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Abstract

PD detection is an effective way to evaluate the degradation state of cable insulation. The extraction and selection
of relevant features from PD raw data have been mostly investigated to recognize the types of insulation defects
in HV equipment. In this study, two different feature extraction methods combined with supervised classification
techniques are implemented for ageing state recognition of a polyethylene-insulated cable under HVDC conditions.
For this purpose, an original experimental setup is implemented. Experiments are performed on a long length 100
m coaxial cable subjected to high electric fields. PD events are detected by direct coupling and collected with a
digitizing oscilloscope. Feature extraction based on PD pulse shape parameters represented in time domain as well
as wavelet decomposition coefficients are used separately as input variables of Support Vector Machines classifiers
(SVMs). A feature selection method is implemented to design optimized SVM classifiers that attribute an ageing
state to the cable insulation. The classification performance achieved with both feature extraction methods are
presented and compared. The results show satisfactory recognition rates of two ageing states of cable insulation,
up to 100% with a small subset of variables, particularly when features are extracted from wavelet decomposition
of PD experimental data.

Keywords: insulator, partial discharges, HVDC, polymeric-insulated cable, ageing state, feature extraction,
feature selection, wavelet decomposition, supervised classification, support vector machines

1. Introduction

Partial Discharge (PD) phenomenon within the dielectric of High-Voltage (HV) power cables causes serious
insulation damage and has a significant impact on the cable lifetime. Thus, it is of great interest to get an indication
of the degradation state of the cable insulation before complete breakdown occurs. While PD measurements and
analysis is a widely used method for commissioning tests and diagnosis of AC XLPE cable system, the DC voltage
case is of increasing importance for electrical energy supply applications [1, 2]. In fact, in the perspective of a
transition to renewable energies, the electrical energy will be transported in DC voltage. HVDC extruded cables
are being installed in power grids and HVDC electrical systems require now efficient methods for PD detection
and analysis at DC voltage [3]. However, since there exist few installed HVDC links, there is a limited experience
regarding how cables age electrically under HVDC and a lack of data about their ageing and reliability [4]. In
addition, PD measurements are not recommended in the latest related CIGRE Technical Brochure for DC Extruded
Cable Systems [5] for commissioning tests. This is mostly because PD detection is complicated under DC stress
[6]. As a consequence, there is little past knowledge on the severity of PD under DC stress and few HVDC links
to build up a knowledge base. The relation between PD properties and the degradation of the cable insulation
under DC is difficult to establish. Despite the CIGRE recommendations about PD under DC, few recent studies
are running laboratory tests to build up a knowledge base for HVDC PD measurements [7, 8]. They focus on better
understanding the PD process and the behavior of different defects under DC stress as well as their evolution during
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the service lifetime. For example, the PDIV (Partial Discharge Inception Voltage) and magnitude of PD under DC
are evaluated and compared to PD under AC. However, these studies do not make use of PD data to provide an
estimation of the cable degradation state. In fact, in the current state of knowledge, there is still no established
methodologies to estimate the ageing state of HVDC cables insulation using PD measurements under DC voltage
[6].

The studies conducted by CIGRE and IEEE Study Committees present phenomenological (or empirical) and
physical models for life and reliability estimation of HVDC cables with XLPE insulation [5, 9]. The models give an
estimation of the cable life (or “time to failure”) as a function of the applied stress level. They are used as general
models to predict the time to failure of any cable, knowing its design life, rated voltage and type (HVAC or HVDC
extruded cable). The phenomenological life models proposed in these studies are based on Accelerated Life Tests
(ALTs) results. Model parameters are estimated experimentally by ALTs in laboratory where cables are submitted
to higher than design stresses during short duration (shorter than the cable design life). Parameters are obtained by
applying best-fitting techniques to the life versus stress data [9]. Another approach proposed by IEEE committees
are microscopic or physical life models that provide a description of the ageing mechanism at the microscopic level.
These models describe the chemical and physical mechanisms that lead to localized degradation of cable insulation.
One of the main purpose of life models proposed by [5, 9] is to estimate the cable life in service conditions. However,
possible changes in ageing mechanisms during the service life make this goal difficult to achieve since a model valid
for condition of ALTs might not be valid at service stresses [9]. In fact, phenomenological life models are capable of
predicting life only within the limited stress range of the ALTs, making the extrapolation to service stresses more
uncertain. For example, these life models assume that applied stresses are controlled and do not vary during the
service lifetime of the cable, as it occurs during ALTs, whereas service stresses are never constant [9]. Moreover,
phenomenological life models act as general models and are not specific to a particular cable given its own defects
and the different stresses it has endured during its service lifetime. The ageing mechanisms that appear and evolve
during service life are not taken into account. Regarding physical life models, they involve too much complexity
because of their large range of parameters, which make them difficult to correctly fit a data set. These models
are not practical for testing purpose but are used to provide information at the R&D stage to compare different
compounds for improving the insulation. All these reasons make life models proposed by [5, 9] limited in predicting
life of HVDC cables in service conditions.

