
HAL Id: hal-02439392
https://hal.sorbonne-universite.fr/hal-02439392

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Offspring Population Size Matters when Comparing
Evolutionary Algorithms with Self-Adjusting Mutation

Rates
Anna Rodionova, Kirill Antonov, Arina Buzdalova, Carola Doerr

To cite this version:
Anna Rodionova, Kirill Antonov, Arina Buzdalova, Carola Doerr. Offspring Population Size
Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates. Ge-
netic and Evolutionary Computation Conference, Jul 2019, Prague, Czech Republic. pp.855-863,
�10.1145/3321707.3321827�. �hal-02439392�

https://hal.sorbonne-universite.fr/hal-02439392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Offspring Population Size Matters when Comparing
Evolutionary Algorithms with Self-Adjusting Mutation Rates

Anna Rodionova

ITMO University, Saint Petersburg, Russia

Kirill Antonov

ITMO University, Saint Petersburg, Russia

Arina Buzdalova

ITMO University, Saint Petersburg, Russia

abuzdalova@gmail.com

Carola Doerr

Sorbonne Université, CNRS, LIP6, Paris, France

Carola.Doerr@sorbonne-universite.fr

ABSTRACT

We analyze the performance of the 2-rate (1 + λ) Evolutionary
Algorithm (EA) with self-adjusting mutation rate control, its 3-rate

counterpart, and a (1 + λ) EA variant using multiplicative update

rules on the OneMax problem. We compare their efficiency for

offspring population sizes ranging up to λ = 3, 200 and problem

sizes up to n = 100,000.

Our empirical results show that the ranking of the algorithms is

very consistent across all tested dimensions, but strongly depends

on the population size. While for small values of λ the 2-rate EA

performs best, the multiplicative updates become superior for start-

ing for some threshold value of λ between 50 and 100. Interestingly,

for population sizes around 50, the (1 + λ) EA with static mutation

rates performs on par with the best of the self-adjusting algorithms.

We also consider how the lower bound pmin for the mutation

rate influences the efficiency of the algorithms. We observe that for

the 2-rate EA and the EA with multiplicative update rules the more

generous bound pmin = 1/n2 gives better results than pmin = 1/n
when λ is small. For both algorithms the situation reverses for

large λ.

CCS CONCEPTS

• Theory of computation→ Random search heuristics;

ACM Reference Format:

Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr. 2019.

Offspring Population Size Matters when Comparing Evolutionary Algo-

rithms with Self-AdjustingMutation Rates. InGenetic and Evolutionary Com-
putation Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Republic.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.3321827

1 INTRODUCTION

A key driver for the success of evolutionary algorithms (EAs) is

their global search behavior, i.e., their capability of searching the

whole decision space without getting stuck in local optima. This

feature distinguishes EAs from other well-known heuristics such as

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00

https://doi.org/10.1145/3321707.3321827

Simulated Annealing and other local hill climbers, which search the

decision space only within a small neighborhood. The global search

behavior of EAs, however, comes at the cost of a less focused search

when the optimization converges, which can result in performances

losses in the final parts of the optimization process. The question

how to most effectively combine the best of both worlds is the driv-

ing force behind research on parameter control [1, 18, 24], adaptive
operator selection [20, 28], and hyper-heuristics [6], which are the

most prominent umbrella terms for adjusting the structure of the

search behavior to the current needs of an iterative optimization

process.

Interestingly, research on parameter control has shown that in

many applications the search behavior can be adjusted very effi-

ciently by quite simple update rules, see the above-cited surveys for

details. The considerable performance gains observed in practice

have inspired a whole series of theoretical works on non-static pa-

rameter choices. In the last years, an increasing number of results

appeared which rigorously quantify the advantages of parameter

control, see [10] for a summary and classification of the mecha-

nisms.

We will focus in this work on two different self-adjusting ap-

proaches previously shown to yield excellent performances on the

OneMax benchmark problem: a 2-rate success control and a gen-

eralized one-fifth success rule. We analyze their efficiency when

implemented in a (1+ λ) EA framework. Our key research question

concerns the scalability of performance with respect to the offspring

population size λ and with respect to the problem dimension n. A
summary of findings will be presented in Section 1.2.

1.1 Self-Adjusting Algorithms

The One-Fifth Success Rule Applied to the (1 + λ) EA. The
one-fifth success rule originally stems from theoretical observations

made by Rechenberg for the optimal step-size adaptation in the

(1+1) Evolution Strategy [29]. An interpretation of this rule which

is suitable also for the adaptation of other parameters, such as the

mutation rate in discrete EAs, was presented in [25]. The rule itself

is simple: if after one iteration of an algorithm a strictly better

offspring has been found, the parameter under consideration is

multiplied with some constant F , and it is multiplied with F−1/4

otherwise. With this setting it holds that after 5 iterations the

parameter is the same as in the first if exactly one out of the five

iterations was “successful” (i.e., found a better solution), and it is

increased or decreased otherwise, depending on the sign of 1 − F
and the number of successful iterations. The one-fifth success rule

was shown to yield very efficient optimization times for the (1 +

https://doi.org/10.1145/3321707.3321827
https://doi.org/10.1145/3321707.3321827

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr

(λ, λ)) Genetic Algorithm (GA), first by empirical means [11] and

later by rigorous mathematical running time analysis [9].

Since the one-fifth success rule had been derived only for the

(1+1) ES and only for particular benchmark problems (the sphere

and a corridor function [29]), it seems natural to generalize the

update mechanisms to other success rules. In fact, multiplying

the parameters by 2 and 1/2 in the case of a successful and an

unsuccessful iteration, respectively, has been experimented with in

various context. It has also been rigorously proven to be efficient for

the optimization of different benchmark functions with a (1+λ) EA
variant that uses a self-adjusting offspring population size λ [26].

