrl (1+10) EA_{r/2,2r}
(30,30) vGA RLS UMDA gHC

Dimension 625

Figure 4: ERT values of the twelve baseline algorithms for the 625-dimensional test suite, with respect to the best
solution quality found by any of the algorithms in any of the eleven runs. These target values can be found in Table 1.

5 Experimental Results

As a demonstration of the results that can be obtained from the IOHPROFILER environment, we report here on
some basic experiments that were run on it. All data is available for interactive evaluation with IOHANALYZER at
http://iohprofiler.liacs.nl (the data sets can be loaded by selecting the data set 2019gecco-inst11-1run in the “Load Data
from Repository” section on the “upload data” page. The data set with 11 runs on the first instance is available as data
set 2019gecco-inst1-11run). In addition to analyzing the performance statistics of the baseline algorithms described
above, the user can upload his/her own data sets for a performance comparison against the twelve algorithms, or for an
extension of this work to more benchmark problems.

Following the primary scope of this work, which is a demonstration of the ability of IOHPROFILER to handle
such large-scale experiments, our report features only the major empirical findings. A more detailed analysis by
each algorithm is left for future work. We note, though, that the insights obtained through the here-described
experiments have already inspired the development of new algorithmic ideas, see [Ye et al.(2019)Ye, Doerr, and Bäck,
Rodionova et al.(2019)Rodionova, Antonov, Buzdalova, and Doerr, Horesh et al.(2019)Horesh, Bäck, and Shir].

5.1 Experimental Setup

Our experimental setup can be summarized as follows:

• 23 test-functions F1-F23, described in Section 3

• Each function is assessed over the four problem dimensions n ∈ {16, 64, 100, 625}

• Each algorithm is run on 11 different instances of each of these 92 (F, n) pairs, yielding a total number
of 1,012 different runs per each algorithm. Each run is granted a budget of 100n2 function evaluations for
dimensions n ∈ {16, 64, 100} and a budget of 5n2 function evaluations for n = 625. More precisely, each
algorithm performs one run on each of the instances 1− 6 and 51− 55 described in Section 3.2.
As mentioned in Section 4, most of our algorithms are unbiased and comparison-based. For these algorithms
all 11 instances look the same, i.e., performing one run each is equivalent to 11 independent runs on instance
1, which is the “pure” problem instance without fitness scaling nor any other transformation applied to it.
However, in order to understand how the transformations impact the behavior of vGA and gHC, we also
performed 11 independent runs of each algorithm on instance 1 of each (F, n) pair, yielding another 1,012
runs per each algorithm.

18

http://iohprofiler.liacs.nl

A PREPRINT - DECEMBER 20, 2019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5
100

2

5
1e+3

2

5
1e+4

2

5
1e+5

2

5
1e+6

2

5
1e+7

2

(1+(λ,λ)) GA (1+1) EA_>0 (1+1) fGA (1+10) EA_>0

(1+10) EA_logNormal (1+10) EA_normalized (1+10) EA_var_ctrl (1+10) EA_{r/2,2r}
(30,30) vGA RLS UMDA gHC

Dimension 64

Figure 5: ERT values of the twelve baseline algorithms for the 64-dimensional test suite, with respect to the best
solution quality found by any of the algorithms in any of the eleven runs. These target values can be found in Table 1.

• For each run we store the current and the best-so-far function value at each evaluation. This setup allows very
detailed analyses, since we can zoom into each range of fixed budgets and/or fixed-targets of choice, and obtain
our anytime performance statistics in terms of quantiles, averages, probabilities of success, ECDF curves, etc.
For some of the algorithms we also store information about the self-adjusting parameters, for example the
value of λ in the (1 + (λ, λ)) GA and the mutation rates for the (1+10) EAr/2,2r, the (1+10) EAvar., and the
(1+10) EAnorm.. From this data we can derive how the parameters evolve with respect to the time elapsed and
with respect to the quality of the best-so-far solutions.

As discussed, we are interested in experimental setups that allow to evaluate one entire experiment (for one algorithm)
within 24 CPU hours. The majority of our tested algorithms completed the experiment in around 12 CPU hours on an
Intel(R) Xeon(R) CPU E5-4667 server, and all twelve algorithms finished experimentation within the 24 hours time
frame.

Concerning the number of repetitions, we note that with 11 runs we already get a good understanding of
the key differences between the algorithms. 11 runs can be enough to get statistical significance, if the dif-
ferences in performance are substantial. We refer the interested reader to the tutorial [Hansen(2018)], which
argues that for a first experiment a small number of experiments can suffice. We also note that IOHANA-
LYZER offers statistical tests, in the form of pairwise Kolmogorov-Smirnov tests. An extension to Bayesian
inference statistics is in progress. We do not report on these statistical tests here, but refer the interested
reader to our work [Calvo et al.(2019)Calvo, Shir, Ceberio, Doerr, Wang, Bäck, and Lozano], which discusses sta-
tistical significance of the results presented here in this work using the framework previously presented
in [Calvo et al.(2018)Calvo, Ceberio, and Lozano]. We also note that other statistical tests could make a lot of sense to
analyze our data, but this is beyond the scope of this work.

5.2 Performance Measures

We are mostly interested in fixed-target results, i.e., we consider the average “time” (=number of function evaluations)
needed by each algorithm to find a solution that is at least as good as a certain threshold value. To be very explicit,
Figure 6 is a example showing fixed-target curves, which plot the average number of function evaluations (y-axis)
needed to find a solution x satisfying f(x) ≥ φ, where the target value φ is the value on the x-axis.

Given performance data of r independent runs of an algorithm A with a maximal budget of B function evaluations, the
expected running time (ERT) value of A for a target value v is r−s

s B + AHT, where s ≤ r is the number of successful
runs in which a solution of fitness at least v has been found, and AHT is the average first hitting time of these successful
runs. We mostly concentrate on ERT values in our analysis.

19

A PREPRINT - DECEMBER 20, 2019

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
n = 64 64 64 2080 32 57 21 64 33 64 63.2 32
n = 625 625 625 195 625 312 562 208 576.4 314 625 625 312
F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

n = 64 57 21 43.8 33 64 64 3.981492 128 230.4 384 28 8
n = 625 562 208 36.6 314 625 625 4.2655266 1 242 2 420 3 532.8 268.4 24

Table 1: Target values for which the ERT curves in Figures 4 and 5 are computed.

Another important concept in the analysis of IOHs are empirical cumulative distribution function (ECDF) curves,
which allow to aggregate performance across different functions. For each of the d different problems i = 1, . . . , d
a list of target values φi,j , j = 1, . . . ,m(i), is chosen. The ECDF value at budget t is defined as the fraction of
(run,target)-pairs (s, φi,j) which satisfy that in run s on problem i a solution has been identified that is at least as good
as φi,j . See [Hansen et al.(2016)Hansen, Auger, Brockhoff, Tusar, and Tušar] for more information and motivation.

5.3 Function-wise Raw Observations Across Dimensions

Figures 4 and 5 depict the ERT of the baseline algorithms on the 625-dimensional and the 64-dimensional functions,
respectively, when considering the best function value found by any of the algorithms in any of the runs. These target
values are summarized in Table 1.

We summarize a few basic observations for each function.

F1 This baseline ONEMAX problem is easily solved, having the gHC winning (it solves each n-dimensional ONEMAX
instance in at most n+1 queries), the majority of the algorithms clustered with a practically-equivalent performance,
the (1+10)-EAr/2,2r lagging behind, and the vGA outperformed by far. All algorithms locate the global optimum
eventually. Figure 6 presents the average fixed-target performance of the algorithms on F1 at n = 625, in terms of
ERT. Evidently, the vGA and the UMDA obtain a clear advantage in the beginning of the optimization process,
although the vGA eventually uses the largest number of evaluations, by far, to locate the optimum. We also see here
that, as expected, the performances of the unbiased algorithms (i.e., all algorithms except the vGA) are identical
for the 11 runs on instance 1 and the 1 run on 11 different instances. For the vGA this is clearly not the case, the
fixed-target performances of these two settings differ substantially.

F2 The LEADINGONES problem introduces more difficulty when compared to F1, with the ERT consistently shifting
upward, but it is still easily solved. The gHC wins, the vGA loses, and the majority of the algorithms are again
clustered, but now the (1 + (λ, λ))-GA lags behind. The UMDA fails to find the optimum within the given time
budget, for all tested dimensions except for n = 16. An example of the evolution of the parameter λ in the
(1 + (λ, λ)) GA is visualized in Figure 7. We observe – as expected – that larger function values are evidently
correlated with larger population sizes (and, thus, larger mutation rates).