Most of the existing studies about PD measurements and ageing state recognition are conducted under AC [10,
11, 12]. In [10], the phase-angle and the magnitude of each discharge are recorded and are used to make statistical
distributions, such as maximum discharge magnitude, average discharge magnitude, and number of discharges as a
function of phase angle. The shapes of these distributions are characteristic for the ageing state of cable insulation.
However, this statistical analysis requires the phase-resolved pattern of PD pulses (PRPD) that is not available in
the DC case. In [13], the evolution of the PD mechanism inside voids during ageing is investigated using time-
resolved discharge parameters. However, artificial cavities are created to simulate ageing. In general, database
for PD analysis are built using PD measurements from artificial defects created in the cable insulation [3, 6, 8].
For example, in [8] PD under AC and DC voltages are performed and compared for artificial defects created in
insulation based on phase-resolved and time-resolved PD patterns, respectively. Moreover, while damage during
cable installation are considered as one of the main cause of cables failure, natural ageing of the cable under HVDC
is still not well understood. For this reason, monitoring techniques enabling the collection of PD data over a long
period of the cable service lifetime have the potential to play a useful role in the diagnostic of HVDC cable insulation
[4].

One of the most challenging issues in classifying PD patterns according to the ageing state of the cable insulator
is to extract informative features from PD measurements. Most of the existing researches on PD feature extraction is
applied to PD pattern recognition for defect models classification in HV equipment [14, 15, 16, 17, 18, 19, 20, 21] or
PD-noise discrimination [3]. Therefore, feature extraction and selection techniques are not sufficiently investigated
for ageing state recognition. In [22], distributions and density functions of the amplitude and phase parameters
are used to describe and discriminate PD patterns from various types of defects under AC. Under DC, the main
observed parameters are repetition rates and magnitude of PD. In [4, 8, 21, 22], distributions of the maximum and
mean of PD magnitude as a function of time interval between PD are used as well as density functions of discharge
magnitude and time intervals between PD. Features are extracted from the shape of these distributions that are
characteristic for the type of defect, which generates the discharges. However, the magnitude of PD pulses, which
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is one of the two main parameters observed in PD analysis under DC, may be attenuated during the propagation
of the PD pulse along the cable length. Thus, it would be preferable to consider a larger set of features to describe
PD under DC. Standard for PD testing of HVDC equipment are still in development but the main aspect is the
use of ramp type voltage or polarity reversal in order to emphasize PD activity under DC voltage [3, 4, 8].

Whereas PD occurring at polarity reversal have been studied extensively [8], little has been done to characterize
PD occurring under constant polarity DC stress. In [8] for example, DC voltage steps are performed every 4 minutes.
However, these techniques are only applicable in laboratory during off-line tests. The use of ramped voltage every
4 minutes differs from the normal operating conditions and PD that would not be active in service conditions could
be activated during off-line ramped tests. Thus, the results of these studies have to be scrutinized.

In the present study, a methodology for ageing state recognition of PE-insulated cables under DC voltage is
proposed, based on PD measurements performed at different moments of the cable’s service life. For this purpose,
a continuous monitoring system is developed in order to acquire typical PD signals occurring under DC voltage.
No artificial defects are created in order to simulate ageing. Experimental conditions reproduce the natural ageing
of a HVDC cable in service. No polarity reversal or ramping voltages are applied to enhance the PD activity. A
low voltage cable is used to ensure the detection of PD in the insulation. In this way, only PD due to natural
ageing or to already existing defects in cable insulation are collected. A set of PD measurements are acquired from
“virgin” and “aged” states of the insulator and are used to assess the quality of the cable insulation. PD fault
localization within the cable is performed based on the measured propagation times of PD pulses along the cable.
It ensures the selection of internal PD that give more meaningful information about the cable insulation condition.
This database is then used to implement classification techniques for ageing state recognition. As opposed to the
general life models proposed in [5, 9], the estimation of the degradation state is specific to the cable under test,
given its own defects and the different stresses and ageing mechanisms it has endured during its service lifetime.
This methodology can be applied to any cable types. A key objective of this approach is the ability to correctly
estimate the condition of the cable insulation in order to anticipate failure of the system or to avoid unnecessary
intervention. In fact, in practice, one usually does not need to predict the lifetime very accurate far in the future.
Often, the maintenance team only needs to know if the cable system will fail “soon”.

