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Abstract
We propose a new approach consisting in combining
genetic algorithms and regret-based incremental prefer-
ence elicitation for solving multi-objective combinato-
rial optimization problems with unknown preferences.
For the purpose of elicitation, we assume that the de-
cision maker’s preferences can be represented by a pa-
rameterized scalarizing function but the parameters are
initially not known. Instead, the parameter imprecision
is progressively reduced by asking preference queries
to the decision maker during the search to help identify
the best solutions within a population. Our algorithm,
called RIGA, can be applied to any multi-objective
combinatorial optimization problem provided that the
scalarizing function is linear in its parameters and that
a (near-)optimal solution can be efficiently determined
when preferences are known. Moreover, RIGA runs in
polynomial time while asking no more than a polyno-
mial number of queries. For the multi-objective trav-
eling salesman problem, we provide numerical results
showing its practical efficiency in terms of number of
queries, computation time and gap to optimality.

Introduction
Preference-based search is an important line of research in
Artificial Intelligence with various applications to invest-
ments planning, resource allocation, group configuration,
recommendation systems and electronic commerce (see e.g.,
(Junker 2002; Auger et al. 2009; Roijers and Whiteson 2017;
Marinescu, Razak, and Wilson 2017; Zintgraf et al. 2018)).
The increasing complexity of applications encountered in
Artificial Intelligence and other areas of Computer Sci-
ence significantly complicates the task of decision makers
(DM) who need to find the best solution to their problems.
In many practical search problems, the evaluation of solu-
tions involves several aspects or points of view correspond-
ing to multiple objectives (e.g., time, cost, distance, risk).
Multi-objective combinatorial optimization (MOCO) is con-
cerned with problems involving several (conflicting) objec-
tives/criteria to be optimized simultaneously (e.g., minimiz-
ing costs while maximizing profits).

In MOCO problems, without preference information, we
only know that the best solution for the decision maker (DM)

is among the Pareto-optimal solutions1. While the first con-
tributions mainly focused on the generation of all Pareto op-
timal solutions, tackling problems with many objectives has
required the development of new methods to avoid compu-
tational overhead due to the high number of Pareto optimal
solutions. Many of these new contributions concern the inte-
gration of preferences. However most of them focus on the
elaboration of efficient methods to identify the best solution
given a preference model, considering preference elicitation
as a preliminary stage. In this paper, we address both issues
simultaneously. The idea is to collect preference informa-
tion during the search to focus on promising solutions while
reducing the elicitation burden by only asking queries to dis-
criminate between the solutions found during the search.

Preference elicitation on combinatorial domains is an ac-
tive topic that has been recently studied in various con-
texts, e.g. in voting problems (Benabbou and Perny 2016;
Benabbou et al. 2016), in stable matching problems (Drum-
mond and Boutilier 2014), in constraint satisfaction prob-
lems (Boutilier et al. 2006), in Markov Decision Processes
(Regan and Boutilier 2011; Weng and Zanuttini 2013;
Gilbert et al. 2015) and in multi-objective optimization prob-
lems (Korhonen 2005; Kaddani et al. 2017; Benabbou and
Perny 2018). In this paper, we assume that the DM’s pref-
erences can be represented by a parameterized scalarizing
function that is initially not known, and we study the po-
tential of incremental elicitation (White III, Sage, and Do-
zono 1984) in this context. The idea is to select prefer-
ence queries one at a time, to be as informative as possi-
ble, so as to progressively reduce the set of admissible pref-
erence parameters until determining a (near-)optimal solu-
tion. We focus here on regret-based incremental elicitation,
an approach recently designed within the Artificial Intelli-
gence community, as it was proved to be very effective in
practice (Wang and Boutilier 2003; Boutilier et al. 2006;
Benabbou and Perny 2015). More precisely, we propose a
new interactive solving method that uses regret-based incre-
mental elicitation techniques to solve hard MOCO problems
with unknown preference parameters. For this purpose, we
focus on genetic algorithms, which are widely applied to nu-

1A solution is called Pareto-optimal if no other solution is better
on all objectives while being strictly better on at least one objective.



merous hard combinatorial optimization problems.
The paper is organized as follows: Firstly, we conduct

a literature overview on interactive genetic algorithms and
regret-based solving methods. Secondly, we recall the gen-
eral principle of incremental elicitation driven by the min-
imax regret decision criterion. Thirdly, a new regret-based
interactive genetic algorithm is proposed and illustrated on
a small instance of the Multi-objective Traveling Salesman
Problem (MTSP). Finally, we provide numerical tests show-
ing its practical efficiency, comparing its performances with
that of several existing methods.