In [16] an empirical study analyzed the impact of the update factors

on the performance of a (1+1) EA variant. This algorithm samples

in each iteration one offspring y from the current best solution

x and updates the mutation rate p to bp (with b < 1 being some

constant) if y is at least as good as its parent (i.e., in our setting

with maximization as objective, if and only if f (y) ≥ f (x)). In this

situation x is replaced by y. If y is strictly worse than x (i.e., if

f (y) < f (x)) the mutation rate is increased to Ap, where A > 1

is again some constant. The results presented in [16] show that

this self-adjusting (1 + 1) EA(A,b) is very efficient on two classic

benchmark problems OneMax and LeadingOnes, and this holds

for broad ranges of update strengths A and b. In the very recent

work [12] it was rigorously proven that this algorithm, for suitably

chosen hyper-parameters A and b, achieves optimal optimization

time on LeadingOnes, up to lower order terms.

In this work, we will extend the (1+1) EA(A,b) to the (1+λ) EA,
which samples λ offspring per each iteration. Since the probability

of creating individuals which are equally good, but not strictly

better than the parent, increases considerably for large λ, we have
to refine the interpretation of “success” for this context. Taking

into account that the fraction of offspring y satisfying f (y) ≥ f (x)
showed promising performances in initial experiments, in our (1 +

λ) EA(A,b) we therefore discriminate with respect to whether or

not at least 5% of the offspring are at least as good as their parent.

2-Rate and 3-Rate Update Rules. An alternative way to con-

trol the mutation rate was proposed and analyzed in [14]. Their

2-rate (1+λ) EA, which we refer to as 2-rate (1+λ) EAr/2,2r in the

following, uses two different mutation rates in each iteration. Half

the offspring are created with mutation rate p/2 and the other λ/2
offspring are sampled with mutation rate 2p. The mutation rate is

parametrized as p = r/n in the 2-rate (1 + λ) EAr/2,2r . The value

of r is updated after each iteration, by a random decision which

favors the rate by which the best offspring has been created (details

will be presented in Section 2). It was proven in [14] that the 2-rate

(1+λ) EAr/2,2r with λ ≥ 45 and λ = nO (1) is not only more efficient

for the optimization of OneMax than any (1 + λ) EA with static

mutation rates, but, from a comparison with a lower bound proven

in [5], their result also implies that the 2-rate (1 + λ) EAr/2,2r even

achieves asymptotically optimal expected optimization time, which

is Θ
(

n
log λ +

n logn
λ

)
when measured in terms of generations.

We also study a 3-rate variant of 2-rate (1 + λ) EAr/2,2r , which

creates one third of the offspring with mutation rate c1r/n, r/n,
and c2r/n, respectively, where 0 < c1 < 1 and 1 < c2 are hyper-
parameters set by the user. In the original work [14] a similar

3-rate variant has been studied by empirical means. We extend

their preliminary study by considering 100 different pairs of (c1, c2),
but also by considering its performance for a broader range of

population sizes λ and much larger dimensions n.

1.2 Summary of Results

We investigate the efficiency of the three above-mentioned algo-

rithms (i.e., the (1 + λ) EA(A,b), the 2-rate (1 + λ) EAr/2,2r , and

the 3-rate (1 + λ) EAr/2,r ,2r) on OneMax, for various population

sizes λ up to 3,200 and problem sizes up to n = 100,000. Their per-

formances are compared among each other and to the traditional

(1 + λ) EA using static mutation rates.

Interestingly, the ranking of the algorithms is very consistent

across all tested dimensions, and only depends on the offspring

population size λ. More precisely, we show that for small population

sizes λ ≤ 50, the 2-rate (1 + λ) EAr/2,2r performs best, while for

λ ≥ 100 the (1 + λ) EA(A,b) is the most efficient among the four

algorithms. It is also worth mentioning that for λ of about 50, the

conventional (1 + λ) EA with static mutation rates performs on par

with the best performing self-adjusting algorithm, which is 2-rate

(1 + λ) EAr/2,2r .

All our algorithms are implemented with the shift mutation op-
erator discussed in [8]. This operator, unlike the unconditional

standard bit mutation operator traditionally studied in the theory

of evolutionary computation, ensures that offspring differ from

their parent by at least one bit. This is achieved as follows. The

operator first draws the mutation strength ℓ (i.e., the number of bits

that are flipped to create the offspring) from the binomial distri-

bution Bin(n,p), where the parameter p denotes the mutation rate.

While the traditional standard bit mutation operator allows ℓ = 0,

it is easily seen that, for (1 + λ) EAs, which only evolve a single

solution, an offspring that is identical to its parent cannot advance

the search. The shift mutation operator therefore interprets ℓ = 0

as a vote for a small search radius, and flips exactly one bit, i.e.,

effectively using ℓ = 1. Put differently, this operator always flips at

least one bit, and its probability of flipping exactly one bit equals

Bin(n,p)(0) + Bin(n,p)(1).
When the mutation rate p converges to zero, the shift mutation

operator converges against the operator using mutation strength

one deterministically, thus effectively reducing the global search

property of standard bit mutation to a purely local search. As ex-

plained above, we would like to avoid performing a purely random

search only, and therefore cap the mutation rate at a lower bound

pmin. This lower bound can have a significant impact on the per-

formance, as our further experimental results demonstrate. More

precisely, we observe that for smaller population sizes a lower

bound of 1/n2 seems to work better than a lower bound of 1/n. In-
terestingly, the situation reverses for larger population sizes. These

observations are true for all considered self-adjusting algorithms,

but with different values of λ. For 2-rate (1 + λ) EAr/2,2r , the tran-

sition population size is between λ = 100 and λ = 200, while for

(1 + λ) EA(A,b) it is between λ = 400 and λ = 800.

In light of the consistent behavior across all tested dimensions,

we are confident that our findings will inspire future rigorous

theoretical analyses for the self-adjusting algorithms investigated

herein.

Offspring Population Size Matters GECCO ’19, July 13–17, 2019, Prague, Czech Republic

1.3 Related Work

Our work can, to some extent, be seen as an extension of [17],

where different (1 + λ) EA variants have been studied on the two

benchmark problems OneMax and LeadingOnes. Note though

that we consider here much larger offspring population sizes λ (up

to 3, 200) and much larger dimensions (up to 100,000), whereas the

results presented in [17] are restricted to settings with n ≤ 4000,

and λ ∈ {1, 2, 5, 10, 50}. As discussed above, the ranking of the

algorithms strongly depends on the size of λ, so that our work gives
a much more complete picture than the results presented in [17].