F3 The behavior on this problem, the linear function with harmonic weights, is similar to F1 for most algorithms.
Exceptions are the vGA, for which it is slightly easier, and the UMDA, which shows worse performance on F3 than
on F1.

F4 This problem, ONEMAX with 50% dummy variables, is the most easily-solved problem in the suite, with an
even simpler performance classification – the gHC performs at the top, the vGA at the bottom, and the rest are
tightly clustered. Given the consistent correlation with the F1 performance profiles, across all twelve algorithms,
it seems debatable whether or not to keep this function in a benchmark suite, since it seems to offer only limited
additional insights, which could be of a rather specialized interest, e.g., for theoretical investigations addressing
precise running times of the algorithms.

F5 Solving this problem, ONEMAX with 10% dummy variables, exhibits equivalent behavior to F1. Similarly to F4,
we suggest to ignore this setup for future benchmarking activities. Note, however, that the exclusion of F4 and F5
does not imply that the dummy variables do not play an interesting role – in an ongoing evaluation of the W-model,
we are currently investigating their impact when combined with other W-model transformations.

F6 The neutrality (“majority vote”) transformation apparently introduces difficulty to the (1 + (λ, λ)) GA, which
exhibits deteriorated performance compared to F1. The vGA, despite a slightly better performance compared to F1,
is the worst among the twelve algorithms. At the same time, the (1+10)-EAlog-n. lags behind its competitors in the
beginning, but it eventually shows a competitive result in the later optimization process, ending up with an overall
fine ERT value. The gHC outperforms all other algorithms also on this function.

F7 The introduction of local permutations to ONEMAX, within the current problem, introduced difficulties to all the
algorithms. The ability to locate the global optimum within the designated budget deteriorated for all of them,

20

A PREPRINT - DECEMBER 20, 2019

300 350 400 450 500 550 600

1

10

100

1e+3

1e+4

1e+5

1e+6

(1+(λ,λ)) GA
(1+(λ,λ)) GA

(1+1) EA_>0
(1+1) EA_>0

(1+1) fGA
(1+1) fGA

(1+10) EA_>0
(1+10) EA_>0

(1+10) EA_logNormal
(1+10) EA_logNormal

(1+10) EA_normalized
(1+10) EA_normalized

(1+10) EA_var_ctrl
(1+10) EA_var_ctrl

(1+10) EA_{r/2,2r}
(1+10) EA_{r/2,2r}

(30,30) vGA
(30,30) vGA

RLS
RLS

UMDA
UMDA

gHC
gHC

Best­so­far f(x)­value

Fu
nc
tio
n 
ev
al
ua
tio
ns

Figure 6: ERT values for F1 (ONEMAX) at dimension n = 625 in a fixed-target perspective. The dashed lines are the
average running times of 11 independent runs on instance 1, while the solid lines are average running times for one run
on each of the eleven different instances 1-6 and 51-55.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

(1+(λ,λ)) GA

la
m
bd
a

Target valueTarget valueTarget value

Figure 7: Evolution of the population size λ of the (1 + (λ, λ)) GA on the LEADINGONES problem F2 at dimension n
= 625, correlated to the best-so-far objective function values (horizontal axis). The line shows the average value of λ for
iterations starting with a best-so-far solution of the value indicated by the x-axis. The shade represents the standard
deviation.

21

A PREPRINT - DECEMBER 20, 2019

300 350 400 450 500 550 600

1

10

100

1e+3

1e+4

1e+5

1e+6

1e+7

(1+(λ,λ)) GA (1+1) EA_>0 (1+1) fGA (1+10) EA_>0

(1+10) EA_logNormal (1+10) EA_normalized (1+10) EA_var_ctrl (1+10) EA_{r/2,2r}
(30,30) vGA RLS UMDA gHC

Best­so­far f(x)­value

Fu
nc
tio
n 
ev
al
ua
tio
ns

Figure 8: ERT values for F7 at dimension n = 625 in a fixed-target perspective.

except for the (1+10)-EAr/2,2r on “low-dimensional” scales (n ∈ {16, 64, 100}). Figure 8 depicts the ERT values
of the algorithms on F7 at n = 625, where it is evident that they all failed to locate the global optimum. Note that
this figure encompasses results for both instantiations (a single instance or 11 instances). The twelve algorithms’
performances are clustered in two groups that are associated with two fitness regions (and likely two basins of
attraction) - the first around an objective function value of 500 (including the UMDA, with the gHC being the fastest
to approach it and get stuck), and the other below 600. It seems that the latter cluster could use additional budget to
further improve the results.

F8 Being ONEMAX with the small fitness plateaus induced by the ruggedness function r1, the UMDA performs best
on this problem, with the (1 + (λ, λ)) GA following very closely. It seems to introduce medium difficulty to all the
algorithms, except for the gHC, whose performance is dramatically hampered and becomes worse than the vGA.
Interestingly, the ERT values are distributed sparsely compared to other ONEMAX variants.

F9 The UMDA also performs best for this problem, with the (1+10) EAvar. being the runner-up. Generally, the behavior
on this problem, ONEMAX with small fitness perturbations, is close to F8, but with certain differences. It is
evidently harder, as the algorithms experience larger ERT values. Importantly, unlike F8, the RLS always fails on
F9 (since it gets stuck in local optima), and “joins” the gHC and vGA at the bottom of the performance table. The
(1 + (λ, λ)) GA also shows worse performance on F9 than on F8.

F10 This problem, ONEMAX with fitness perturbations of block size five, presents a dramatic difficulty to all the
algorithms, including the UMDA, which, however, clearly outperforms all other algorithms. It is evidently the
hardest ONEMAX variant for all the tested algorithms, among the eight variants studied in this work. For n = 625
the UMDA finds the optimum after an average of 141 243 evaluations, while none of the other algorithms finds a
solution better than 575.

F11 The gHC performs strongly on this problem, namely the LEADINGONES with 50% dummy variables, consistently
with its winning behavior on F2. The vGA performs poorly, and the UMDA is also at the bottom of the table.
Notably, the problem should become easier compared to F2, since the effective number of variables is reduced. The
RLS, however, which generally performs well on LEADINGONES, only ranks third from the bottom on ERT values
when solving this problem.

22

A PREPRINT - DECEMBER 20, 2019

F12 The behavior of the algorithms on this problem, LEADINGONES with 10% dummy variables, is very similar to F11,
with excellent performance of the gHC. However, one major difference is the dramatic deterioration of UMDA and
vGA, which fail to find the optimum with given time budget for n = 625 (see, Figure 4). UMDA performs better
than vGA for n = 64, but still obtains clear disadvantage comparing to other algorithms (see Figure 5).

F13 The introduction of neutrality on LEADINGONES makes this problem easier in practice (that is, by observing ERT
decrease compared to F2). The gHC wins, while the vGA, (1+(λ, λ)) GA as well as the UMDA lag behind the other
methods. The poor performance of these three algorithms is consistent with their performance on LEADINGONES.

F14 Being LEADINGONES with epistasis, this problem introduces high difficulty. For high dimensions, n ∈
{64, 100, 625}, none of the algorithms was capable of locating an optimal solution within the allocated bud-
get. The vGA tops the ERT values on this problem, followed by the (1+1)-fGA, the (1+10)-EAr/2,2r, and the
(1+10)-EAnorm.. On the other hand, three algorithms, namely the gHC, the UMDA, and the RLS, seem to get
trapped with low objective function values.

F15 The introduction of fitness perturbations to LEADINGONES makes this problem difficult. The UMDA exhibits the
worst performance among the competing methods. The remainder of the algorithms, except for the vGA and the
(1 + (λ, λ)) GA, are still able to hit the optimum of this problem, but with significantly larger ERT values. The
gHC performs best, and the first runner-up is the RLS.

F16 The obtained ranks of algorithms, with respect to the ERT values, are similar to those of F15, but generally exhibit
higher ERT values. Notably, the UMDA is still the worst performer.