Whereas most of the works regarding PD analysis under DC use the conventional statistical distributions of
amplitude and time interval between PD for feature extraction, we propose to extract two different feature sets from
the PD signals collected. Because the electrical ageing of the insulation induces modification of the PD physical
process [23, 24, 25, 26], various PD pulse pattern characteristics evolve during ageing as well as the occurrence of
PD events. Thus, a first feature set is built using physical variables such as pulse magnitude, rise-time, fall-time and
time interval between PDs. Then, a second feature set is established using Discrete Wavelet Transform (DWT) of
PD measurements. With regard to the PD pulse structure, non-periodic and fast transient features always exist in
the PD signals detected, which cannot be revealed explicitly by conventional transform. For these reasons, wavelet
analysis can reveal reliable information contained in PD signals that are useful for cable ageing state recognition.
Thus, experimental PD signals are decomposed according to a wavelet transform and features are extracted from
the first two moments, i.e. mean and standard deviation, of the wavelet coefficients distribution at each level of
decomposition. Pulse shape features as well as features extracted from wavelet decomposition are then ranked using
the Gram-Schmidt orthogonalization procedure [27] therefore selected according to a “wrapper approach” [28]. The
recognition of the two ageing states of cable insulation is performed using Support Vector Machines (SVMs) [29].
The application of feature extraction, ranking, selection and classification techniques to ageing state recognition is
a completely new approach.

This methodology can be implemented to the monitoring of DC cables systems including medium and High
Voltage cables as well, either in service, during off-line or on-line PD measurements, or in laboratory ageing tests
[6]. For on-line measurements, it requires the use of sensors installed at suitable, accessible locations on the HVDC
network where PD activity is recorded from several points of attachment along the cable length. Some studies are
working to improve on-line PD monitoring [4, 30] for HVDC systems with a particular emphasis on methods to
overcome the interference problem. These include the use of a multi-sensor monitoring system, choice of detection
frequency and signal discrimination techniques based on the wave shapes [30]. Once on-line PD monitoring technique
for HVDC cables and accessories will be developed and various problems related to their measurement on field would
be solved [6], our methodology for ageing state recognition using PD under DC has the potential to be applied to
these new infrastructures.
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This paper starts with the presentation of the experimental setup dedicated to the measurement of PD under
DC voltage and the data acquisition procedure. The two feature extraction methods are then described in detail.
The proposed classification methodology for ageing state recognition, based on SVM classifiers is presented as well
as the feature ranking method used. Finally, the recognition rates obtained with the two different feature sets are
compared and discussed.

2. Setup description and data acquisition

PD measurements under DC require long acquisition time due to the small repetition rate of PD [22]. Moreover,
large bandwidth and high sampling rate are needed to record high frequency components of PD signals. Thus,
a large memory of the detection system is necessary to perform long time measurement preserving high value of
the sampling rate. Most of the existing studies regarding PD analysis under DC use classic PD detectors with
detection bandwidth of 100 to 400kHz [8, 10] recommended by the standard IEC 60270 [31] that do not allow to
record the real pulse shape of PD signals. Thus, information about PD process related to the ageing state of the
insulation is not available using conventional detection methods. Therefore, PD are detected using non-conventional
methods [32] that include modern digital PD measuring systems (Tektronix DPO3034) with 5 Mpts memory, 300
MHz bandwidth and 2.5Gs/s sample rate. This detection system allows to trigger the acquisition in a case of a
transient event only and reduces the amount of memory needed. In this way, the measurement can be performed
during a long time and the real pulse shape of PD signals are recorded. It allows to extract features from the real
pulse shape of PD signals that are then used for classification purposes.

DC 
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Cd=2.7 nF
100 m coaxial cable (100 pF/m)
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Figure 1: Experimental setup.