Related Works
In the past decade, integrating preferences into genetic algo-
rithms has become increasingly popular, see e.g., (Branke et
al. 2008; Xin et al. 2018). Due to the high number of dif-
ferent interactive methods that has been developed, (Xin et
al. 2018) have recently established a taxonomy identifying
the important factors to differentiate these methods. Four es-
sential design factors are defined: interaction pattern (how
the interaction with the DM is scheduled during the run),
preference information (how the preference information is
obtained from the DM), preference model (utility function,
dominance relation or decision rules), and search engine
(how the interesting solutions are produced, e.g. mathemati-
cal programming techniques or heuristics).

For the new method developed in this paper, the interac-
tion with the DM is done during the run, the preference in-
formation is retrieved from pairwise comparisons, the pref-
erence model is a utility function and the search engine can
be both mathematical programming techniques or heuristics.
To the best of our knowlegde, the existing methods that share
the same factors are: the Interactive Evolutionary Meta-
heuristic (IEM) (Phelps and Köksalan 2003), the interac-
tive Pareto Memetic Algorithm (IPMA) (Jaszkiewicz 2004),
the Progressively Interactive Evolutionary Multi-Objective
approach using Value Functions (PI-EMOVF) (Deb et
al. 2010), the Necessary-preference-enhanced Evolutionary
Multi-objective Optimizer (NEMO) (Branke et al. 2015), the
Brain-Computer Evolutionary Multi-objective Optimization
Algorithm (BC-EMOA) (Battiti and Passerini 2010) and the
interactive evolutionary multi-objective algorithm with pref-
erence model called INSPM (Pedro and Takahashi 2014).
However, all but the first two of these methods are adap-
tations of NSGA-II (Deb et al. 2002), which is the refer-
ence algorithm for solving continuous multi-objective prob-
lems, and they have not been tested in MOCO problems.
The first two methods only consider utility functions based
on linear or Chebyshev aggregation. In IEM, linear program-
ming techniques are used to learn the parameters of the util-
ity function, whereas an internal genetic algorithm is em-
ployed in IPMA. In (Jaszkiewicz 2004), IEM and IPMA
were directly compared and IPMA achieved better results
on the considered MSTP instances. IPMA follows the clas-
sical steps of genetic algorithms while generating pairwise
comparison queries periodically to reduce the set of possi-
ble utility functions. The frequency of preference queries is
controlled by a comparison probability, which is progres-
sively reduced during the search. Instead, our algorithm uses

regret-based incremental elicitation techniques developed in
the AI community to select informative preference queries
and generate promising solutions during the search. As a re-
sult, our method generates at most 26 queries on existing
MTSP instances with 300 cities and 7 objectives (see the
numerical section) whereas IPMA needs between 30 and 60
queries on smaller instances (150 cities and 6 objectives).
Moreover, we propose to apply the crossover and mutation
operators on the preference parameters instead of solutions
to better cover the space of admissible utility functions.

Recently it has been proposed to combine search and
regret-based incremental elicitation by asking preference
queries during the construction of the (near-)optimal solu-
tion (Benabbou and Perny 2015). The basic principle con-
sists in constructing the optimal solution from optimal sub-
solutions using the available preference information, ask-
ing new preference information only when necessary. In
this paper, we explore another way by considering non-
constructive algorithms. More precisely, we introduce an
interactive genetic algorithm that uses incremental elicita-
tion techniques to select individuals from populations. The
main novelty is to make use of metaheuristics instead of
constructive algorithms, which enables to tackle preference-
based combinatorial optimization problems for which no ef-
ficient exact algorithm is known. Moreover, the combination
of preference elicitation and genetic algorithms has several
specific advantages. First, preference queries only involve
complete feasible solutions. This provides at least two ad-
vantages: 1) solutions are easier to compare, and 2) no inde-
pendence assumption is required in the definition of prefer-
ences. The latter point is of special interest when preferences
are represented by non-linear decision models because the
cost of partial solutions is often a poor predictor of the ac-
tual cost of their extensions. Another interest of combining
regret-based incremental elicitation and genetic algorithms
is to produce interactive methods with performance guar-
antees: the proposed method 1) generates no more than a
polynomial number of queries when the population size and
number of generations are polynomial (as preference infor-
mation is only used to discriminate between solutions within
a population), and 2) runs in polynomial time for MOCO
problems that can be solved (exactly or approximately) in
polynomial time when preference are known.