F17 As expected, the rugged LEADINGONES function is the second-hardest among the LEADINGONES variants,
following F14. Only the RLS and the (1+1)-EA are able to hit the optimum in dimension 625, while the gHC has a
diminished performance on this problem. This can be explained by the fact that the gHC has a very high probability
of getting stuck in a local traps, while the RLS is capable of performing random walks about local optima, until
eventually escaping them (e.g., by flipping the right bit when all the consecutive four bits are also identical to the
target string). This is of course a rare event, and the ERT values are therefore significantly worse than all other
LEADINGONES variants, except F14. As on the previous two functions, the UMDA performs poorly, with similar
ERT values as the gHC.
Comparing to F10, the effect of the fitness permutation r3 on LEADINGONES is not as significant as on ONEMAX,
which can be explained by the ability of most of the algorithms to perform random walks about local traps, through
which the four first bits of the tail are eventually set correctly, at which point flipping the significant bit (i.e., the
bit in position LO(x) + 1) results in a LEADINGONES fitness increase of at least five, and consequently a fitness
increase of at least one for the problem r3 ◦ LEADINGONES. This candidate solution is thus accepted by all of our
algorithms, and the next phase of optimizing the following consecutive five bits begins.

F18 The LABS problem is the most complex problem in our assessment. For the higher dimensions, n ∈ {64, 100, 625},
none of the algorithms obtained the maximally attainable values, or got fitness values close to those of the best-
known sequences (see, e.g., [Packebusch and Mertens(2016)]). Additionally, a couple of algorithms (e.g., the gHC
and the RLS) did not succeed to escape low-quality “local traps” on most dimensions. Surprisingly, the vGA
was superior to the other algorithms at n = 16 but, as expected, over the higher dimensions presented weaker
performance. Notably, the UMDA outperforms the other methods at n = 625.

F19 The simplest problem among the Ising instances. Most of the algorithms exhibited similar performance, except for
the vGA, the UMDA and the gHC, which obtained weak results. The latter preformed worst among all algorithms,
and obtained the lowest objective function values across all the dimensions for the given time budget. As a
demonstration of the performance statistics that IOHPROFILER provides, average fixed-target and fixed-budget
running times are provided in Figure 9. This figure illustrates that ERT values tell only one side of the story: the
performance of UMDA is comparable to that of the other algorithms for all targets up to around 170; only then it
starts to perform considerably worse.

F20 In contrast to its poor performance on the 1D-Ising (F19), the gHC outperformed the other algorithms on the
2D-Ising for target values up to around 2,300 (d = 625), after which its performance becomes worse than most
of the other algorithms, except for the vGA, which is consistently the worst except for a few initial target values.
For the 16-dimensional F20 problem, gHC performs best for all recorded target values. For d = 625, however, the
(1+10) EA achieves the best ERT value for the target recorded in Table 1, followed by the (1+1) EA, the (1+10)
EAvar., and the fGA.

F21 As expected, the most complex among the Ising model instances. The observed performances resemble the
observations on F20, whereas the vGA was among the slowest and the gHC was among the fastest. In addition,
the RLS preformed poorly and obtained worse ERT values compared to the other algorithms (apart from the vGA,
which performs even worse). The UMDA improved its ranking compared to F19, exhibiting performance close to
the vGA. For d = 625, the best ERT is obtained by the (1+10) EAlog-n..

23

A PREPRINT - DECEMBER 20, 2019

80 100 120 140 160 180 200

1

10

100

1H+3

1H+4

1H+5

1H+6

1H+7

(1+(Ȝ,Ȝ))�*A (1+1)�(AB>0 (1+1)�I*A
(1+10)�(AB>0 (1+10)�(ABORJ1RUPDO (1+10)�(ABQRUPDOL]HG
(1+10)�(ABYDUBFWUO (1+10)�(AB^U/2,2U` (30,30)�Y*A
5/6 80'A J+&

BeVW­VR­IaU�I([)­YaOXe

FX
Qc
WLR
Q�
eY
aO
Xa
WLR
QV

1 10 100 1H+3 1H+4 1H+5 1H+6

100

120

140

160

180

200

(1+(Ȝ,Ȝ))�*A (1+1)�(AB>0 (1+1)�I*A
(1+10)�(AB>0 (1+10)�(ABORJ1RUPDO (1+10)�(ABQRUPDOL]HG
(1+10)�(ABYDUBFWUO (1+10)�(AB^U/2,2U` (30,30)�Y*A
5/6 80'A J+C

RXQWLPe

B
eV
W­V
R­
fa
U�f
([
)­
Ya
OX
e

1 10 100 1H+3 1H+4 1H+5 1H+6

100

120

140

160

180

200

(1+(Ȝ,Ȝ))�*A (1+1)�(AB>0 (1+1)�I*A (1+10)�(AB>0 (1+10)�(ABORJ1RUPDO (1+10)�(ABQRUPDOL]HG
(1+10)�(ABYDUBFWUO (1+10)�(AB^U/2,2U` (30,30)�Y*A 5/6 80'A J+C

RXQWLPe

B
eV
W­V
R­
fa
U�f
([
)­
Ya
OX
e

Figure 9: Demonstration of the basic performance plots for F19 at dimension n = 100: [LEFT] best obtained values
as a function of evaluations calls (“fixed-target perspective”), versus [RIGHT] evaluations calls as a function of best
obtained values (”fixed-budget perspective”). For F19, these patterns of relative behavior are observed across all
dimensions.

F22 None of the algorithms succeeded in locating the global optimum across all dimensions of this problem. This is
explained by the existence of a local optimum with a strong basin of attraction. The gHC and the vGA exhibited
inferior performance compared to the other algorithms.

F23 Some algorithms failed to locate the global optimum of the N-Queens problem in high dimensions, yet the vGA,
the gHC and the UMDA constantly possessed the worst ERT values. Fine performance was observed for the
(1+10)-EA>0 and the (1+10) EAlog-n..

5.4 Grouping of Functions and Algorithms

In this section we are aiming to recognize patterns and identify classes within (i) the set of all functions, and (ii) the set
of all algorithms. Our analyses are based on human experts’ observations, alongside automated clustering of the mean
ERT vectors using K-means [Hastie et al.(2013)Hastie, Tibshirani, and Friedman].

Functions’ Empirical Grouping It is evident that problems F1-F6, F11-F13 and F15-F16 are treated relatively easily
by the majority of the algorithms, with those functions based on LEADINGONES (i.e., F2, F11-13, F15, F16) being
more challenging within this group. On the other extreme, F7, F9-F10, F14, F18-F19 and F22 evidently constitute a
class of hard problems, on which all algorithms consistently exhibit difficulties (except for n = 16); the LABS function
(F18) seems the most difficult among them. F8, the instances of the Ising model (F19-F21), as well as the NQP (F23),
constitute a class of moderate level of difficulty.

Algorithms’ Observed Trends The gHC and the vGA usually exhibited extreme performance with respect to the
other algorithms. The vGA consistently suffers from poor performance over all functions, while the gHC either leads
the performance on certain functions or performs very poorly on other. The gHC’s behavior is to be expected, since
it is correlated with the existence of local traps (by construction) – for instance, it consistently performs very well
on F1-F6, while having difficulties on F7-F10. Clearly, RLS also gets trapped by the deceptive functions, while at
the same time it shows fine performance on most of the non-deceptive problems. The UMDA’s performance stands
out, and also appears as an independent cluster in the automated K-Means analysis. Evidently, it performs well on the
ONEMAX-based problems, but fails to optimize the LEADINGONES function F2 and its derivatives F11-F17, with
the exception of F11 and F13 – a behavior that might be interesting to analyze further in future work. Otherwise, we
observe one primary class of algorithms exhibiting equivalent performance over all problems in all dimensions: The 7
algorithms (1 + (λ, λ))-GA, (1+1)-EA, (1+10)-EAvar., (1+10)-EA, (1+10)-EAnorm., (1+10)-EAr/2,2r, and (1+1)-fGA
behave consistently, typically exhibiting fine performance. In terms of ERT values, the (1+10)-EAlog-n. could also
be grouped into this class of seven algorithms, but it behaves quite differently during the optimization process, often
showing an opposite trend of convergence speed at the early stages of the optimization procedure.

24

A PREPRINT - DECEMBER 20, 2019

1 10 100 1e+3 1e+4 1e+5 1e+6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(1+(λ,λ)) GA
(1+1) EA_>0
(1+1) fGA
(1+10) EA_>0
(1+10) EA_logNormal
(1+10) EA_normalized
(1+10) EA_var_ctrl
(1+10) EA_{r/2,2r}
(30,30) vGA
RLS
UMDA
gHC

Function evaluations

Pr
op
or
tio
n 
of
 (r
un
, t
ar
ge
t, 
...
) p
ai
rs

1 10 100 1e+3 1e+4 1e+5 1e+6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(1+(λ,λ)) GA
(1+1) EA_>0
(1+1) fGA
(1+10) EA_>0
(1+10) EA_logNormal
(1+10) EA_normalized
(1+10) EA_var_ctrl
(1+10) EA_{r/2,2r}
(30,30) vGA
RLS
UMDA
gHC

Function evaluations

Pr
op
or
tio
n 
of
 (r
un
, t
ar
ge
t, 
...
) p
ai
rs

Figure 10: ECDF curve for the class of “easily-solved” functions in dimension n = 625: F1-F6, F11-F13, and F15-F16
[LEFT] and of all 23 functions [RIGHT], with respect to equally spaced target values.