1.4 Structure of the Paper

The rest of the paper is structured as follows. In Section 2 we de-

scribe the considered algorithms in more detail. Section 3 gives a

general overview of how each algorithm performs across differ-

ent dimensions and population sizes. In Section 4 the influence

of the lower bound for the mutation probability is studied, and

conclusions about the ranking of the self-adjusting algorithms are

made. Section 5 provides insights into the anytime performance

of the algorithms from the fixed-budget perspective. In Section 6

we compare the 2-rate (1 + λ) EAr/2,2r with its 3-rate counterpart.

Conclusions and avenues for future work are presented in Section 7.

1.5 Additional Plots and Statistics

Exact figures for the plots presented in this paper, additional com-

parative plots, as well as information about the standard deviations

of the optimization times are available in [30].

2 ONEMAX AND THREE (1 + λ) EA VARIANTS

In this section we describe the baseline (1 + λ) EA0→1 algorithm

and its two self-adjusting variants. The description of the algo-

rithms assumes the maximization of a pseudo-Boolean function

f : {0, 1}n → R as the optimization task. All empirical results in

the further sections are obtained for the OneMax benchmark prob-

lem Om : {0, 1}n → R, x 7→
∑n
i=1 xi . OneMax is the most widely

studied benchmark problem in the theory of EAs [2, 21], but also

serves as a recurring benchmark problem in empirical studies, and

in particular in the context of parameter control [3, 4, 16, 19, 22]. A

discussion of properties that make OneMax a suitable test prob-

lem for adaptive algorithms was offered by Thierens in [31]. Apart

from the better comparison with existing results, the availability of

theoretical performance limits of adaptive and static evolutionary

algorithms makes OneMax a particularly appealing benchmark

problem; see [15] for a survey of such black-box complexity bounds.

In the context of our work, the asymptotic Θ
(n
log λ +

n logn
λ

)
bound

for all λ-parallel EAs proven in [5] and the precise n ln(n)−cn±o(n)
bound for any unary unbiased black-box algorithm from [13] are

the probably most relevant results. As mentioned at the end of

Section 1.2, we are also confident that further advances in running

time analysis will allow us to convert our empirical findings into

rigorous mathematical statements.

Before we describe our algorithms, we recall from [22] that for

the optimization of OneMax the best static offspring population

size is λ = 1. All larger values result in worse expected optimization

times. However, the parallel optimization time, measured by the

Algorithm 1: The (1 + λ) EA0→1 with mutation rate 0 <

p < 1 for the maximization of f : {0, 1}n → R

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate f (x);

2 Optimization: for t = 1, 2, 3, . . . do

3 for i = 1, . . . , λ do

4 Sample ℓ(i) from Bin0→1(n,p), sample

y(i) ← flipℓ(i) (x) and evaluate f (y(i));

5 Sample x∗ from argmax{ f (y(1)), . . . , f (y(λ))} u.a.r.;

6 if f (x∗) ≥ f (x) then x ← x∗;

number of generations needed to find the optimum, of a (1 + λ) EA
with λ > 1 can (and typically is) smaller than that of the (1 + 1) EA.

The basic algorithm for our study is the (1 + λ) EA0→1. Its de-

scription is given in Algorithm 1. The (1 + λ) EA0→1 samples

λ solution candidates in every iteration, but only the best one

of these offspring survives – ties broken uniformly at random

(u.a.r.). Each offspring is created by the shift mutation operator,
which first samples a mutation strength λ from the Bin0→1(n,p)
distribution and then flips the entries in ℓ randomly chosen, pair-

wise different bit positions. Here and in the following, the dis-

tribution Bin0→1(n,p) assigns to each integer 2 ≤ k ≤ n the

value Bin0→1(n,p)(k) = Bin(n,p)(k), sets Bin0→1(n,p)(0) = 0, and

Bin0→1(n,p)(1) = Bin(n,p)(1) + Bin(n,p)(0).
We implemented sampling from Bin0→1(n,p) as follows. First,

each bit of a string of length n is inverted with probability p. Then it

is checked whether at least one bit was inverted. If not, one random

bit position is chosen uniformly at random and the corresponding

bit is inverted.

We notewithout going intomuch detail that apart from the “shift”

strategy 0→ 1, which assigns the probability mass of sampling ℓ =

0 to ℓ = 1, a second approach to deal with 0-bit flips was suggested

in [8]. This alternative approach, coined “resampling strategy” and

denoted by a subscript > 0 in [8] and its follow-up works [16,

17], distributes the probability mass Bin(n,p)(0) proportionally to

all integers 1 ≤ ℓ ≤ n. Initial experiments with this resampling

strategy indicate similar finding as those presented for the shift

strategy used here in this work. A detailed examination is left for

future work.

Next, we consider two self-adjusting variants of the (1 + λ) EA.
The first one is the 2-rate (1 + λ) EAr/2,2r proposed in [14]. This

algorithm is summarized in Algorithm 2. It creates one half of the

offspring with mutation rate 2r/n and the other half of the offspring

with mutation rate r/(2n), respectively. At the end of each iteration,

the 2-rate (1+λ) EAr/2,2r updates the mutation rate based on which

value was used when the best offspring was obtained. Note here that

with probability 1/2 a random decision is made whether to update

the mutation rate to 2r/n or to r/(2n), thus effectively assigning a

3/4 chance to update to the value by which the best offspring has

been created. The reason not to update to this rate deterministically

was explained in [14] by the fact that the constant probability to

update the mutation rate in the seemingly unfavorable direction can

be useful in the optimization of non-unimodal functions; see [14,

Section 3.1] for a more detailed discussion.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr

Algorithm 2: The 2-rate (1 + λ) EAr/2,2r with adaptive

mutation rates proposed in [14]