An overview of the experimental setup is shown in Fig. 1. A high voltage DC generator capable of providing up
to 60 kV is used. The voltage applied to the cable is +15 kVdc. The high voltage is applied to the test object with
global capacitance Ct through a 5 GΩ resistance. The test object is a solid polyethylene (PE) insulated coaxial
cable which comprises a 0.9 mm diameter of solid soft annealed copper conductor. The thickness of PE insulation is
1.05 mm. The metallic shielding is a tinned copper braid and the overall jacket is PVC. The total length of the cable
test object is 100 m and its linear capacitance is 100 pF/m, thus Ct=10 nF. Its characteristic impedance is 50 Ω.
The cable ends are immersed in a cell test filled with transformer oil to avoid surface discharges at these locations.
A High Voltage 2.7 nF decoupling capacitor Cd is placed between the test object and the measuring impedance of
the oscilloscope (1 MΩ) that create a low-impedance path to detect PDs. The detected PD signals travel through
a protection circuit before reaching the digitizing oscilloscope. The data are saved in a personal computer via
Ethernet protocol. Matlab programs are developed for the automatic acquisition and analysis of PD experimental
data. Time-domain reflectometry [33] is performed to localize PD faults within the cable. Only PDs occurring
far away from the cable boundaries are selected to build the database. PD localization is an important aspect of
the methodology because it ensures the selection of internal PD of the cable insulation. In fact, internal PD give
more meaningful information about the insulation condition, as PD mechanism in internal cavities evolves during
ageing due to the modification of the cavities properties [23, 24, 25, 26]. In this way, PD occurring at the cable
ends are automatically eliminated because they do not reveal the intrinsic ageing of the cable insulation. When a
PD occurs, the PD pulse propagates to both cable ends. At each of these points, total reflection occurs until the
signal is totally attenuated in the cable. The PD event is localized by measuring the relative time of arrival of the
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multiple reflections. Fig. 2 shows a PD signal that is intrinsic to the cable insulation. The PD signals were filtered
using wavelet transform and symlets as the mother wavelet with a threshold level equal to 8 [34]. The MATLAB
routine ’wden’ was used to implement the wavelet transform. The second pulse (Fig. 2) is the pulse reflected back
from the far end after having additionally traveled twice the distance between the PD fault and the cable far end.
Thus, the distance of the PD fault from the far end is deduced from the time difference t2 − t1 = 700 ns and the
signal speed v of 2.108 ms−1 for polyethylene-insulated cable. It can be calculated as follow: dfarend

= v t2−t1
2 = 70

m. Consequently, the distance to the cable near end is dnearend
= 100 − 70 = 30 m (Fig. 2). The time difference

between first and third pulse, t3− t1 = 1 µs (Fig. 2) corresponds to the propagation along twice the total length of
the cable (l=100 m): t3− t1 = 2l

v . The fast response of the unconventional detection system used in this work (with
300 MHz bandwidth) allows performing PD localization using the Time Domain Reflectometry method without
superposition of pulses. The time resolution of the detection system is of the order of few nanoseconds whereas the
time resolution of a conventional detection system is less than 2 µs [31].
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Figure 2: PD signal, propagation and attenuation. PD occurring at 70 m from the cable far end.
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Figure 3: Ageing test cycles.

The ageing and data acquisition protocol is divided into three cycles. The ageing test voltage is constant and
held to 15 kV during a total time of 1800 hours to ensure PD ignition and ageing of cable insulation. The cable is
submitted to high electrical stresses during short duration. In this way, an ageing cycle of few days performed in
laboratory is equivalent to the natural ageing of the cable during several years of service [9]. During the first 120
hours, PD measurement is performed (cycle 1 on Fig. 3). A total of 59 PD events are collected and correspond
to the state “virgin” of the cable insulation. The second cycle (cycle 2 on Fig. 3) corresponds to an ageing phase
during 240 hours (10 days). No PD measurement is performed. After this cycle, the insulation is considered to
be “aged”. PD events are collected again after a total of 360 hours of polarization (cycle 3 on Fig. 3). The PD
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repetition rate is much higher, but only the first 59 measurements are selected to build the database and correspond
to the state “aged” of the cable insulation. Hence, a total of 59 measurements are collected for each of the two
ageing states.

3. Feature extraction from PD measurements

Feature extraction using physical parameters of PD signals
From experimental PD data, several features can be extracted. First, a set of ten variables is built and formed

by the following physical features: magnitude, rise-time, fall-time, area and width at half maximum of the first and
second pulses, distance of the PD event to the cable far end (Fig. 4), and time interval between PDs.
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Figure 4: Physical features extraction.

Each of those features is calculated for the 118 PD measurements. The set of data is formed by 59 samples with
label “virgin” and 59 samples with label “aged”. The ten extracted features are summarized in Table 1.

Variables physical description
a1 magnitude of the first pulse
a2 magnitude of the second pulse

dfar distance of the PD event to the cable far end
R1 rise-time of the first pulse
F1 fall-time of the first pulse
S1 area of the first pulse
S2 area of the second pulse
w1 width at half maximum of the first pulse
w2 width at half maximum of the second pulse
δt time interval between PDs

Table 1: Physical features extracted from PD measurements.

