
HAL Id: hal-02444862
https://hal.sorbonne-universite.fr/hal-02444862v1

Preprint submitted on 19 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter Identification by Statistical Learning of a
Stochastic Dynamical Systems Modelling a Fishery with

price variation
Pierre Auger, Olivier Pironneau

To cite this version:
Pierre Auger, Olivier Pironneau. Parameter Identification by Statistical Learning of a Stochastic
Dynamical Systems Modelling a Fishery with price variation. 2020. �hal-02444862�

https://hal.sorbonne-universite.fr/hal-02444862v1
https://hal.archives-ouvertes.fr

Parameter Identification by Statistical Learning of a Stochastic

Dynamical Systems Modelling a Fishery with price variation.

Pierre Auger1, Olivier Pironneau2

Abstract

In this short paper we report on an inverse problem for parameter setting of a model used
for the modelling of fishing on the West African coast. We compare the solution of this
inverse problem by a Neural Network with the more classical algorithms of optimisation
and stochastic control. The Neural Network does much better.

Keywords: Fishery modelling, Stochastic control, Calibration, Partial differential
equations, statistical learning.

1. Presentation of a fishery model with variable price

We consider a coastal area with a single fishing zone. The model introduced in [1] is
summarised below.
The first equation of the model governs the fish biomass, B(t), at time t, taking into
account fish reproduction as well as fish mortality due to fishing. We assume that the
fish population grows according to a logistic equation with a positive growth rate r and a
carrying capacity K. The mortality due to fishing is represented by a Schaefer function
which is proportional to fish biomass and fishing effort E(t). In case of all identical boats,
the fishing effort is simply proportional to the total number of boats of the fishing fleet.
The catchability q is the fishing efficiency of the fishing boats.

1

B

dB

dt
= r(1− B

K
)− qE (1)

The fishing effort is a function of the price of fish at time t, p(t):

1

E

dE

dt
= pqB − c (2)

This equation says that the rate of the fishing effort is proportional to the difference
between the revenue and the cost of fishing per unit of fishing effort. The revenue is the
catch per unit of fishing effort qB multiplied by the price p per unit of catch. The cost
per unit of fishing effort c is a constant which incorporates the fuel for the boats, the
taxes to pay to the government, the minimal revenue wanted by boat owners as well as
the wages for the fishermen. The equation also says that if the fishery is profitable, the
boat owners are going to invest in the fishery.

1pierre.auger@ird.fr, IRD UMI 209, UMMISCO, Sorbonne Université, Bondy, France
2olivier.pironneau@sorbonne-universite.fr, LJLL, Sorbonne Université, Paris, France.

Not yet submitted to a Journal January 19, 2020

The price of fish on the market varies according to the difference between the demand and
the supply; when the market is liquid the price adjusts quite fast (i.e. daily) to balance
supply and demand. The supply is qBE while the demand is a monotone decreasing
function D(p) of price, for example D(p) = A

1+βp
, where A is the carrying capacity of the

market, and β a parameter. Hence

p =
A− qBE
βqBE

(3)

For positivity of price, we assume that the catch cannot be higher than the carrying
capacity of the market: A > qBE.
Now substituting (3) in (1) and (2) leads to:

dB

dt
= rB(1− B

K
)− qBE, dE

dt
= −cE +

A

β
− q2

β
BE (4)

For readibility we define

a =
rβ

Kq2
, d =

A

q
, Ē =

β

q
E, B̄ =

q2

β
B. (5)

Accordingly,

dB̄

dt
= rB̄ − aB̄2 − B̄Ē, t ∈ (0, T), B̄(0) = B̄0, (6)

dĒ

dt
= −cĒ + d− B̄Ē, t ∈ (0, T), Ē(0) = Ē0. (7)

The model has two variables (B̄, Ē), four positive parameters r, a, c, d and two initial
conditions B̄0 and Ē0, respectively the scaled fish biomass and the scaled fishing effort at
t = 0.

1.1. Asymptotic limit

The vertical axis B̄ = 0 is a nullcline and dĒ
dt

= d > 0 on the horizontal axis Ē = 0.
Therefore, the positive quadrant is positively invariant. Any trajectory starting at strictly
positive initial conditions remains in the positive quadrant for ever.

We are interested by the long time limit of B: B∞ = limt→∞B(t). The case B∞ = 0
must be avoided because fishing will come to a dead end.