Ranking We also examined the overall number of runs per test-function in which an algorithm successfully located
the best recorded value – the so-called hitting number. We then grouped those hitting numbers by dimension, and
ranked the algorithms per each dimension. The (1+10)-EAr/2,2r consistently leads the grouped hitting numbers on the
“low-dimensional” functions (n ∈ {16, 64}), with (1+1)-fGA and (1+10)-EAnorm. being together the first runner-up.
The (1+10)-EA also exhibits high ranking across all dimensions. (1+10)-EAnorm. leads the grouped hitting numbers
on n = 100, whereas the (1+1)-EA leads the hitting numbers on the “high-dimensional” functions at n = 625, with
(1+10)-EA being the runner-up. Across all dimensions, UMDA, gHC and vGA are with the lowest rankings.

Visual Analytics As a demonstration of the performance statistics offered by IOHPROFILER, we provide snapshots
of visual analytics that supported our examination. Figure 9 depicts basic performance plots for F19 at dimension
n = 100, in so-called fixed-target and fixed-budget perspectives. For clarity of the plots we only show the ERT
values and the average function values achieved per each budget, respectively. Standard deviations as well as the
2, 5, 10, 15, 50, 75, 90, 95, 98% quantiles are available on http://iohprofiler.liacs.nl/.

In Figure 10 we provide two plots obtained from our new module which computes ECDF curves for user-specified
target values. The plot on the left depicts an ECDF curve for the “easily-solved” functions identified above (i.e., F1-F6,
F11-F13, and F15-F16) in dimension n = 625. The one on the right shows the ECDF curves across all 23 benchmark
functions. For both figures we have chosen ten equally spaced target values per each function, with the largest value
being again the best function value identified by any of the algorithms in any of the runs. Since the number of “easy”
problems dominates our overall assessment the curves on the right are to a large extent dominated by the performances
depicted on the left. This indicates once again the need for a thorough revision of our benchmark selection.

5.5 Unbiasedness

Following our experimental planning to test the hypothesized “biasedness” effect for the vGA, we compared its averaged
performance on instance 1 versus on all the other instances (1-6 and 51-55) altogether. Figure 11 depicts a comparison
of attained objective function values, by means of box-plots, on F1 and on F2 for n = 64. Performance deterioration is
indeed evident on the permuted instances; that is, instances 51-55, for which the base functions are composed with a
σ-transformation of the bit strings, as described in Section 3.2. The box-plots in Figure 11 show very clearly that the
vGA treats the plain F1 and F2 much better, in terms of attained target values, than their transformed variants. The plots
are for n = 64 and after exhausting the full budget of 100n2 function evaluations.

5.6 Aftermath

The reported experiments reveal interesting findings on the test-functions and the algorithms’ behavior when solving
them – among which we highlight a few. By construction, the current test-suite proposed functions with various

25

http://iohprofiler.liacs.nl/

A PREPRINT - DECEMBER 20, 2019

(30,30) vGA ­ 1 instance (30,30) vGA ­ 11 instances

35

40

45

50

55

60

65

70

75 (30,30) vGA ­ 1 instance
(30,30) vGA ­ 11 instances

Algorithms

Ta
rg
et
 v
al
ue

(30,30) vGA ­ 1 instance (30,30) vGA ­ 11 instances
−20

0

20

40

60

80

(30,30) vGA ­ 1 instance
(30,30) vGA ­ 11 instances

Algorithms

Ta
rg
et
 v
al
ue

Figure 11: Statistical box-plots for vGA’s attained function values on instance 1 alone versus on the eleven different
instances 1-6 and 51-55, after exploiting the entire budget (namely, 409 600 function evaluations): F1 [LEFT] and F2
[RIGHT]. Both plots are for n = 64.

degrees of difficulty. Certain functions are inherently difficult (e.g., F18), and some synthetically (e.g., F7 and F14,
regenerated by “epistasis”). Our empirical observations on such synthetically regenerated hard problems corroborated
the effectiveness of the W-model in such a benchmarking environment. However, we have also observed that some
of the components of the W-model, in particular the introduction of dummy variables, might be less interesting as
“stand-alone”-effects. A revised selection of the W-model functions is currently under investigation.

Finally, we note that the hardness of all functions consistently increase with their problem dimension – exhibiting a
desirable property that we mentioned in Section 3.1.

6 Outlook

Among the many possible directions for future work, we consider the following ones particularly interesting.

Additional Performance Measures: While IOHPROFILER already provides a very detailed assessment of algorithms’
performance data, we are continuously strengthening its statistical repertoire by introducing new performance measures
any by devising better procedures. We have implemented for this report and for future use in IOHPROFILER the possi-
bility to generate ECDF curves, for a user-defined set of functions and target values, thereby following the interactive
performance evaluation paradigm which distinguished IOHPROFILER from other existing benchmarking platforms
(where the targets or budgets are typically set fixed). Going forward, we suggest to include modules that allow perfor-
mance comparisons across different dimensions. To shed better light on the tradeoff with respect to time, quality, and
robustness, we are also considering to add an automated computation of the empirical attainment function, as available
from [Fonseca et al.(2011)Fonseca, Guerreiro, López-Ibáñez, and Paquete]. We are furthermore looking into the option
of adding a variant of the so-called performance profiles [Moré and Wild(2009)] for comparison across multiple dimen-
sions. In terms of statistical tests, two-sample nonparametric tests (e.g., Mann–Whitney U or Kolmogorov–Smirnov
test) can be applied pairwise among algorithms with corrections (e.g., Holm-Bonferroni correction). The Kolmogorov-
Smirnov tests are available in IOHANALYZER, while extension, in particular in terms of nonparametric tests that are
designed for two or more samples, e.g., Kruskal–Wallis or Friedman test, are left for future work. For the large-scale
multiple testing scenario (thousands of pairwise tests are performed, for instance), we are considering to add Bayesian
inference, as suggested, e.g., in [Benavoli et al.(2017)Benavoli, Corani, Demsar, and Zaffalon]. Such an approach has
recently been proposed for comparing performance of IOHs [Calvo et al.(2018)Calvo, Ceberio, and Lozano] and has
been applied to the data set of this paper in [Calvo et al.(2019)Calvo, Shir, Ceberio, Doerr, Wang, Bäck, and Lozano].

Feature-Based Analyses: Another interesting extension of IOHANALYZER would be the design of mod-
ules that allow us to couple the performance evaluation with an analysis of the fitness landscape of
the considered problems. Such feature-based analyses are at the heart of algorithm selection tech-
niques [Kerschke et al.(2018)Kerschke, Hoos, Neumann, and Trautmann], which use landscape features and per-
formance data to build a model that predicts how the tested algorithms will perform on a previously un-
seen problem. Similar approaches can be found in per-instance-algorithm configuration (PIAC) approaches,
which have recently shown very promising performance in the context of continuous black-box optimiza-

26

A PREPRINT - DECEMBER 20, 2019

tion [Belkhir et al.(2017)Belkhir, Dréo, Savéant, and Schoenauer]. A key step towards such a feature-based per-
formance analysis are the selection and the efficient computation of meaningful features. While in con-
tinuous optimization a large set of features has been defined and can be computed with the flacco pack-
age [Kerschke and Trautmann(2016)], the research community currently lacks a meaningful analog for discrete
optimization problems. We note though, that several advances in this direction have been made, including the
above-introduced features covered by the W-model (size of the effective dimension, neutrality, epistasis, rugged-
ness) and the local optima networks (see [Thomson et al.(2018a)Thomson, Vérel, Ochoa, Veerapen, and McMenemy,
Thomson et al.(2018b)Thomson, Vérel, Ochoa, Veerapen, and Cairns] and references mentioned therein). We suggest
to start a first prototype using these existing features, while at the same time intensifying research efforts to find
additional landscape features that can be used to characterize pseudo-Boolean optimization problems.