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate f (x);

2 Initialize r ← r init; // Following [14] we use r init = 2;

3 Optimization: for t = 1, 2, 3, . . . do

4 for i = 1, . . . , ⌊λ/2⌋ do

5 Sample ℓ(i) from Bin0→1(n, r/(2n)), create

y(i) ← flipℓ(i) (x), and evaluate f (y(i));

6 for i = ⌊λ/2⌋ + 1, . . . , λ do

7 Sample ℓ(i) from Bin0→1(n, 2r/n), create

y(i) ← flipℓ(i) (x), and evaluate f (y(i));

8 x∗ ← argmax{ f (y(1)), . . . , f (y(λ))} (ties broken u.a.r.);

9 if f (x∗) ≥ f (x) then x ← x∗;

10 Perform one of the following two actions with prob. 1/2 :

• replace r with the mutation rate that x∗ has been created

with;

• replace r with either 2r or r/2 equiprobably.

r ← min{max{2, r },n/4};

We complement our study by a performance analysis for an

extension of the (1 + 1) EA(A,b) studied in [16]. In this extension

we adapt the success-based multiplicative update rule used in the

(1 + 1) EA(A,b) to the case that more than one offspring is gener-

ated per each iteration. We call our extension the (1 + λ) EA(A,b).
Algorithm 3 provides its pseudo-code. In the original algorithm

from [16], the mutation rate is updated based on whether or not the

offspring replaces its parent. In our case, we have λ offspring, and

we refine the update rule as follows. First, we compute the number

of “good” offspring, which are at least as good as the parent (see

line 6 of Algorithm 3). If the share of good offspring is at least 5%,

the mutation rate is multiplied by the factor A > 1. It is decreased

to bp otherwise, where the factor b is some constant satisfying

0 < b < 1. In this work we set A = 2 and b = 1/2.

One may wonder why we use the 5% threshold. This is based on

some preliminary experiments with λ = 1,600, where we observed

good performances for this value. It is likely that this threshold

depends on the population size λ. A detailed study is left for future

work.

3 ALGORITHM’S PERFORMANCE BY

DIMENSION

In a first step, we analyze how each algorithm performs across

different problem dimensions. To this end, we compute the average

optimization time (i.e., the number of function evaluations needed

to find an optimal solution) of each of the algorithms described

in Section 2 for 100 independent runs. In Figure 1 we show these

values for the algorithm (1+λ) EA(A,b), for different values of λ. We

also show the average parallel optimization time, measured by the

number of generations needed to find an optimal solution, for the

(1+λ) EA(A,b) in Figure 2. The parallel optimization time equals the

average optimization time divided by the offspring population size

λ. This performance measure is useful when the fitness evaluations

within one generation are made in parallel.

Algorithm 3: The (1+ λ) EA(A,b) with adaptive mutation

rates and update strengths A > 1, 0 < b < 1

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate f (x);

2 Initialize p ← 1/n;

3 Optimization: for t = 1, 2, 3, . . . do

4 for i = 1, . . . , λ do

5 Sample ℓ(i) from Bin0→1(n,p), create

y(i) ← flipℓ(i) (x), and evaluate f (y(i));

6 N ← |{i ∈ [λ] | f (x (i)) ≥ f (x)}|;

7 if N ≥ ⌈0.05λ⌉ then p ← min{1/2,Ap} else

p ← max{1/n,bp};

8 x∗ ← argmax{ f (x (1)), . . . , f (x (λ))} (ties broken u.a.r.);

9 if f (x∗) ≥ f (x) then x ← x∗;

Figure 1: Average optimization times for 100 independent

runs of the (1 + λ) EA(A,b) for different values 5 ≤ λ ≤ 3, 200

and different problem dimensions 10
4 ≤ n ≤ 10

5
.

Figure 2: Average parallel optimization times for 100 inde-

pendent runs of the (1 + λ) EA(A,b) for different values 5 ≤
λ ≤ 3, 200 and different problem dimensions 10

4 ≤ n ≤ 10
5
.

We note without details that the plots for the 2-rate (1 +

λ) EAr/2,2r and (1 + λ) EA0→1 look very similar, but with different

values. The relative standard deviation is small for all algorithms:

it starts at about 10-15% for λ = 5 and decreases to just 0.5-1.5% for

λ = 3200, so we can draw significant conclusions from the average

optimization time and the average parallel optimization time plots.

Exact figures and standard deviations for all plots shown in this

paper are available in our full report [30].

Offspring Population Size Matters GECCO ’19, July 13–17, 2019, Prague, Czech Republic

(a) (b)

Figure 3: Average parallel optimization times for the different (1 + λ) EA variants to find an optimal solution (a) on the 10,000-

dimensional and (b) on the 100,000-dimensional OneMax problem. The averages are for 100 independent runs each.

(a) (b)

Figure 4: Average parallel optimization times for (a) the different (1+10) EA variants and (b) the different (1+3,200) EA variants

to find an optimal solution on the n-dimensional OneMax problem, with 10
4 ≤ n ≤ 10

5
. The averages are for 100 independent

runs each.

As expected, we see that for each algorithm and each dimension

the average optimization times strictly increase with increasing

λ. Therefore, small values of λ are optimal in terms of optimiza-

tion time. However, in terms of parallel optimization time, the

situation is reversed: the algorithms with larger population sizes

λ require fewer iterations to find the optimum. Therefore, both

small and large values of λ are worth being used under different

circumstances.

4 THE IMPACT OF THE LOWER BOUND

One of the key advantages of sampling the mutation rates from

the distribution Bin0→1(n,p) is that it allows to transition from a

classical (1 + λ) EA to a (1 + λ) variant of RLS that creates each

offspring by flipping exactly one uniformly chosen bit. This transi-

tion is achieved by reducing p beyond 1/n, see [7] for a discussion.
In the algorithms studied above, we had enforced a lower bound

of 1/n for p. We now relax this lower bound and only require that

p ≥ 1/n2. We study the impact of this relaxed lower bound on the

performance of the (1 + λ) EA(A,b) and the 2-rate (1 + λ) EAr/2,2r
algorithm. The algorithms with these relaxed lower bounds are

denoted by (1 + λ) EA(A,b, 1/n2) and 2-rate (1 + λ) EAr/2,2r (1/n
2),

respectively.