Letting
dB̄

dt
=
dĒ

dt
= 0 in (6)-(7) leads to

r − aB̄ − Ē = −cĒ + d− B̄Ē = 0 ⇒ aB̄2 − B̄(r − ac) + d− rc = 0

We denote disc = (r − ac)2 − 4a(d− rc). When disc > 0 there are two roots

B̄+,−
∞ =

1

2a

(
r − ac±

√
disc

)
, Ē+,−

∞ = r − aB̄+,−
∞ =

1

2

(
r + ac∓

√
disc

)
If r > ac at least one of them is positive. If rc > d, B̄−∞ is negative.
System (6)-(7) has three equilibria (0, d/c), (B̄−∞, Ē

−
∞) and (B̄+

∞, Ē
+
∞).

The qualitative analysis shows that :

2

1. If r < d/c and disc < 0, equilibrium (0, d/c) is locally asymptotically stable (l.a.s.).
Any trajectory starting in the positive quadrant tends to it. In this case, the fish
population goes extinct at large fishing effort.

2. If r < d/c and disc > 0, equilibrium (0, d/c) is l.a.s., but of the two positive
non trivial equilibria, (B̄−∞, Ē

−
∞) and (B̄+

∞, Ē
+
∞), the first one with the smallest fish

biomass is a saddle point and the second one is a stable equilibrium. In that case,
there exists a separatrix in the phase plane. According to the initial condition, the
trajectory tends either to equilibrium (0, d/c), i.e. fish extinction, or to (B̄+

∞, Ē
+
∞),

i.e. to a durable fishery.

3. If r > d/c, equilibrium (0, d/c) is unstable, there exists a single positive equilibrium
(B̄+
∞, Ē

+
∞) which is l.a.s. Any trajectory starting in the positive quadrant tends to

(B̄+
∞, Ē

+
∞). In this case, the fish population as well as the fishing effort tend to

positive constant values. This corresponds to a durable fishery.

1.2. Inverse problem

To identify the parameters is difficult; but observing the system for a few days we can
hope to adjust the parameters to fit the observations. The fishing effort E and the catch
qBE can be observed daily easily, implying that B̄ and Ē can be observed at any instant
of time ti, i ∈ I, say {bi, ei}i=1,..,I where I is an integer.
A brute force method is to solve the optimisation problem

min
r,a,c,d
{
∑
i∈I

|B̄(ti)− bi|2 + |Ē(ti)− ei|2 : subject to (6) and (7)} (8)

1.3. Uncertainties

For robustness we need to allow uncertainties on the data, and in the model, and con-
sequently the solution of (8) is stochastic; this means that {B̄0, Ē0} are given Gaussian
random variables and to allow for uncertainty in the model we change r and d into
stochastic processes rdt + µdW 1

t , and ddt + µdW 2
t . For simplicity we assume that all

standard deviations are equal to µ, and all variables are uncorrelated. Let bt, et be the
random processes which represent B̄(t), Ē(t). The problem is now

minr,a,c,d J(r, a, b, c) :=
1

2

∑
i=1,..,I

E
[
|bti − bi|2 + |eti − ei|2

]
: subject to (9)

dbt = bt
(
(r − abt − et)dt+ µdW 1

t

)
, b(0) = b0 (10)

det = (d− etc− btet)dt+ µdW 2
t , e(0) = e0, (11)

where W 1
t ,W

2
t are normal Gaussian processes and {b0, e0} are Gaussian random variables

of standard deviation µ and given means. W 1 andW 2 allow for uncertainties in the model.
It is pointless to assume that bi, ei, i = 1, .., I are random because it just shifts J as bti , eti
are random and uncorrelated to bi, ei, i = 1, .., I .

3

2. Solution of the deterministic case

In absence of uncertainties, the optimisation problem (9) has 4 unkowns and easily com-
putable gradients of the cost function with respect to these. The derivative of J with
respect to one parameter, for example r, is found by letting all parameter variations to
zero in the differential δJ except the variation of the one parameter set to 1, here δr = 1,
δa = δc = δd = 0:

δJ =
∑
i=1,..,I

|b(ti)− bi|δb(ti) + |e(ti)− ei|δe(ti), (12)

dδb

dt
= bδr + rδb− b2δa− 2abδb− eδb− bδe, (13)

dδe

dt
= −eδc− cδe+ δd− eδb− bδe, (14)

2.1. Discretization

The time interval [0, T] is split into intervals of size δt. The following semi-implicit scheme
is used for bm+1 ≈ b((m+ 1)δt), em+1 ≈ e((m+ 1)δt):

em+1 = (em + d δt)/(1 + c δt+ bmδt)
bm+1 = bm(1 + r δt− em+1δt)/(1 + abmδt) (15)

The scheme preserves the positivity of b, e when δt is not too large, i.e. δt(r−em+1) > −1.
Hence, in case of multiple equilibrium when t→∞, it will select only the positive one.