Critical Assessment of Benchmark Problems: With such a feature-based approach, we also hope to develop a more
systematic approach towards the identification of problem characteristics that are not well represented in the selection
of problems described above. We emphasize once again the fact that we see the here-suggested set of benchmark
problems as a first step towards a sound benchmarking suite, not as a static “ultimate” selection. Quite the contrary,
another important direction of our future research concerns the identification, critical selection, and implementation of
additional benchmark problems. We believe that a good benchmark environment should be dynamic, with the possibility
to add new problems, so that users can focus their experimentation on problems relevant to their work. IOHPROFILER
is built with this functionality in mind, making it a particularly suitable testbed for our studies.

Combinations of W-model Transformations: As discussed in Section 3.7, the transformations of the W-model can
be combined with each other. To analyze the individual effects of each transformation, and in order to keep the size of
the experimental setup reasonable, we have not considered such combinations in this work. A critical consideration of
adding such combinations, and of extending the base transformations (e.g., with respect to the fitness transformation,
but also the size of the neutrality transformation, etc.) forms another research line that we are currently addressing in a
parallel work stream.

Integration of Algorithm Design Software: IOHs are to a large extent modular algorithms, whose components can
be exchanged and executed in various different ways. This has let the community to develop software which enables an
easier algorithmic design. Examples for such software are ParadisEO [Cahon et al.(2004)Cahon, Melab, and Talbi] for
single-objective and multi-objective optimization and jMetal [Durillo and Nebro(2011)] for multi-objective algorithms.
Building or integrating such software could allow much more comprehensive algorithm benchmarking, and could
eventually automate the detection of promising algorithmic variants. In the continuous domains, the modular CMA-ES
framework [van Rijn et al.(2016)van Rijn, Wang, van Leeuwen, and Bäck] can be seen as a proof of concept for this
idea: it was shown there that some of the automatically generated CMA-ES variants could improve upon existing
human-designed algorithms. In a similar direction, we are also planning to ease parallelization of IOHEXPERIMENTER,
so that parametric algorithms can be batch-tested for various configurations.

Acknowledgments

We are very grateful to our colleagues Arina Buzdalova and Maxim Buzdalov (both at ITMO University, St. Petersburg,
Russia), Johann Dreo (Thales Research), Michal Horovitz and Mordo Shalom (both at Tel-Hai College, Israel), Dirk
Sudholt (Sheffield, UK), and Thomas Weise (Hefei University, China) for valuable discussions around different aspects
of benchmarking IOHs. We have very much appreciated the detailed comments of the anonymous reviewers of this
paper, which have helped us improve the presentation of our contribution. In particular, the suggestion to add an EDA
to the set of baseline algorithms was made by one of the reviewers.

Our work was supported by the Chinese scholarship council (CSC No. 201706310143), a public grant as part of the
Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with the Gaspard
Monge Program for optimization, operations research, and their interactions with data sciences, by Paris Ile-de-France
Region, and by COST Action CA15140 “Improving Applicability of Nature-Inspired Optimisation by Joining Theory
and Practice (ImAppNIO)”.

References

[Kerschke et al.(2018)Kerschke, Hoos, Neumann, and Trautmann] P. Kerschke, H. H. Hoos, F. Neumann, H. Traut-
mann, Automated algorithm selection: Survey and perspectives, CoRR abs/1811.11597 (2018). URL:
http://arxiv.org/abs/1811.11597. arXiv:1811.11597.

[Wasik et al.(2016)Wasik, Antczak, Badura, Laskowski, and Sternal] S. Wasik, M. Antczak, J. Badura, A. Laskowski,
T. Sternal, Optil.io: Cloud based platform for solving optimization problems using crowdsourcing approach,

27

http://arxiv.org/abs/1811.11597
http://arxiv.org/abs/1811.11597

A PREPRINT - DECEMBER 20, 2019

in: Proc. of ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW’16),
Companion Volume, ACM, 2016, pp. 433–436. URL: https://doi.org/10.1145/2818052.2869098. doi:10.1145/
2818052.2869098.

[Weise(2016)] T. Weise, Optimization benchmarking, 2016. Available at http://optimizationbenchmarking.github.io/.

[Rapin and Teytaud(2018)] J. Rapin, O. Teytaud, Nevergrad - A gradient-free optimization platform, https://GitHub.
com/FacebookResearch/Nevergrad, 2018.

[Hansen et al.(2010)Hansen, Auger, Ros, Finck, and Pošík] N. Hansen, A. Auger, R. Ros, S. Finck, P. Pošík, Com-
paring results of 31 algorithms from the black-box optimization benchmarking bbob-2009, in: Proceed-
ings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’10,
ACM, New York, NY, USA, 2010, pp. 1689–1696. URL: http://doi.acm.org/10.1145/1830761.1830790.
doi:10.1145/1830761.1830790.

[Hansen et al.(2016)Hansen, Auger, Mersmann, Tušar, and Brockhoff] N. Hansen, A. Auger, O. Mersmann, T. Tušar,
D. Brockhoff, COCO: A platform for comparing continuous optimizers in a black-box setting, CoRR
abs/1603.08785 (2016). URL: http://arxiv.org/abs/1603.08785. arXiv:1603.08785.

[Tusar et al.(2016)Tusar, Brockhoff, Hansen, and Auger] T. Tusar, D. Brockhoff, N. Hansen, A. Auger, COCO: the
bi-objective black box optimization benchmarking (bbob-biobj) test suite, CoRR abs/1604.00359 (2016). URL:
http://arxiv.org/abs/1604.00359.

[Tusar et al.(2019)Tusar, Brockhoff, and Hansen] T. Tusar, D. Brockhoff, N. Hansen, Mixed-integer benchmark
problems for single- and bi-objective optimization, in: Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’19), ACM, 2019, pp. 718–726. URL: https://doi.org/10.1145/3321707.3321868.
doi:10.1145/3321707.3321868.

[Doerr et al.(2018)Doerr, Wang, Ye, van Rijn, and Bäck] C. Doerr, H. Wang, F. Ye, S. van Rijn, T. Bäck, IOHprofiler:
A Benchmarking and Profiling Tool for Iterative Optimization Heuristics, arXiv e-prints:1810.05281 (2018).
arXiv:1810.05281, available at https://arxiv.org/abs/1810.05281.

[Doerr et al.(2019a)Doerr, Ye, Horesh, Wang, Shir, and Bäck] C. Doerr, F. Ye, N. Horesh, H. Wang, O. M. Shir,
T. Bäck, Benchmarking discrete optimization heuristics with IOHprofiler, in: Companion Material of Proc.
of Genetic and Evolutionary Computation Conference (GECCO’19), ACM, 2019a, pp. 1798–1806. URL:
https://doi.org/10.1145/3319619.3326810. doi:10.1145/3319619.3326810.

[Doerr et al.(2019b)Doerr, Wang, Ye, van Rijn, and Bäck] C. Doerr, H. Wang, F. Ye, S. van Rijn, T. Bäck, Github page
of IOHprofiler data sets, 2019b. Available at https://github.com/IOHprofiler.

[Shir et al.(2018)Shir, Doerr, and Bäck] O. M. Shir, C. Doerr, T. Bäck, Compiling a benchmarking test-suite for
combinatorial black-box optimization: a position paper, in: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’18), Companion, ACM, 2018, pp. 1753–1760. URL: https://doi.org/10.1145/3205651.
3208251. doi:10.1145/3205651.3208251.

[Mersmann et al.(2011)Mersmann, Bischl, Trautmann, Preuss, Weihs, and Rudolph] O. Mersmann, B. Bischl,
H. Trautmann, M. Preuss, C. Weihs, G. Rudolph, Exploratory landscape analysis, in: Proc. of Genetic and Evolu-
tionary Computation (GECCO’11), ACM, 2011, pp. 829–836. URL: http://doi.acm.org/10.1145/2001576.2001690.
doi:10.1145/2001576.2001690.

[Lehre and Witt(2012)] P. K. Lehre, C. Witt, Black-box search by unbiased variation, Algorithmica 64 (2012) 623–642.

[Dubhashi and Panconesi(2009)] D. P. Dubhashi, A. Panconesi, Concentration of Measure for the Analysis of Ran-
domised Algorithms, Cambridge University Press, 2009.

[Garnier et al.(1999)Garnier, Kallel, and Schoenauer] J. Garnier, L. Kallel, M. Schoenauer, Rigorous hitting times for
binary mutations, Evolutionary Computation 7 (1999) 173–203.

[Doerr et al.(2015)Doerr, Doerr, and Ebel] B. Doerr, C. Doerr, F. Ebel, From black-box complexity to designing new
genetic algorithms, Theoretical Computer Science 567 (2015) 87–104.

[Doerr and Doerr(2018)] B. Doerr, C. Doerr, Optimal static and self-adjusting parameter choices for the (1 + (λ, λ))
genetic algorithm, Algorithmica 80 (2018) 1658–1709.