Feature extraction using Discrete Wavelet Transform of PD signals
Traditionally, the techniques from the signal processing world act in either the time or frequency domain to

analyze and extract relevant features from data. For instance, the Fourier Transform decomposes the PD signal
into its frequency components; however, the time localization of the signal components is not available. One
solution is to adopt Short-Time Fourier Transform (STFT) that gets frequency components of local time intervals
of fixed duration. The problem is that most PD signals have high frequency content for short duration and fast
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transient components tend to be ignored by this kind of transforms. Unlike the Fourier Transform or the Short-
Time Fourier Transform, the wavelet transform analyzes the signal at different frequencies with different resolutions
[35]. Therefore, wavelet transform is more advantageous for the analysis of transient signals. Wavelet Transform
(WT) has been widely adopted as a signal de-noising tool in PD measurements [36, 37, 38]. It has also been
applied for the extraction of representative features of different PD patterns for insulation defects classification
in HV equipment [39]. In this work, Discrete Wavelet Transform (DWT) is used for feature extraction of PD
signals in order to discriminate two ageing states of cable insulation. There are different types of wavelets, which
are available for such implementation, such as Daubechies, Symlets, Coiflets, Gaussian and Shannon. Among the
wavelets available, the Daubechies wavelet is the most used in partial discharge studies [40] because it has almost
all of the required properties such as compactness, limited duration, orthogonality and asymmetry for analysis of
fast transient, non-periodic pulses [41]. Fig. 5 shows the block diagram of wavelet decomposition. The original
signal is decomposed into approximation and detail coefficients, which represent respectively low frequency and
high frequency content of the signal. The decomposition is repeated to further increase the frequency resolution
until the desired decomposition level is achieved.
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Approximation 
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Detail

cD2

Detail

cD1

Detail
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cD4

Detail

cD5

Approximation

cA3

Approximation

cA4

Approximation

cA5

Figure 5: Block diagram of wavelet decomposition.

In this paper, each of the 118 PD signals collected are decomposed using the ’db10’ version of daubechies wavelet.
It decomposes the signal into multi-level details according to their respective frequencies. The characteristic times of
the PD pulse (rise-time, fall-time, width at half maximum) vary according to the degradation state of the insulator
and are of the order of nanoseconds [24]. Hence, PD signals are decomposed up to five levels to recover this range
of frequency. From these decomposed signals, the five detail coefficients cD1, cD2, cD3, cD4 and cD5 are used
to calculate the corresponding features for ageing state classification. In order to reduce the dimensionality of
wavelet decomposition, this paper computes only the first two moments including mean and standard deviation for
each of the five distributions composed by the detail coefficients cD1, cD2, cD3, cD4 and cD5. Each of the five
decomposition levels has two descriptors defined by:

x̄ = 1
N

∑N
n=1 x(n)

σ =
√

1
N

∑N
n=1[x(n)− x̄]2

where x(n) is the wavelet coefficient at location n and N is the total number of wavelet coefficients at each level.
Hence, a total of 10 features are calculated for each PD signals.
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4. Supervised classification

Statistical classification techniques are usually implemented to separate objects into different categories called
classes. An object i is defined by a vector of variables xi. In this study, each of the ageing state “virgin” and “aged”
corresponds to a class [42]. Two different sets of variables are extracted for each object. Classifiers are mathematical
functions which assign a predefined class to objects using relevant features. In this study, the classifier is built from a
set of measurements containing several objects whose class (“virgin” or “aged”) is known. This type of classification
is called supervised classification because the whole available samples are labeled. Designing a classifier consists in
defining a function f(xi, θ) and a set of parameters θ, which give an optimal separation between classes. A classifier
is adjusted during the training phase, using the samples that form the training set and an efficient training algorithm.
Afterwards, its performance is evaluated with the samples that form the validation set [42]. The validation rate
is defined as the percentage of well classified samples when used for validation. It provides an estimate of the
performance of the classifier on examples that were not used for the training. If the training algorithm is sensitive
to the initial values of the parameters to be adjusted, this process is repeated several times for various values of
θ. Finally, the winner is the classifier with vector θ that gives the best validation score. In this study, we use the
cross-validation technique [43], so that each sample of the database is used for both training and validation. The
database is divided into L sets called folds. Only one fold is used for the validation and the classifier is trained on
the L− 1 remaining folds. The training and validation phases are repeated L times. The validation fold changes at
each training and the global validation rate is the average score of the validation over the whole database.

Ranking and selecting variables
In order to determine among all the extracted PD features which are the most relevant for building an efficient

classifier, we start by ranking the variables using the Gram-Schmidt orthogonalization procedure [27]. This method
proceeds by selecting the variables which are the most correlated with the vector of labels (the output). The most
relevant variable is the one which maximizes the following quantity:

cos2(xk ,y) =
(Txky)2

(Txkxk )(yy)

where xk is the vector containing the P measurements of the k-th variable and y is the vector of labels.
Then, the output and all other variables are projected on the subspace orthogonal to the selected variable.