In Figures 3a and 3b we show the average parallel optimization

times of the different algorithms for n = 10,000 and n = 100,000, re-

spectively. Recall that the average parallel optimization time equals

the average number of generations. Note also that we use a logarith-

mic scale, to ease the comparison. Note that the standard deviation

is still relatively small for the algorithms using pmin = 1/n2 as well.
The only difference is that for 2-rate (1 + λ) EAr/2,2r (1/n

2) it does

not decrease with increasing λ and is always around 5-10%.

The picture for n = 10,000 is quite similar to that for n = 100,000,

and, in fact, for all tested dimensions. To demonstrate this, we plot

in Figures 4a and 4b the average parallel optimization times for

fixed λ = 10 and λ = 3, 200, respectively, which confirm a stable

ranking of the different algorithms.We use the parallel optimization

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr

Figure 5: Evolution of the average function value over 100

independent runs of different (1 + 10) EA variants on the

10,000-dimensional OneMax problem, in dependence of the

generation. The small plot in the lower right corner zooms

into the region in which all algorithms have found function

values ≥ 9, 900.

time again as performance measure, to ease the comparison with

Figures 3a and 3b.

From Figures 3a and 3b we can derive threshold values for λ at

which the ranking of the algorithms changes.

• For 5 ≤ λ ≤ λ1 with λ1 being a threshold value between 50

and 100, the 2-rate (1 + λ) EAr/2,2r (1/n
2) performs best.

• For λ1 ≤ λ ≤ λ2 with 400 ≤ λ2 < 800 the (1 +

λ) EA(A,b, 1/n2) shows best performance.

• For λ2 ≤ λ ≤ 3, 200 the (1 + λ) EA(A,b) minimizes the

expected optimization time.

We see that the ranking of algorithms strongly depends on

the population size λ. For small values of λ, the 2-rate (1 +

λ) EAr/2,2r (1/n
2) performs the best, while for medium values

the (1 + λ) EA(A,b, 1/n2) wins, and then for large values of λ
the (1 + λ) EA(A,b) is superior. Interestingly, for λ = 50, the

(1 + λ) EA0→1, which uses a static mutation rate, performs on

par with the best self-adjusting algorithm.

Generally, for both self-adjusting algorithms, it is more preferable

to use 1/n2 as lower bound for the mutation probability when the

population size is small, while for large population sizes a lower

bound of 1/n seems to work better. For the 2-rate (1 + λ) EAr/2,2r ,

the transition population size is some value λ3 satisfying 100 ≤

λ3 < 200, while for the (1 + λ) EA(A,b) it is some λ2 with 400 ≤

λ2 < 800. At the same time, while the performance of the 2-rate (1+

λ) EAr/2,2r and the 2-rate (1+λ) EAr/2,2r (1/n
2) drastically depends

on the population size and the mutation probability lower bound,

the (1+λ) EA(A,b, 1/n2) is more stable and performs rather good for

all considered population sizes. Note that the (1 + λ) EA(A,b, 1/n2)
is the only self-adjusting algorithm which is never significantly

worse than the baseline (1 + λ) EA.

5 FIXED-BUDGET PERFORMANCE

In the sections above, we have only regarded the average opti-

mization times. This measure, albeit very commonly used in the

runtime analysis community, does not give any information about

how the algorithms perform in an anytime sense. This criticism
was addressed in [8, 23], where the benefits of fixed-budget and
fixed-target analyses are advertised, respectively. We note that, of

course, both performance measures have played an important role

in empirical evaluations ever since – the contribution of the men-

tioned papers is rather to be seen in discussing why these measures

provide important insights for theoreticians. Figures 5, 6a, 6b show

anytime performance plots for selected (1 + 10) EAs, (1 + 400) EAs,

and (1 + 1600) EAs, respectively, on the n = 10,000-dimensional

OneMax instance.

We see that for λ = 10 (Figure 5) the algorithms demonstrate

quite different performance over time, while for larger values of λ
(Figures 6a, 6b) the performance of the most efficient algorithms

seems to be rather stable.

More precisely, the situation is as follows. For generational bud-

gets (note that the budget in terms of fitness evaluations is simply

λ times larger than the generational budget, since we are dealing

with constant offspring population sizes in this paper) up to around

2,590 the 2-rate (1 + λ) EAr/2,2r is the most efficient algorithm;

then from 2,950 to 5,615 generations (1 + λ) EA0→1 is the best one,

then the 2-rate (1+λ) EAr/2,2r (1/n
2), which remains to be the best

performing algorithm for all budgets up to 11,800, at which point it

hits the optimum. The runner-up is the (1+ λ) EA(A,b, 1/n2), third
the (1 + λ) EA(A,b), then the (1 + λ) EA0→1 and the worst among

the five algorithms is the 2-rate (1 + λ) EAr/2,2r (with lower bound

pmin = 1/n). Therefore, for small population sizes, the ranking of

the algorithms depends on the budget.

For λ = 400 and λ = 1,600, we see that for all budgets the

two algorithms (1 + λ) EA(A,b, 1/n2) and (1 + λ) EA(A,b) show
similar performance, and are the best among the five algorithms.

For λ = 400 the 2-rate (1 + λ) EAr/2,2r shows fine performance

for budgets up to around 1,700, at which point its performance

deteriorates (due to too many offspring sampled with four times

the in this case optimal mutation rate). For λ = 1,600 this effect

disappears, and the 2-rate (1 + λ) EAr/2,2r shows fine performance.

The performance of the 2-rate (1 + λ) EAr/2,2r (1/n
2) is seen to

be the worst of all algorithms for budgets greater than 1,400 for

λ = 400 and budgets larger than 1,000 for λ = 1,600.