[Erdős and Rényi(1963)] P. Erdős, A. Rényi, On two problems of information theory, Magyar Tudományos Akadémia
Matematikai Kutató Intézet Közleményei 8 (1963) 229–243.

[Doerr et al.(2016)Doerr, Doerr, and Yang] B. Doerr, C. Doerr, J. Yang, Optimal parameter choices via precise black-
box analysis, in: Proc. of Genetic and Evolutionary Computation Conference (GECCO’16), ACM, 2016, pp.
1123–1130.

28

https://doi.org/10.1145/2818052.2869098
http://dx.doi.org/10.1145/2818052.2869098
http://dx.doi.org/10.1145/2818052.2869098
http://optimizationbenchmarking.github.io/
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
http://doi.acm.org/10.1145/1830761.1830790
http://dx.doi.org/10.1145/1830761.1830790
http://arxiv.org/abs/1603.08785
http://arxiv.org/abs/1603.08785
http://arxiv.org/abs/1604.00359
https://doi.org/10.1145/3321707.3321868
http://dx.doi.org/10.1145/3321707.3321868
http://arxiv.org/abs/1810.05281
https://arxiv.org/abs/1810.05281
https://doi.org/10.1145/3319619.3326810
http://dx.doi.org/10.1145/3319619.3326810
https://github.com/IOHprofiler
https://doi.org/10.1145/3205651.3208251
https://doi.org/10.1145/3205651.3208251
http://dx.doi.org/10.1145/3205651.3208251
http://doi.acm.org/10.1145/2001576.2001690
http://dx.doi.org/10.1145/2001576.2001690

A PREPRINT - DECEMBER 20, 2019

[Doerr et al.(2018)Doerr, Ye, van Rijn, Wang, and Bäck] C. Doerr, F. Ye, S. van Rijn, H. Wang, T. Bäck, Towards a
theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1 + λ) EA variants on
OneMax and LeadingOnes, in: Proc. of Genetic and Evolutionary Computation Conference (GECCO’18), ACM,
2018, pp. 951–958. URL: https://doi.org/10.1145/3205455.3205621. doi:10.1145/3205455.3205621.

[Doerr(2018)] C. Doerr, Complexity theory for discrete black-box optimization heuristics, CoRR abs/1801.02037
(2018). arXiv:1801.02037, available at http://arxiv.org/abs/1801.02037.

[Thierens(2009)] D. Thierens, On benchmark properties for adaptive operator selection, in: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’09), ACM, 2009, pp. 2217–2218. URL: https://doi.org/10.1145/
1570256.1570306. doi:10.1145/1570256.1570306.

[Doerr(2018)] B. Doerr, Better runtime guarantees via stochastic domination, in: Proc. of Evolutionary Computation
in Combinatorial Optimization (EvoCOP’18), volume 10782 of Lecture Notes in Computer Science, Springer,
2018, pp. 1–17. URL: https://doi.org/10.1007/978-3-319-77449-7_1. doi:10.1007/978-3-319-77449-7_1,
full version available at http://arxiv.org/abs/1801.04487.

[Doerr and Lengler(2018)] C. Doerr, J. Lengler, The (1+1) elitist black-box complexity of LeadingOnes, Algorithmica
80 (2018) 1579–1603. URL: https://doi.org/10.1007/s00453-017-0304-6.

[Afshani et al.(2019)Afshani, Agrawal, Doerr, Doerr, Larsen, and Mehlhorn] P. Afshani, M. Agrawal, B. Doerr, C. Do-
err, K. G. Larsen, K. Mehlhorn, The query complexity of a permutation-based variant of mastermind, Discrete
Applied Mathematics (2019). doi:10.1016/j.dam.2019.01.007, in press.

[Doerr and Winzen(2012)] B. Doerr, C. Winzen, Black-box complexity: Breaking the O(n log n) barrier of Leadin-
gOnes, in: Artificial Evolution (EA’11), Revised Selected Papers, volume 7401 of Lecture Notes in Computer
Science, Springer, 2012, pp. 205–216.

[Doerr et al.(2011)Doerr, Johannsen, Kötzing, Lehre, Wagner, and Winzen] B. Doerr, D. Johannsen, T. Kötzing, P. K.
Lehre, M. Wagner, C. Winzen, Faster black-box algorithms through higher arity operators, in: Proc. of Foundations
of Genetic Algorithms (FOGA’11), ACM, 2011, pp. 163–172.

[Droste et al.(2002)Droste, Jansen, and Wegener] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1)
evolutionary algorithm, Theoretical Computer Science 276 (2002) 51–81.

[Witt(2013)] C. Witt, Tight bounds on the optimization time of a randomized search heuristic on linear functions,
Combinatorics, Probability & Computing 22 (2013) 294–318.

[Weise and Wu(2018)] T. Weise, Z. Wu, Difficult features of combinatorial optimization problems and the tunable
w-model benchmark problem for simulating them, in: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’18), Companion Material), ACM, 2018, pp. 1769–1776. doi:10.1145/3205651.3208240.

[Weise(2018)] T. Weise, The W-Model, a tunable black-box discrete optimization benchmarking (BB-DOB) problem,
implemented for the BB-DOB@GECCO workshop, 2018. Data is available at https://github.com/thomasWeise/
BBDOB_W_Model.

[Kauffman and Levin(1987)] S. Kauffman, S. Levin, Towards a general theory of adaptive walks on rugged landscapes,
Journal of Theoretical Biology 128 (1987) 11–45.

[Einarsson et al.(2018)Einarsson, Lengler, Gauy, Meier, Mujika, Steger, and Weissenberger] H. Einarsson, J. Lengler,
M. M. Gauy, F. Meier, A. Mujika, A. Steger, F. Weissenberger, The linear hidden subset problem for the
(1 + 1) EA with scheduled and adaptive mutation rates, in: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’18), ACM, 2018, pp. 1491–1498. URL: https://doi.org/10.1145/3205455.3205519. doi:10.
1145/3205455.3205519.

[Doerr et al.(2017)Doerr, Doerr, and Kötzing] B. Doerr, C. Doerr, T. Kötzing, Unknown solution length problems with
no asymptotically optimal run time, in: Proc. of Genetic and Evolutionary Computation Conference (GECCO’17),
ACM, 2017, pp. 1367–1374. URL: http://doi.acm.org/10.1145/3071178.3071233.

[Shapiro et al.(1968)Shapiro, Pettengill, Ash, Stone, Smith, Ingalls, and Brockelman] I. I. Shapiro, G. H. Pettengill,
M. E. Ash, M. L. Stone, W. B. Smith, R. P. Ingalls, R. A. Brockelman, Fourth test of general relativity: Preliminary
results, Phys. Rev. Lett. 20 (1968) 1265–1269. doi:10.1103/PhysRevLett.20.1265.

[Pasha et al.(2000)Pasha, Moharir, and Rao] I. A. Pasha, P. S. Moharir, N. S. Rao, Bi-alphabetic pulse compression
radar signal design, Sadhana 25 (2000) 481–488. doi:10.1007/BF02703629.

[Militzer et al.(1998)Militzer, Zamparelli, and Beule] B. Militzer, M. Zamparelli, D. Beule, Evolutionary search
for low autocorrelated binary sequences, IEEE Transactions on Evolutionary Computation 2 (1998) 34–39.
doi:10.1109/4235.728212.

29

https://doi.org/10.1145/3205455.3205621
http://dx.doi.org/10.1145/3205455.3205621
http://arxiv.org/abs/1801.02037
http://arxiv.org/abs/1801.02037
https://doi.org/10.1145/1570256.1570306
https://doi.org/10.1145/1570256.1570306
http://dx.doi.org/10.1145/1570256.1570306
https://doi.org/10.1007/978-3-319-77449-7_1
http://dx.doi.org/10.1007/978-3-319-77449-7_1
http://arxiv.org/abs/1801.04487
https://doi.org/10.1007/s00453-017-0304-6
http://dx.doi.org/10.1016/j.dam.2019.01.007
http://dx.doi.org/10.1145/3205651.3208240
https://github.com/thomasWeise/BBDOB_W_Model
https://github.com/thomasWeise/BBDOB_W_Model
https://doi.org/10.1145/3205455.3205519
http://dx.doi.org/10.1145/3205455.3205519
http://dx.doi.org/10.1145/3205455.3205519
http://doi.acm.org/10.1145/3071178.3071233
http://dx.doi.org/10.1103/PhysRevLett.20.1265
http://dx.doi.org/10.1007/BF02703629
http://dx.doi.org/10.1109/4235.728212

A PREPRINT - DECEMBER 20, 2019

[Packebusch and Mertens(2016)] T. Packebusch, S. Mertens, Low autocorrelation binary sequences, Journal of Physics
A: Mathematical and Theoretical 49 (2016) 165001.