The same calculation is repeated from this subspace to determine among the projected features, which is the most
correlated with the projection of the output. This ranking method possesses the advantage to avoid the use of
redundant features. Once all the variables are ranked according to their level of relevance, separation methods are
implemented using an increasing number of variables starting with the most relevant, and after with the two most
relevant, and so on. There are as many subsets of variables to consider as the number of variables themselves. This
variable selection method is called the wrapper approach [28].

Support Vector Machines (SVM)
Since classifiers are built using real world measurements, data probably includes noise. Therefore, the imple-

mentation of machine learning techniques that include a regularization process is of great benefit. A Support Vector
Machines (SVM) training algorithm has a built-in regularization mechanism that permits to avoid overfitting and
then to maximize the generalization capabilities [42]. For two-class classification problems, the Support Vector Ma-
chines algorithm is used to find an optimal separation between the two classes : the maximum margin hyperplane
[29]. The set of examples that are sufficient to determine the maximum margin hyperplane are called the support
vectors. If the data are linearly separable, a linear SVM classifier is sufficient. Otherwise, if the data are not linearly
separable, SVM classification proceeds by projecting the input vectors in a high-dimensional space called the feature
space where a linear separation is possible. In practice, this data conversion leads to the use of a kernel function.
To be a SVM kernel, a function has to verify a set of conditions listed in [29]. A typical kernel function used in
this work is the Gaussian kernel. It introduces an additional parameter to estimate: the standard deviation of the
Gaussian function. In this study, the two ageing states are separated according to the sign of the SVM discriminant
function:
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f(x) =
M∑
i=1

αiyik(x,xi) + b

where: k is the kernel function, xi are the support vectors, yi are the corresponding class labels (±1) and M is
the number of support vectors. Note that αi and b are the parameters of the classifier adjusted during the training
process that leads to maximizing:

L(α) =

M∑
i=1

αi −
1

2

M∑
i,j=1

αiαjyiyjk(xi,xj)

subject to
M∑
i=1

αiyi = 0

and
0 ≤ αi ≤ C, for 1 ≤ i ≤ M

The regularization parameter C is called a hyperparameter. It controls the trade-off between classification errors
on training data and margin maximization, thus regularization. Another hyperparameter is the standard deviation
of the Gaussian kernel when using nonlinear SVM. Both of them are tuned using a grid search optimization with
the cross-validation score as a criterion to be minimized. Thus, the training of SVM leads to a kind of bi-level
optimization where the hyperparameters are the upper-level variables to adjust and the αi and b the lower-level
ones [37].

Application to experimental PD data and results
Classification results using physical features of PD signals: The feature ranking method implemented is

the Gram-Schmidt orthogonalization procedure, as previously described. The ranking obtained on the ten physical
features is shown in Table 2. It can be observed that δt is the most relevant feature, followed by w2, w1, dfar and
so on.

Feature Rank
a1 7
a2 9

dfar 4
R1 8
F1 5
S1 6
S2 10
w1 3
w2 2
δt 1

Table 2: Ranking of the ten physical features according to their level of relevance.

Following the feature ranking, linear SVM and nonlinear SVM classification methods are implemented using an
increasing number of variables starting with the most relevant (δt), and after with the two most relevant (δt, w2),
and so on. Ten classifiers are then built and their parameters estimated. The cross-validation technique described
above is implemented with L = 5 folds in order to evaluate the generalization capabilities of the classifiers [42]. 100
random partitionings are drawn to make the cross-validation score independent from the data partitioning in the
folds. The cross-validation score is computed as many times. Table 3 shows the global cross-validation scores that
are the averages over the 100 values obtained. The results of Table 3 show that classifiers that implement nonlinear