6 2-RATE VS. 3-RATE ADAPTATION

We next analyze an idea previously communicated in [14], a 3-rate

success-based variant of 2-rate (1 + λ) EAr/2,2r , which we call the

3-rate (1 + λ) EAr/2,r ,2r . This algorithm creates one third of the

offspring with mutation rate c1r/n, r/n, and c2r/n, respectively,
where 0 < c1 < 1 and 1 < c2 are hyper-parameters set by the user.

The detailed description of the 3-rate (1 + λ) EAr/2,r ,2r is given in

Algorithm 4. In the original work [14] a similar 3-rate variant has

been studied. However, there is no pseudocode of this variant, so it

is hard to compare the update rule used in the original work and

the one we use.

Following [14], we use the standard bit mutation operator for all
algorithms in this section. It inverts each bit of a string equiprobably

with the corresponding mutation rate. So, in contrast to the shift

mutation operator used above, it may happen that no bits are flipped

in the mutation phase. However, for moderately large λ, the shift
mutation operator performs only slightly better than the standard

Offspring Population Size Matters GECCO ’19, July 13–17, 2019, Prague, Czech Republic

(a) (b)

Figure 6: Evolution of the average function value over 100 independent runs of different (1 + 400) EA (a) and (1 + 1600) EA (b)

variants on the 10,000-dimensional OneMax problem, in dependence of the generation.

one (this empirical observation is also confirmed by the findings

made in [17] for the resampling strategy, and can be confirmed

theoretically; see the full version of [7] for a similar theoretical

justification in the context of the (1 + λ) EA with static mutation

rates), so we believe that the key observations made in this section

do not depend on the choice of the mutation operator.

Algorithm 4: The 3-rate (1 + λ) EAc1r ,r ,c2r with adaptive

mutation rates and three subpopulations

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate f (x);

2 Initialize r ← r init; // We use r init = 2;

3 Initialize c1 ≥ 1, 0 < c2 < 1; // We use c1 = 0.7, c2 = 1.4;

4 Optimization: for t = 1, 2, 3, . . . do

5 for i = 1, . . . , ⌊λ/3⌋ do

6 Sample ℓ(i) from Bin(n, c1r/n), create

y(i) ← flipℓ(i) (x), and evaluate f (y(i));

7 for i = ⌊λ/3⌋ + 1, . . . , ⌊2λ/3⌋ do

8 Sample ℓ(i) from Bin(n, r/n), create

y(i) ← flipℓ(i) (x), and evaluate f (y(i));

9 for i = ⌊2λ/3⌋ + 1, . . . , λ do

10 Sample ℓ(i) from Bin(n, c2r/n), create

y(i) ← flipℓ(i) (x), and evaluate f (y(i));

11 x∗ ← argmax{ f (y(1)), . . . , f (y(λ))} (ties broken u.a.r.);

12 if f (x∗) ≥ f (x) then x ← x∗;

13 Perform one of the following two actions with prob. 1/2 :

• replace r with the mutation rate that x∗ has been created

with;

• replace r with either c1r or c2r equiprobably.

r ← min{max{2, r },n/4};

As we have seen in the previous sections, the 2-rate (1 +

λ) EAr/2,2r performs worse than the (1+λ) EA(A,b) for large popu-
lation sizes. To ensure that this is not caused by a poor tuning of the

2-rate (1+λ) EAr/2,2r , we consider the 3-rate (1+λ) EAc1r ,r ,c2r on

λ = 1,600 and check 100 different configurations of (c1, c2) hyper-
parameters for this version. The tuning procedure and its results are

illustrated in Figure 7. First, some random values for c1 and c2 were
taken. Then we investigated the areas around values which gave

better performance. These results indicated that the best configu-

ration are close to (c1 = 0.7, c2 = 1.4). It is also worth mentioning

that the performance of the 3-rate (1+λ) EAc1r ,r ,c2r obtained with
the different hyper-parameters differs by up to around 16%. The

relative standard deviation of the tested algorithms is about 1%.

Note that we also plot in Figure 7 the line for which c1 = 1/c2,
because such a functional dependence was used in [14]. According

to the results of our procedure, the corresponding line does not fit

the whole area of good configurations, albeit it does seem to cross

some of the best configurations.

In Figure 8 we plot the performance of the 2-rate (1+λ) EAc1r ,c2r
and the 3-rate (1 + λ) EAc1r ,r ,c2r using the original hyper-

parameters (c1 = 2, c2 = 0.5) and using (c1 = 1.4, c2 = 0.7). We

compare these results to that of the (1+λ) EA and the (1+λ) EA(A,b)
for the population size λ = 1,600. For the (1 + λ) EA and the

(1 + λ) EA(A,b) the relative standard deviation is around 1%, while

for the 2-rate (1 + λ) EAc1r ,c2r and the 3-rate (1 + λ) EAc1r ,r ,c2r it

is around 2.5%.

Figure 8 shows that with the original hyper-parameters the 3-rate

(1 + λ) EAr/2,r ,2r performs worse than the 2-rate (1 + λ) EAr/2,2r ,
while with c1 = 1.4, c2 = 0.7 they both perform better and very

similar to each other. However, the algorithms are still outper-

formed by the (1 + λ) EA(A,b). Therefore, the careful tuning of

the hyper-parameters does not influence the performance of the

2-rate (1 + λ) EAc1r ,c2r and the 3-rate (1 + λ) EAc1r ,r ,c2r drasti-

cally compared to the standard choice of (c1 = 0.5, c2 = 2), which

confirms the observations made in [14], where three values of

c2 = 2.0, 1.5, 1.2 with a corresponding c1 = 1/c2 were tested.

7 CONCLUSIONS

Wehave seen in this work that the ranking of different self-adjusting

(1 + λ) EA variants strongly depends on the population size. Both

small population sizes and large ones are of interest, as the former

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr

Figure 7: Average number of fitness evaluations (shown as

color scale) for different hyper-parameters c1, c2 in 3-rate (1+

λ) EAc1r ,r ,c2r for λ = 1,600, n = 100,000.

provide the best performance in terms of number of fitness eval-

uations, while the latter are more efficient in terms of generation

number, which is useful when calculating fitness in parallel.