[Barahona(1982)] F. Barahona, On the computational complexity of Ising spin glass models, Journal of Physics A
Mathematical General 15 (1982) 3241–3253. doi:10.1088/0305-4470/15/10/028.

[Lucas(2014)] A. Lucas, Ising formulations of many NP problems, Frontiers in Physics 2 (2014) 5. doi:10.3389/
fphy.2014.00005. arXiv:1302.5843.

[Briest et al.(2004)Briest, Brockhoff, Degener, Englert, Gunia, Heering, Jansen, Leifhelm, Plociennik, Röglin et al.]
P. Briest, D. Brockhoff, B. Degener, M. Englert, C. Gunia, O. Heering, T. Jansen, M. Leifhelm, K. Ploci-
ennik, H. Röglin, et al., The Ising model: Simple evolutionary algorithms as adaptation schemes, in:
Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference, Birmingham, UK,
September 18-22, 2004, Proceedings, 2004, pp. 31–40. URL: https://doi.org/10.1007/978-3-540-30217-9_4.
doi:10.1007/978-3-540-30217-9_4.

[Fischer and Wegener(2005)] S. Fischer, I. Wegener, The one-dimensional Ising model: Mutation versus recombina-
tion, Theoretical Computer Science 344 (2005) 208–225.

[Sudholt(2005)] D. Sudholt, Crossover is provably essential for the Ising model on trees, in: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’05), 2005, pp. 1161–1167.

[Mellor(2011)] V. Mellor, Numerical simulations of the Ising model on the union jack lattice, arXiv 1101.5015 (2011).
Available at https://arxiv.org/abs/1101.5015.

[Bäck and Khuri(1994)] T. Bäck, S. Khuri, An evolutionary heuristic for the maximum independent set problem, in:
Proc. 1st IEEE Conference on Evolutionary Computation, IEEE, 1994, pp. 531–535. doi:10.1109/ICEC.1994.
350004.

[Bell and Stevens(2009)] J. Bell, B. Stevens, A survey of known results and research areas for N-queens, Discrete Math.
309 (2009) 1–31. URL: http://dx.doi.org/10.1016/j.disc.2007.12.043. doi:10.1016/j.disc.2007.12.043.

[Rodionova et al.(2019)Rodionova, Antonov, Buzdalova, and Doerr] A. Rodionova, K. Antonov, A. Buzdalova, C. Do-
err, Offspring population size matters when comparing evolutionary algorithms with self-adjusting mutation
rates, in: Proc. of Genetic and Evolutionary Computation Conference (GECCO’19), ACM, 2019, pp. 855–863.
URL: https://doi.org/10.1145/3321707.3321827. doi:10.1145/3321707.3321827, full version available online
at https://arxiv.org/abs/1904.08032.

[Dang and Doerr(2019)] N. Dang, C. Doerr, Hyper-parameter tuning for the (1 + (λ, λ)) GA, in: Proc. of Genetic and
Evolutionary Computation Conference (GECCO’19), ACM, 2019, pp. 889–897. URL: https://doi.org/10.1145/
3321707.3321725. doi:10.1145/3321707.3321725.

[Carvalho Pinto and Doerr(2017)] E. Carvalho Pinto, C. Doerr, Discussion of a more practice-aware runtime analysis
for evolutionary algorithms, in: Proc. of Artificial Evolution (EA’17), 2017, pp. 298–305. URL: https://ea2017.
inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf, full version available at http://arxiv.org/abs/
1812.00493.

[Doerr et al.(2017a)Doerr, Le, Makhmara, and Nguyen] B. Doerr, H. P. Le, R. Makhmara, T. D. Nguyen, Fast genetic
algorithms, in: Proc. of Genetic and Evolutionary Computation Conference (GECCO’17), ACM, 2017a, pp.
777–784. URL: http://doi.acm.org/10.1145/3071178.3071301. doi:10.1145/3071178.3071301.

[Doerr et al.(2017b)Doerr, Gießen, Witt, and Yang] B. Doerr, C. Gießen, C. Witt, J. Yang, The (1 + λ) evolutionary
algorithm with self-adjusting mutation rate, in: Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17), ACM, 2017b, pp. 1351–1358.

[Ye et al.(2019)Ye, Doerr, and Bäck] F. Ye, C. Doerr, T. Bäck, Interpolating Local and Global Search by Controlling
the Variance of Standard Bit Mutation, in: Proc. of Congress on Evolutionary Computation (CEC’19), IEEE,
2019, pp. 2292–2299. Also available at http://arxiv.org/abs/1901.05573.

[Bäck and Schütz(1996)] T. Bäck, M. Schütz, Intelligent mutation rate control in canonical genetic algorithms, in:
International Symposium on Foundations of Intelligent Systems (ISMIS’96), volume 1079 of Lecture Notes in
Computer Science, Springer, 1996, pp. 158–167.

[Goldberg(1989)] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley,
Reading, MA, 1989.

[Bäck(1996)] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, NY, USA,
1996.

[Mühlenbein(1997)] H. Mühlenbein, The equation for response to selection and its use for prediction, Evolutionary
Computation 5 (1997) 303–346. URL: https://doi.org/10.1162/evco.1997.5.3.303. doi:10.1162/evco.1997.5.
3.303.

30

http://dx.doi.org/10.1088/0305-4470/15/10/028
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.3389/fphy.2014.00005
http://arxiv.org/abs/1302.5843
https://doi.org/10.1007/978-3-540-30217-9_4
http://dx.doi.org/10.1007/978-3-540-30217-9_4
https://arxiv.org/abs/1101.5015
http://dx.doi.org/10.1109/ICEC.1994.350004
http://dx.doi.org/10.1109/ICEC.1994.350004
http://dx.doi.org/10.1016/j.disc.2007.12.043
http://dx.doi.org/10.1016/j.disc.2007.12.043
https://doi.org/10.1145/3321707.3321827
http://dx.doi.org/10.1145/3321707.3321827
https://arxiv.org/abs/1904.08032
https://doi.org/10.1145/3321707.3321725
https://doi.org/10.1145/3321707.3321725
http://dx.doi.org/10.1145/3321707.3321725
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
https://ea2017.inria.fr//EA2017_Proceedings_web_ISBN_978-2-9539267-7-4.pdf
http://arxiv.org/abs/1812.00493
http://arxiv.org/abs/1812.00493
http://doi.acm.org/10.1145/3071178.3071301
http://dx.doi.org/10.1145/3071178.3071301
http://arxiv.org/abs/1901.05573
https://doi.org/10.1162/evco.1997.5.3.303
http://dx.doi.org/10.1162/evco.1997.5.3.303
http://dx.doi.org/10.1162/evco.1997.5.3.303

A PREPRINT - DECEMBER 20, 2019

[Mühlenbein and Paaß(1996)] H. Mühlenbein, G. Paaß, From recombination of genes to the estimation of distributions
i. binary parameters, in: H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel (Eds.), Proc. of Parallel Problem
Solving from Nature (PPSN’96), Springer, 1996, pp. 178–187.

[Krejca and Witt(2018)] M. S. Krejca, C. Witt, Theory of estimation-of-distribution algorithms, CoRR abs/1806.05392
(2018). URL: http://arxiv.org/abs/1806.05392.

[Horesh et al.(2019)Horesh, Bäck, and Shir] N. Horesh, T. Bäck, O. M. Shir, Predict or screen your expensive assay:
Doe vs. surrogates in experimental combinatorial optimization, in: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’19), ACM, 2019, pp. 274–284. URL: https://doi.org/10.1145/3321707.3321801. doi:10.
1145/3321707.3321801.

[Hansen(2018)] N. Hansen, A practical guide to experimentation, in: Proc. of Genetic and Evolutionary Computation
Conference (GECCO’18), Companion material, ACM, 2018, pp. 432–447.

[Calvo et al.(2019)Calvo, Shir, Ceberio, Doerr, Wang, Bäck, and Lozano] B. Calvo, O. M. Shir, J. Ceberio, C. Doerr,
H. Wang, T. Bäck, J. A. Lozano, Bayesian performance analysis for black-box optimization benchmarking, in:
Proc. of the Genetic and Evolutionary Computation Conference (GECCO’19, Companion Material), ACM, 2019,
pp. 1789–1797. URL: https://doi.org/10.1145/3319619.3326888. doi:10.1145/3319619.3326888.