2.2. Numerical test

We ran a forward problem up to T = 10 with r = 2, a = 1, c = 1, d = 1.1, with initial con-
ditions b0 = 0.1, e0 = 0.1 and obtained [b(t1), e(t1), b(t2), e(t2)] = [0.146, 0.307, 0.350, 0.644]
at t1 = T/40, t2 = T/10.
Then knowing that [b1, e1, b2, e2] = [0.146, 0.307, 0.350, 0.644] at t1 = T/40, t2 = T/10, we
will recover the parameters [r, a, c, d] up to 3 digits by using

• either the quasi-Newton method broyden1 from the Python library scipy; this
function requires an initial guess, here [r, a, c, d] = [1.2, 0.5, 0.5, 0.5];

• or by using the least-square method least squares from the same Python library.
It is slightly less precise but the initial guess can be far away from the solution,
here [0.5, 0.5, 0.5, 0.5].

The method works equally when [r, a, c, d] = [0.8, 1, 1, 1.1] which is a case r < d/c and
disc < 0, asymptotic to a biomass tending to zero. The computing times for broyden1

and least squares are almost instantaneous on a macbook 2019, i7@2.7Ghz. However
porting this strategy on a tablet or smart phone is not simple.

4

Figure 1: Evolution of the fish biomass b(t) and the fishing effort e(t) as a function of time, in the
deterministic case when [r, a, c, d] = [2, 1, 1, 1.1]. Top: when e0 = b0 = 0.1 it is a favourable case where
fish biomass will not be depleted from the coast. Bottom: when [r, a, c, d] = [0.8, 1, 1, 1.1] fish biomass
will disappear because r < d/c and disc < 0.

Figure 2: The Neural Network has two hidden layers each with 50 neurons and separated by batch-
normalisation. Right: typical convergence curve of the loss function.

5

2.3. Solution by statistical learning of a Neural Network

For an introduction to Statistical Learning with Neural Networks see [3]. We have used
a 4-layer Neural Network (see Figure 2). The input layer has 6 inputs; the two hidden
layers have 50 neurons each and the output layer has 4 nodes. All layers use the ReLU
activation.The two hidden layers are separated by a batch-normalisation. Several config-
urations have been tested, without much performance changes as long as the network is
neither too big nor too small. One must implement to 5 following steps.

1. Write a Python function fish(r,a,c,d) which returns [b(t1), e(t1), b(t2), e(t2)].

2. Run k=1..K=5000 randomly selected cases [rk, ak, ck, dk]→ [bk(t1), ek(t1), bk(t2), ek(t2)].
The cases are uniformly random between 0.5 and 1.5 times the deterministic values.

3. Set up a Neural Network which returns (output) [r, a, c, d] from the knowledge (in-
put) of [b(t1), e(t1), b(t2), e(t2)]. We denote by NN([bk(t1), ek(t1), bk(t2), ek(t2)]) the
output of the Neural Network when [b(t1), e(t1), b(t2), e(t2)] is the input.

4. Train the Neural Network, i.e. adjust the Neural Network parameters by

min
param−NN

K∑
k=1

‖NN([bk(t1), ek(t1), bk(t2), ek(t2)])− [rk, ak, ck, dk]‖2.

The parameters of the Neural Network, denoted param − NN are adjusted by
“epoch<300 iterations” of the stochastic gradient method ADAM with batch=32.

5. Test precision on 20 new cases NN([bk(t1), ek(t1), bk(t2), ek(t2)]) which should give
[rk, ak, ck, dk], k > K, for results; 9 of the 20 tests are given in Table 1.

We have implemented this algorithm using Anaconda and Keras [2].
On this test an average absolute error of [0.0231, 0.0803, 0.0310, 0.0208] was obtained
on [r, a, c, d], which corresponds to an average relative error of [1.2%, 8.1%, 3.2%, 2.1%] .
The loss, i.e. the value of the least square functional, at the end of the 200 iterations
was 0.0976. In particular the Neural Network predicted [2.034, 0.966, 0.995, 1.076] for the
parameters instead of [2, 1, 1, 1.1]. More predicted values compared to the exact ones are
shown on Table 1. The behaviour of the Neural Network is somewhat identical whether
it is applied to the favorable case for fishing to recover [r, a, c, d] = [2, 1, 1, 1.1], or the
unfavourable case [r, a, c, d] = [0.8, 1, 1, 1.1] (see Figure 1).
Finally we tested the same method when 3 time observations are made, at T/40, T/20
and T/10. The relative precision is now [1.2%, 7.8%, 3.0%, 1.5%], i.e. not significantly
better, and on the same test it found [2.047, 0.963, 0.987, 1.085] instead of [2, 1, 1, 1.1].