10

SVM allow to achieve better recognition rates compared to those with linear SVM whatever the selected features.
With linear SVM, the best score (97.63%) is obtained when the six most relevant features according to the Gram-
Schmidt ranking are used as input variables that are (δt, w2, w1, dfar, F1, S1). Thus, the feature selection permits
to eliminate four variables since they do not improve the cross-validation score. With nonlinear SVM, the best
performance (99.63%) is obtained with the seven most relevant variables according to the Gram-Schmidt ranking
that are (δt, w2, w1, dfar, F1, S1, a1). In this case, the feature selection permits to eliminate three variables. For
a comparison, all the possible classifiers having one input variable are built in order to determine which variable
is the most informative. Since ten variables are available, the number of classifiers is 10. This method selects the
variable among 10 that gives the best classification performance. To make the procedure independent from data
partitioning in the five folds, 100 random partitionings are performed over the five folds. The results are shown
in 3 (third column). For linear SVM as well as nonlinear SVM, the feature that gives the higher score (94.92%
and 98.02% respectively) is δt which is the most relevant variable according to the Gram-Schmidt ranking (Table
2). A recognition rate up to 98% is achieved when only δt is used as input of a nonlinear SVM classifier. This
result confirms the feature ranking and selection method following which δt is the most informative variable. The
classification score is slightly enhanced (99.63%) when δt is combined with the six other most relevant variables
according to the Gram-Schmidt ranking.

Classifier The N most relevant features according to
the Gram-Schmidt ranking

The most relevant feature

Linear SVM (97.63 ± 0.78) %
N=6

(94.92 ± 0.00) %

Nonlinear SVM (99.63 ± 0.60) %
N=7

(98.02 ± 0.54) %

Table 3: Classification results.
Thus, the best performing combination consists of nonlinear SVM classifiers using (δt, w2, w1, dfar, F1, S1, a1)

as input variables. When combined together, these seven variables appear to be the most relevant physical features
to best recognize two degradation states of the cable insulation with a performance of 99.63%.

The classification errors obtained can be explained by various hypothesis such as a lack of examples, especially
in the region of the maximum margin hyperplane, the presence of measurement noise in the data or a sub-optimal
selection procedure for the hyperparameters C and standard deviation of the Gaussian kernel. For nonlinear SVM,
the nature of the kernel function also has an influence on the classification scores obtained. In fact, the separation
boundary is not exactly the same for a Gaussian kernel function compared to a polynomial one. In addition, the
number of folds as well as the number of random partitioning of the data into the folds influence the validation
scores. Moreover, the selected features may not contain all the necessary information to separate data without
errors. All these reasons could explain why a recognition rate of 100% is not achieved for both linear and nonlinear
SVM.

Classification results using features from wavelet decomposition of PD signals: The ranking obtained
on the ten extracted features from wavelet decomposition of PD pulses is shown in Table 4. It can be observed that
std(cD5) is the most relevant feature, followed by std(cD4), mean(cD4), std(cD3) and so on.

Feature Rank
mean(cD1) 10
std(cD1) 5

mean(cD2) 7
std(cD2) 8

mean(cD3) 9
std(cD3) 4

mean(cD4) 3
std(cD4) 2

mean(cD5) 6
std(cD5) 1

Table 4: Ranking of the ten wavelet features according to their level of relevance.
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The classification methods remain the same as described above. The results of Table 5 show that classifiers
that implement nonlinear SVM allow to reach slightly better recognition rates compared to those with linear SVM.
With linear SVM, the best score (99.51%) is obtained when only the first feature according to the Gram-Schmidt
ranking is used as input, i.e. std(cD5). The feature selection permits to eliminate nine variables since they do
not improve the cross-validation score. With nonlinear SVM, the best performance (100%) is also obtained with
std(cD5). To validate these results, we propose to build all the possible classifiers having one input variable in
order to know if there exists another variable, not ranked first by the Gram-Schmidt orthogonalization procedure,
that gives the same higher score. To make the procedure independent from data partitioning in the five folds, 100
random partitionings are performed over the five folds. The results are exactly the same as the previous approach.
For linear SVM as well as nonlinear SVM, the best recognition rates are 99.51% and 100% respectively, using
std(cD5) as input variable which confirms the Gram-Schmidt ranking and feature selection results.

Classifier The N most relevant features according to
the Gram-Schmidt ranking

Linear SVM (99.51 ± 0.42) %
N=1

Nonlinear SVM (100 ± 0.00) %
N=1

Table 5: Classification results.

The best performing combination consists of nonlinear SVM classifier using only one variable as input that is
the most informative according to the Gram-Schmidt procedure. The best achieved recognition rate is 100%. Thus,
the standard deviation of the detail coefficients distribution at level 5 is the most relevant feature to best recognize
two degradation states of the cable insulation. As the detail coefficients of each decomposition level represent a
specific frequency band of the original signal, it can be concluded that the frequency band corresponding to the
decomposition level 5 of PD pulses is discriminant for the two different ageing states.