[Calvo et al.(2018)Calvo, Ceberio, and Lozano] B. Calvo, J. Ceberio, J. A. Lozano, Bayesian inference for algorithm
ranking analysis, in: Proc. of Genetic and Evolutionary Computation Conference (GECCO’18), companion
material, ACM, 2018, pp. 324–325. URL: https://doi.org/10.1145/3205651.3205658. doi:10.1145/3205651.
3205658.

[Hansen et al.(2016)Hansen, Auger, Brockhoff, Tusar, and Tušar] N. Hansen, A. Auger, D. Brockhoff, D. Tusar,
T. Tušar, COCO: performance assessment, CoRR abs/1605.03560 (2016). URL: http://arxiv.org/abs/1605.03560.

[Hastie et al.(2013)Hastie, Tibshirani, and Friedman] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, Springer New York, 2013.

[Fonseca et al.(2011)Fonseca, Guerreiro, López-Ibáñez, and Paquete] C. M. Fonseca, A. P. Guerreiro, M. López-
Ibáñez, L. Paquete, On the computation of the empirical attainment function, in: Proc. of Evolutionary
Multi-Criterion Optimization (EMO’11), volume 6576 of Lecture Notes in Computer Science, Springer, 2011, pp.
106–120. URL: https://doi.org/10.1007/978-3-642-19893-9_8. doi:10.1007/978-3-642-19893-9_8.

[Moré and Wild(2009)] J. J. Moré, S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM Journal
on Optimization 20 (2009) 172–191.

[Benavoli et al.(2017)Benavoli, Corani, Demsar, and Zaffalon] A. Benavoli, G. Corani, J. Demsar, M. Zaffalon, Time
for a change: a tutorial for comparing multiple classifiers through bayesian analysis, Journal of Machine Learning
Research 18 (2017) 77:1–77:36. URL: http://jmlr.org/papers/v18/16-305.html.

[Belkhir et al.(2017)Belkhir, Dréo, Savéant, and Schoenauer] N. Belkhir, J. Dréo, P. Savéant, M. Schoenauer, Per
instance algorithm configuration of CMA-ES with limited budget, in: Proc. of Genetic and Evolutionary Com-
putation Conference (GECCO’17), ACM, 2017, pp. 681–688. URL: https://doi.org/10.1145/3071178.3071343.
doi:10.1145/3071178.3071343.

[Kerschke and Trautmann(2016)] P. Kerschke, H. Trautmann, The r-package FLACCO for exploratory landscape
analysis with applications to multi-objective optimization problems, in: Proc. of Congress on Evolutionary
Computation (CEC’16), IEEE, 2016, pp. 5262–5269. URL: https://doi.org/10.1109/CEC.2016.7748359. doi:10.
1109/CEC.2016.7748359.

[Thomson et al.(2018a)Thomson, Vérel, Ochoa, Veerapen, and McMenemy] S. L. Thomson, S. Vérel, G. Ochoa,
N. Veerapen, P. McMenemy, On the fractal nature of local optima networks, in: Proc. of Evolutionary Computation
in Combinatorial Optimization (EvoCOP’18), volume 10782 of Lecture Notes in Computer Science, Springer,
2018a, pp. 18–33. URL: https://doi.org/10.1007/978-3-319-77449-7_2. doi:10.1007/978-3-319-77449-7_2.

[Thomson et al.(2018b)Thomson, Vérel, Ochoa, Veerapen, and Cairns] S. L. Thomson, S. Vérel, G. Ochoa, N. Veer-
apen, D. Cairns, Multifractality and dimensional determinism in local optima networks, in: Proc. of
Genetic and Evolutionary Computation Conference (GECCO’18), ACM, 2018b, pp. 371–378. URL: https:
//doi.org/10.1145/3205455.3205472. doi:10.1145/3205455.3205472.

[Cahon et al.(2004)Cahon, Melab, and Talbi] S. Cahon, N. Melab, E. Talbi, ParadisEO: A framework for the reusable
design of parallel and distributed metaheuristics, J. Heuristics 10 (2004) 357–380. URL: https://doi.org/10.1023/B:
HEUR.0000026900.92269.ec. doi:10.1023/B:HEUR.0000026900.92269.ec.

[Durillo and Nebro(2011)] J. J. Durillo, A. J. Nebro, jMetal: A Java framework for multi-objective optimization,
Advances in Engineering Software 42 (2011) 760–771. URL: http://www.sciencedirect.com/science/article/pii/
S0965997811001219. doi:DOI:10.1016/j.advengsoft.2011.05.014.

31

http://arxiv.org/abs/1806.05392
https://doi.org/10.1145/3321707.3321801
http://dx.doi.org/10.1145/3321707.3321801
http://dx.doi.org/10.1145/3321707.3321801
https://doi.org/10.1145/3319619.3326888
http://dx.doi.org/10.1145/3319619.3326888
https://doi.org/10.1145/3205651.3205658
http://dx.doi.org/10.1145/3205651.3205658
http://dx.doi.org/10.1145/3205651.3205658
http://arxiv.org/abs/1605.03560
https://doi.org/10.1007/978-3-642-19893-9_8
http://dx.doi.org/10.1007/978-3-642-19893-9_8
http://jmlr.org/papers/v18/16-305.html
https://doi.org/10.1145/3071178.3071343
http://dx.doi.org/10.1145/3071178.3071343
https://doi.org/10.1109/CEC.2016.7748359
http://dx.doi.org/10.1109/CEC.2016.7748359
http://dx.doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1007/978-3-319-77449-7_2
http://dx.doi.org/10.1007/978-3-319-77449-7_2
https://doi.org/10.1145/3205455.3205472
https://doi.org/10.1145/3205455.3205472
http://dx.doi.org/10.1145/3205455.3205472
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
http://dx.doi.org/10.1023/B:HEUR.0000026900.92269.ec
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://dx.doi.org/DOI: 10.1016/j.advengsoft.2011.05.014

A PREPRINT - DECEMBER 20, 2019

[van Rijn et al.(2016)van Rijn, Wang, van Leeuwen, and Bäck] S. van Rijn, H. Wang, M. van Leeuwen, T. Bäck,
Evolving the structure of evolution strategies, in: 2016 IEEE Symposium Series on Computational Intelli-
gence, SSCI 2016, Athens, Greece, December 6-9, 2016, IEEE, 2016, pp. 1–8. URL: https://doi.org/10.1109/
SSCI.2016.7850138. doi:10.1109/SSCI.2016.7850138.

32

https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1109/SSCI.2016.7850138
http://dx.doi.org/10.1109/SSCI.2016.7850138

	1 Introduction
	2 The IOHprofiler Environment
	3 Suggested Benchmark Functions
	3.1 Rationale Behind The Selection
	3.2 Problems vs. Instances
	3.3 Overview of Selected Benchmark Problems
	3.4 F1: OneMax
	3.5 F2: LeadingOnes
	3.6 F3: A Linear Function with Harmonic Weights
	3.7 F4-F17: The W-model
	3.7.1 The Basic Transformations
	3.7.2 Combining the Basic W-model Transformations
	3.7.3 Selected W-Model Transformations
	3.7.4 W-model vs. Unbiasedness Transformations and Fitness Scaling

	3.8 F18: Low Autocorrelation Binary Sequences
	3.9 F19-F21: The Ising Model
	3.9.1 F19: The Ring (1D)
	3.9.2 F20: The Torus (2D)
	3.9.3 F21: Triangular (Isometric 2D Grid)

	3.10 F22: Maximum Independent Vertex Set
	3.11 F23: N-Queens Problem

	4 Algorithms
	4.1 Detailed Description of the Algorithms
	4.1.1 Greedy Hill Climber
	4.1.2 Randomized Local Search
	4.1.3 The EA with Static Mutation Rate
	4.1.4 Fast Genetic Algorithm
	4.1.5 The Two-Rate EA
	4.1.6 The EA with normalized standard bit mutation
	4.1.7 The EA with normalized standard bit mutation and controlled variance
	4.1.8 The EA with log-Normal self-adaptation on mutation rate
	4.1.9 The Self-Adjusting (1 + (,)) GA
	4.1.10 The ``Vanilla'' GA
	4.1.11 The Univariate Marginal Distribution Algorithm

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Performance Measures
	5.3 Function-wise Raw Observations Across Dimensions
	5.4 Grouping of Functions and Algorithms
	5.5 Unbiasedness
	5.6 Aftermath

	6 Outlook