3. Solution of the stochastic case with a Neural Network

Assume that K cases are selected with random Gaussian values for r, c, b0, e0. If, for
each case, we compute b(ti), e(ti), i = 1, 2 and then call broyden1 to solve the inverse
problem and recover the parameters and then compute their means, naturally we will find
the means of r, c, b0, e0 which we started with. But if we apply this strategy and solve

6

Table 1: Predicted values of the parameters by the Neural Network (left) compared with the true values
(right) for the deterministic case with two time observations t1 = T/40, t2 = T/10.

rNN aNN cNN dNN r a c d
1.651420 1.042426 1.342459 1.110219 1.627553 0.909005 1.359518 1.134184
2.326172 0.965113 0.543889 0.970741 2.349616 1.134547 0.575001 0.955206
2.068649 1.007492 1.280194 0.821724 2.086530 1.052534 1.284898 0.819498
1.859846 1.0944314 0.701080 0.809406 1.919166 1.343179 0.771271 0.812739
2.378332 1.152289 1.047873 1.179524 2.365285 1.285161 1.0763382 1.197219
2.230558 0.990877 0.466343 0.891779 2.182284 0.752584 0.545285 0.875104
1.788337 0.947444 0.862118 0.888756 1.800103 0.831122 0.924209 0.924773

Table 2: The random case: Relative deviation from the deterministic solution as a function of the
standard deviation µ.

µ r a c d
0.125 0.046 0.20 0.09 0.03
0.25 0.07 0.19 0.19 0.08
0.5 0.09 0.19 0.17 0.08

the inverse problem with a Neural Network trained from the random parameters, i.e.:
r, c, b0, e0 → b(ti), e(ti), i = 1, 2 then using the Neural Network on new cases will only
produce parameters r, a, c, d, b0, e0 randomly near the true values. It is indeed desirable
to have one trained Neural Network for all random case but then it is also difficult to
evaluate its efficiency.
Otherwise there is hardly anything to change to treat the stochastic case. For every one
of the K cases, Gaussian random rt, ct, b0, e0 are selected and the Neural Network training
is done with these. Table 2 shows the evolution of the deviations from the deterministic
answers as a function of the standard deviation µ. On Figure 3 two solutions of (9) are
shown, one with µ = 0.125 and the other with µ = 0.5.

4. Solution of the stochastic case by standard methods

A direct solution of the problem by a gradient method is unaffordable because it requires
to solve the dynamical system a great number of time so as to compute accurately the
means by a Monte-Carlo method.

Another way is to use the Kolmogorov partial differential equation for the probability
density of the process [bt, et]. However the Kolmogorov equation is very hard to solve
numerically because the initial condition is a sharp Gaussian curve centred at b0, e0 and
it is posed in an unbounded domain.

A third way is to use dynamic programming (see [5], for example), or very similarly to
compute E|bti− bi|2 +E|eti−ei|2 by Itô calculus. Itô tells us that E|bti− bi|2 +E|eti−ei|2

7

Figure 3: Response of the Neural Network to the quest for a set of parameters to fit the stochastic
solution of the dynamical system with the mean of [r, a, c, d] equal to [2, 1, 1, 1.1] and the mean of [b0, e0]
equal to [0.1, 0.1]. Top: the standard deviation is µ = 0.125. Bottom: µ = 0.5.

is also Eb0,e0 [u
i(b0, e0, 0)] where ui is solution of P(ui) = 0 where

P(ui) := ∂tu
i + b(r − ab− e)∂bui + (d− ce− be)∂eui +

µ2

2
(b2∂bbu

i + ∂eeu
i),

t ∈ [0, ti), with ui(b, e, ti) = |b− bi|2 + |e− ei|2, ∀{b, e} ∈ R2. (16)

A gradient based method may be used because the sensitivity of u with respect to the
parameters can be computed by solving the same PDE with different right hand sides
and zero conditions at ti:

P(ui,r) = −b∂bui, P(ui,a) = b2∂bu
i, P(ui,c) = e∂eu

i, P(ui,d) = −∂eui,

4.1. Numerical implementation and Results

There too, the fact that (16) is set in R2 and that |bti − bi|2 + |eti − ei|2 is not square
integrable in R2 is a serious difficulty. One needs to localise the problem and multiply
|b − bi|2 + |e − ei|2 by a cut-off function like 1(0<b<1)×(0<e<1), knowing that b and e are
unlikely to take greater values. A second difficulty is that it is essential to use a numerical
method which provides always positive values for u. The following Eulerian-Lagrangian
scheme is used to approximate (16) in time (u is generic for ui, i = 1, . . . , I and um

approximates u(b, e,mδt)):

uM (b, e) = (|b− bi|2 + |e− ei|2)1(0<b<1)×(0<e<1),

1

δt
um|b,e +

µ2

2
(b2∂bbu

m + ∂eeu
m)

∣∣∣∣
b,e

=
1

δt
um+1(b− b(r − ab− e)δt, e− (d− ce− be)δt).