Based on our results, the following conclusions for the OneMax

benchmark problem may be drawn: for small offspring population

sizes 5 ≤ λ ≤ λ1, λ1 satisfying 50 ≤ λ1 < 100 the 2-rate (1 +

λ) EAr/2,2r (1/n
2) is the most efficient among the tested algorithms,

while for medium population sizes λ1 ≤ λ ≤ λ2 with 400 ≤ λ2 <
800 the (1+ λ) EA(A,b, 1/n2) performs best, and for large offspring

population sizes λ2 ≤ λ ≤ 3, 200 the (1+λ) EA(A,b)withpmin = 1/n
as the lower bound for the mutation probability should be used.

Furthermore, if the evaluation budget is limited and the population

size is small, one should pick the algorithms very carefully, as the

ranking strongly depends on the budget in this case.

We also confirmed that although a careful selection of the

hyper-parameters can improve the performance of the 2-rate

(1 + λ) EAr/2,2r and the 3-rate (1 + λ) EAr/2,r ,2r , the default pa-

rameters seem to be quite suitably chosen, so that the overall gain

of such hyper-parameter tuning seems to be moderate at best. We

plan on extending our studies by investigating if similar conclu-

sions can be drawn for the (1 + λ) EA(A,b) with different values

of A and b. The results in [16] suggest a rather flat dependence

of performance on these hyper-parameters for the (1 + 1) EA, but

note that we have considered in our work much larger dimensions

and offspring population sizes, so that it is a priori not clear if a

similar conclusion holds. We recall from [27] that small changes in

the parameter setting of an EA can result in drastic performance

differences.

Figure 8: Average number of fitness evaluations and its stan-

dard deviation for the 2-rate (1 + λ) EAr/2,2r and the 3-rate

(1+ λ) EAc1r ,r ,c2r with different multipliers compared to the

(1 + λ) EA and the (1 + λ) EA(A,b) for λ = 1,600.

As mentioned in the main part, the consistent ranking of the

algorithms makes us feel confident about an extension of our work

to a rigorous theoretical running time analysis. Such results would

offer more detailed insights into the working principles underlying

the diverse rankings, and may help to identify the cut-off points

where performances of two algorithms intersect.

In another important line of research we plan on investigating

whether our conclusions for the OneMax problem can be extended

to other, more challenging benchmark problems. A promising di-

rection of such extensions is offered by the W-model [32], which

allows one to calibrate different features of the optimization prob-

lem, such as its ruggedness, the fraction of effective and “dummy”

variables, the epistasis, neutrality, separability, etc.

ACKNOWLEDGMENTS

Arina Buzdalova was supported by the Government of Russian

Federation (Grant 08-08). Carola Doerr was supported by a public

grant as part of the Investissement d’avenir project, reference ANR-

11-LABX-0056-LMH, and by the Paris Ile-de-France Region. We

also acknowledge support from COST Action CA15140 ’Improving

Applicability of Nature-Inspired Optimisation by Joining Theory

and Practice (ImAppNIO)’ supported by the European Cooperation

in Science and Technology.

Offspring Population Size Matters GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES

[1] Aldeida Aleti and Irene Moser. 2016. A Systematic Literature Review of Adaptive

Parameter Control Methods for Evolutionary Algorithms. Comput. Surveys 49
(2016), 56:1–56:35.

[2] Anne Auger and Benjamin Doerr. 2011. Theory of Randomized Search Heuristics.
World Scientific.

[3] Thomas Bäck. 1992. The Interaction of Mutation Rate, Selection, and Self-

Adaptation Within a Genetic Algorithm. In Proc. of Parallel Problem Solving
from Nature (PPSN’92). Elsevier, 87–96.

[4] Thomas Bäck. 1993. Optimal Mutation Rates in Genetic Search. In Proc. of the
5th International Conference on Genetic Algorithms (ICGA’93). Morgan Kaufmann,

2–8.

[5] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased Black-

Box Complexity of Parallel Search. In Proc. of Parallel Problem Solving from Nature
(PPSN’14) (Lecture Notes in Computer Science), Vol. 8672. Springer, 892–901.

[6] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-Heuristics: a Survey of the State

of the Art. JORS 64, 12 (2013), 1695–1724. https://doi.org/10.1057/jors.2013.71
[7] Eduardo Carvalho Pinto and Carola Doerr. 2018. A Simple Proof for the Usefulness

of Crossover in Black-Box Optimization. In Proc. of Parallel Problem Solving
from Nature (PPSN’18) (Lecture Notes in Computer Science), Vol. 11102. Springer,
29–41. https://doi.org/10.1007/978-3-319-99259-4_3 Full version available at

http://arxiv.org/abs/1812.00493.

[8] Eduardo Carvalho Pinto and Carola Doerr. 2018. Towards a More Practice-Aware

Runtime Analysis of Evolutionary Algorithms. CoRR abs/1812.00493 (2018).

arXiv:1812.00493 http://arxiv.org/abs/1812.00493 An extended abstract appeared

in Proc. of Artificial Evolution (EA’17), pages 298–305.
[9] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting

Parameter Choices for the (1+ (λ, λ)) Genetic Algorithm. Algorithmica 80 (2018),
1658–1709.

[10] Benjamin Doerr and Carola Doerr. 2018. Theory of Parameter Control Mecha-

nisms for Discrete Black-Box Optimization: Provable Performance Gains Through

Dynamic Parameter Choices. In Theory of Randomized Search Heuristics in Dis-
crete Search Spaces, Benjamin Doerr and Frank Neumann (Eds.). Springer. To

appear. Available online at https://arxiv.org/abs/1804.05650.

[11] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From Black-Box Com-

plexity to Designing New Genetic Algorithms. Theoretical Computer Science 567
(2015), 87–104.

[12] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-Adjusting Mu-

tation Rates with Provably Optimal Success Rules. In Proc. of Genetic and Evo-
lutionary Computation Conference (GECCO’19). ACM. To appear. Full version

available online at http://arxiv.org/abs/1902.02588.