5. Conclusion

In this work, feature extraction from real PD data and supervised classification methods are applied for ageing
state recognition of cable insulation submitted to DC voltage. The use of unconventional measurement system
allows to record the real pulse shape of PD pulses and to extract variables that contain relevant information about
ageing state of cable insulation. First, pulse shape parameters as well as time interval between PDs are extracted
from experimental PD data to build a first set of physical features formed by 10 variables. Then, PD data are
transformed using DWT and decomposed up to five levels. A second set of numerical features formed by the mean
and variance of the wavelet transform coefficients distribution at each level of decomposition is used for ageing state
recognition. With pulse shape features, the best performing combination consists of a nonlinear SVM classifier using
the seven most relevant features according to the Gram-Schmidt orthogonalization procedure as input variables (δt,
w2, w1, dfar, F1, S1, a1). The best achieved recognition rate exceeds 99%. However, one can notice the efficiency of
the most relevant variable δt that is sufficiently informative to achieve a recognition rate of 98% by itself when used
as input of a nonlinear SVM. The classification performance is slightly enhanced when features are extracted from
the wavelet decomposition of PD signals. A recognition rate of 100% is achieved using nonlinear SVM classifier
with only one feature as input. The standard deviation of the decomposition coefficients distribution at level 5 is
the most informative to best recognize two degradation states of cable insulation. This feature is ranked as the
most relevant variable according to the ranking performed using an orthogonalization procedure.

This study suggests two different feature extraction methods and a feature ranking technique, which when
combined with SVM classifiers, reduce the dimensionality of the feature space and leads to successful separation of
two degradation states of cable insulation with high accuracy. Whereas PD measurements were not recommended
by the CIGRE guide for DC cable systems, the classification results prove the efficiency of the methodology that
makes use of PD signals for ageing state recognition of DC cable systems, especially when features are extracted
from the DWT of PD measurements.
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A typical application of this study would be a situation where PD are collected punctually or at different
moments of a DC cable lifetime, either in service or in laboratory tests. Once PD are collected, the data are
processed using the feature extraction, selection and classification methods presented to estimate the ageing state
of the insulation at a particular moment of the cable lifetime.

Our methodology for ageing state recognition using PD under DC recorded at different moments of the cable
lifetime has the potential to be applied in existing and new settings regarding HVDC cable monitoring systems.
First, our methodology could be performed during commissioning test to verify the degradation state of the cable
insulation in order to rectify manufacturing or assembly defects at commissioning, before they lead to complete
failure or secondary damage once in service. Moreover, the use of a non conventional detection system opens
the possibility to perform PD measurements during long acquisition time and store PD patterns representative of
different ageing states of the cable insulation in an analyzer. In this way, cables can be monitored at various phases
of their life. Moreover, since high frequency components of PD signals must be recorded and long acquisition time
are needed, both high sampling rate and high memory of the detection system are required that could lead to huge
equipment costs [4].

However, there are some limitations to use the proposed method in on-line PD measurement settings, first
because on-line PD measurements to installed HVDC equipment is rare [30]. In fact, HVDC stations are a particu-
larly challenging environment for the performance of on-line PD measurement due to high levels of electromagnetic
interference and multiple PD sources occurring simultaneously [44]. Furthermore, cables are usually connected to
overhead transmission lines, which act as a huge receiving antenna, picking up a wide range of signals such as
radio, television and mobile phone transmissions, especially during on-line measurements. Moreover, because our
methodology is based on internal PD signals, noise data and parasite discharges should be automatically eliminated
in order to avoid misguiding in the diagnostic of the cable insulation [30]. In addition, PD under DC occur less
frequently than under AC. Thus, long acquisition time are required in order to acquire enough PD data for the
diagnosis of cable insulation. Therefore, the risk of triggering the acquisition on a noise signal instead of a PD
is much more important and errors in the interpretation of PD measurements are more likely to happen under
DC voltage that may lead to false conclusions in the diagnostics of the cable insulation (e.g., unnecessary discon-
nections of the equipment or unexpected failures) [4]. Thus, in parallel of our methodology, techniques should be
implemented for the automatic discrimination of PD pulses from noise signals. Moreover, on-line PD measurement
devices should be developed in order to perform PD measurements along the cable length. Despite online detection
of PD over long cables is a big challenge [45], it has proved efficiency on cables terminations and joints where sensor
monitoring systems are integrated [30]. In this case, the methodology developed in this study can be extended to
the monitoring of DC cables systems including cables and their accessories such as joints and terminations that are
more likely locations for insulation defects [4] and occurrence of PD.

Finally, the perspective of transferring a cable diagnostic model from one environment (e.g, one cable type and a
particular PD detection system) to another would be of great interest for both economic and technical reasons [46].
Thus, the generalization capabilities of the methodology presented should be evaluated in order to predict ageing
state of different cables types using PD data acquired under different experimental conditions. For this purpose, a
work on domain adaptation techniques is currently ongoing.
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