The system is localised in (0, 2.5)×(−3, 2) and discretised in space by the Finite Element
Method of degree 1. Then the optimisation problem is solved using 15 iterations of the

8

software IPOPT, as implemented in FreeFem++[4]. As for the Neural Network we impose
the same constraints on the parameters:

1 ≤ r ≤ 3, 0.5 ≤ a ≤ 1.5, 0.5 ≤ c ≤ 1.5, 0.6 ≤ d ≤ 1.7.

Results are shown in Table 3 and on Figure 4. For instance, for µ = 0.125, IPOP

Table 3: Left side: without uncertainty on b0, e0. Right side: with uncertainty

µ r a c d r a c d
0.01 1.953 0.743 1.474 1.464 1.806 1.5 1.5 1.455
0.125 1.760 1.027 0.648 0.854 1 1.5 1.5 1.229
0.25 1.803 1.5 1.5 1.368 1 1.5 0.5 1.524
0.5 1.702 1.5 0.5 1.558 1 1.5 0.5 1.701

found, after 15 iterations: u = 0.0103, u,r = 0.00985, u,a = −0.0009738, u,c = 0.01053,
u,d = 0.0667 at b0, e0. Notice from Figure 4 that a dense grid is needed, here 100 × 80;
the problem is numerically hard. We observe a strong dependence on the domain size,
grid size and constraints on the parameters. Consequently, the results of Table 3 and not
truthworthy.
We tested the method with b0, e0 deterministic or random. It is clear that the problem is
much harder when b0, e0 are also random and there does not seem to be a minimum for
u. Notice that a hits always its box constraint. So we tried a final test: b0, e0 and a = 1
fixed; when µ = 0.125 the result is: r = 1.84, a = 1, c = 1.38, d = 1.2.

Figure 4: Color map of u in (0, 2.5) × (−3, 2) when the standard deviation is (from left to right) µ =
[0.01, 0.125, 0.25, 0.5].

9

5. Conclusion

An efficient model for the fish biomass at one costal station is a useful tool for the
regulation of fishing. However, as it is empirical, a good set of parameters is needed.
These can be deduced from the observation of the fishing effort and the yield of fishing
for a few days by solving an inverse problem which in principle is set in a stochastic
framework due to the uncertainties of the data and of the model.
It is found in this study that solving the inverse problem by statistical learning has several
advantages:

• It is simple to do, it is portable on tablets and phones.

• It performs well.

• It is relatively robust to randomness in the data and the model, in the sense that
the methodology is the same for the deterministic and for the random case and the
training on random samples is already part of the methodology in Neural Networks.

A contrario, the standard tools of stochastic control are very difficult to apply.
In the future we will try to extend the approach to more challenging multi-site fishing
control with 2 ODE replaced by a large system of ODE [6].

Acknowledgement

We would like to thank Gilles Pagès from the Sorbonne university for a valuable discussion
on the Itô calculus of section 4.

References

[1] T. Brochier, P. Auger, D. Thiao, A. Bah, S. Ly, T. Nguyen Huu, P. Brehmer. Can
overexploited fisheries recover by self-organization? Reallocation of the fishing effort
as an emergent form of governance. Marine Policy, 95 (2018) 46-56.

[2] F. Chollet : Deep learning with Python. Manning publications (2017).

[3] I. Goodfellow, Y. Bengio and A. Courville (2016): Deep Learning, MIT-Bradford.

[4] F. Hecht (2012): New development in FreeFem++, J. Numer. Math., 20, pp. 251-
265. (see also www.freefem.org.)

[5] M. Lauriere and O. Pironneau : Dynamic programming for mean-field type control
J. Optim. Theory Appl. 169 (2016), no. 3, 902–924.

[6] A. Moussaoui, M. Bensenane, P. Auger, A. Bah, On the optimal size and number of
reserves in a multi-site fishery model, Journal of Biological SystemsVol. 23, No. 01,
pp. 31-47 (2015)

10

	Presentation of a fishery model with variable price
	Solution of the deterministic case
	Solution of the stochastic case with a Neural Network
	Solution of the stochastic case by standard methods
	Conclusion