[13] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. Optimal Parameter Choices

via Precise Black-Box Analysis. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO’16). ACM, 1123–1130.

[14] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2019. The (1+λ)
Evolutionary Algorithm with Self-Adjusting Mutation Rate. Algorithmica 81, 2
(2019), 593–631. https://doi.org/10.1007/s00453-018-0502-x

[15] Carola Doerr. 2018. Complexity Theory for Discrete Black-Box Optimization

Heuristics. CoRR abs/1801.02037 (2018). arXiv:1801.02037 http://arxiv.org/abs/

1801.02037

[16] Carola Doerr and Markus Wagner. 2018. On the Effectiveness of Simple Success-

Based Parameter Selection Mechanisms for Two Classical Discrete Black-Box

Optimization Benchmark Problems. In Proc. of Genetic and Evolutionary Compu-
tation Conference (GECCO’18). ACM, 943–950.

[17] Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, and Thomas Bäck. 2018.

Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimiza-

tion Heuristics: Profiling (1 + λ) EA Variants on OneMax and LeadingOnes. In

Proc. of Genetic and Evolutionary Computation Conference (GECCO’18). ACM,

951–958.

[18] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. 1999. Pa-

rameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary
Computation 3 (1999), 124–141.

[19] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, andMichèle Sebag. 2008. Extreme

Value Based Adaptive Operator Selection. In Proc. of Parallel Problem Solving
from Nature (PPSN’08) (Lecture Notes in Computer Science), Vol. 5199. Springer,
175–184.

[20] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. 2010. Ana-

lyzing bandit-based adaptive operator selection mechanisms. Annals of Math-
ematics and Artificial Intelligence 60 (2010), 25–64. https://doi.org/10.1007/

s10472-010-9213-y

[21] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms—The Computer Science
Perspective. Springer.

[22] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. 2005. On the Choice of

the Offspring Population Size in Evolutionary Algorithms. Evolutionary Compu-
tation 13 (2005), 413–440.

[23] Thomas Jansen and Christine Zarges. 2014. Performance Analysis of Randomised

Search Heuristics Operating with a Fixed Budget. Theoretical Computer Science
545 (2014), 39–58. https://doi.org/10.1016/j.tcs.2013.06.007

[24] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben. 2015. Parameter Con-

trol in Evolutionary Algorithms: Trends and Challenges. IEEE Transactions on
Evolutionary Computation 19 (2015), 167–187.

[25] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and

Petros Koumoutsakos. 2004. Learning Probability Distributions in Continuous

Evolutionary Algorithms - a Comparative Review. Natural Computing 3 (2004),

77–112.

[26] Jörg Lässig and Dirk Sudholt. 2011. Adaptive Population Models for Offspring

Populations and Parallel Evolutionary Algorithms. In Proc. of Foundations of
Genetic Algorithms (FOGA’11). ACM, 181–192.

[27] Johannes Lengler. 2018. A General Dichotomy of Evolutionary Algorithms on

Monotone Functions. In Proc. of Parallel Problem Solving from Nature (PPSN’18)
(Lecture Notes in Computer Science), Vol. 11102. Springer, 3–15. https://doi.org/10.
1007/978-3-319-99259-4_1

[28] Jorge Maturana, Frédéric Lardeux, and Frédéric Saubion. 2010. Autonomous

Operator Management for Evolutionary Algorithms. Journal of Heuristics 16
(2010), 881–909. https://doi.org/10.1007/s10732-010-9125-3

[29] Ingo Rechenberg. 1973. Evolutionsstrategie. Friedrich Fromman Verlag (Günther

Holzboog KG), Stuttgart.

[30] Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr. 2019. Off-

spring Population Size Matters when Comparing Evolutionary Algorithms with

Self-Adjusting Mutation Rates. arXiv e-prints:1904.08032 (2019). arXiv:1904.08032
https://arxiv.org/abs/1904.08032 Full version containing additional figures and

tables.

[31] Dirk Thierens. 2009. On Benchmark Properties for Adaptive Operator Selec-

tion. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’09),
Companion Material. ACM, 2217–2218. https://doi.org/10.1145/1570256.1570306

[32] Thomas Weise and Zijun Wu. 2018. Difficult Features of Combinatorial Optimiza-

tion Problems and the Tunable W-Model Benchmark Problem for Simulating

them. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18),
Companion Material). ACM, 1769–1776. https://doi.org/10.1145/3205651.3208240

https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1007/978-3-319-99259-4_3
http://arxiv.org/abs/1812.00493
http://arxiv.org/abs/1812.00493
http://arxiv.org/abs/1812.00493
https://arxiv.org/abs/1804.05650
http://arxiv.org/abs/1902.02588
https://doi.org/10.1007/s00453-018-0502-x
http://arxiv.org/abs/1801.02037
http://arxiv.org/abs/1801.02037
http://arxiv.org/abs/1801.02037
https://doi.org/10.1007/s10472-010-9213-y
https://doi.org/10.1007/s10472-010-9213-y
https://doi.org/10.1016/j.tcs.2013.06.007
https://doi.org/10.1007/978-3-319-99259-4_1
https://doi.org/10.1007/978-3-319-99259-4_1
https://doi.org/10.1007/s10732-010-9125-3
http://arxiv.org/abs/1904.08032
https://arxiv.org/abs/1904.08032
https://doi.org/10.1145/1570256.1570306
https://doi.org/10.1145/3205651.3208240

	Abstract
	1 Introduction
	1.1 Self-Adjusting Algorithms
	1.2 Summary of Results
	1.3 Related Work
	1.4 Structure of the Paper
	1.5 Additional Plots and Statistics

	2 OneMax and Three (1+L) EA Variants
	3 Algorithm's Performance by Dimension
	4 The Impact of the Lower Bound
	5 Fixed-Budget Performance
	6 2-Rate vs. 3-Rate Adaptation
	7 Conclusions
	Acknowledgments
	References