More recently, it has been proposed to combine search
and regret based incremental elicitation in a different way
(Benabbou and Lust 2019). The idea is to identify informa-
tive queries by exploiting the extreme points of the polyhe-
dron representing the admissible preference parameters; this
new method is called IEEP for Incremental Elicitation based
one Extreme Points. Our algorithm and IEEP are both gen-
eral in the sense that they can be applied to any MOCO prob-
lem, provided that the scalarizing function is linear in its pa-
rameters (e.g., a weighted sum, a Choquet integral) and that
a (near-)optimal solution can be efficiently determined when
preferences are known. However, these two methods give
different performance guarantees: IEEP is an exact exponen-
tial time method that may generate an exponential number
of queries, whereas our method is a poly-time heuristic that
asks no more than a polynomial number of queries. These



two procedures will be compared in the numerical section.

Background and Notations
In this paper, we consider a general MOCO problem with n
objective functions yi, i ∈ {1, . . . , n}, to be minimized. In
this problem, any solution x ∈ X is associated with a per-
formance vector y(x) = (y1(x), . . . , yn(x)) ∈ Rn, where
X is the feasible set in the decision space and yi(x) is the
evaluation of x on the i-th objective.

Here we assume that the DM’s preferences over solutions
can be represented by a scalarizing function fω that is linear
in its parameters ω (e.g., weighted sums, Choquet integrals).
Formally, x ∈ X is preferred to x′ ∈ X iff fω(y(x)) ≤
fω(y(x′)). We also assume that parameters ω are initially
not known. Instead, we are given a (possibly empty) set Θ
of preference statements of type (a, b) ∈ Rn × Rn, mean-
ing that the DM prefers vector a to vector b. Given Θ, we
consider the set ΩΘ of all parameters ω that are compatible
with Θ the set of available preference information. Formally,
we have ΩΘ = {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}. Since
fω is linear in its parameters ω, we can assume that ΩΘ is a
convex polyhedron without loss of generality.

To make decisions with partial preference information, we
use the minimax regret criterion (MMR) defined using pair-
wise max regrets (PMR) and max regrets (MR) as follows:

Definition 1 For any two solutions x, x′ ∈ X :
PMR(x, x′,ΩΘ) = maxω∈ΩΘ

{fω(y(x))− fω(y(x′))}
MR(x,X ,ΩΘ) = maxx′∈X PMR(x, x′,ΩΘ)
MMR(X ,ΩΘ) = minx∈X MR(x,X ,ΩΘ)

The set arg minx∈X MR(x,X ,ΩΘ) is the set of all opti-
mal solutions according to the minimax regret decision cri-
terion. Recommending any of these solutions allow to min-
imize the worst-case loss; in particular, these solutions are
necessarily optimal according to the DM’s preferences when
MMR(X ,ΩΘ) = 0 holds.

Note that MMR(X ,ΩΘ) can only decrease when adding
new preference information in Θ. This observation has led
to the following elicitation approach: reduce the parame-
ter imprecision by iteratively asking queries to the DM un-
til the value MMR(X ,ΩΘ) drops below a given threshold
δ ≥ 0 representing the maximum allowable gap to opti-
mality (Boutilier et al. 2006); if we set δ = 0, then we
obtain the (optimal) preferred solutions at the end of the
execution. This approach, sometimes referred to as regret-
based incremental elicitation, was efficiently used in vari-
ous decision contexts, such as multicriteria decision mak-
ing and voting problems (e.g., (Lu and Boutilier 2011;
Benabbou, Perny, and Viappiani 2017)).

A Regret-Based Incremental
Genetic Algorithm

To implement the regret-based incremental elicitation ap-
proach, one need to compute the value MMR(X ,ΩΘ) at
every iteration step of the procedure. For MOCO problems,
this may induce prohibitive computation times since it may
require to compute the pairwise max regrets for all pairs of

Algorithm 1 : Regret-Based Incremental Genetic Algorithm
IN ↓ δ: threshold; Θ: a set of preference statements; fω: a
scalarizing function with unknown parameters ω.
OUT ↑: a solution in X .
- -| Initialization of the admissible parameters:
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}
- -| Generation of the initial population:
P ← ComputeExtremePoints(ΩΘ)
- -| Genetic Algorithm:
for 1 to M do
P ← P ∪ Crossover&Mutation(P, S, µ)
while MMR(XP ,ΩΘ) > δ do

- -| Ask the DM to compare two solutions in XP :
(x, x′)← Query(XP )
- -| Update preference information:
Θ← Θ ∪ {(y(x), y(x′))}
ΩΘ ← {ω : ∀(a, b) ∈ Θ, fω(a) ≤ fω(b)}

end while
- -|Move to the next population:
x∗ ← arg minx∈XP

MR(x,XP ,ΩΘ)
P ← Selection(x∗, P )

end for
return x∗

distinct solutions in X (see Definition 1). Therefore, we pro-
pose instead to combine search and regret-based incremental
elicitation to reduce both computation times and number of
preference queries. More precisely, we now introduce an in-
teractive genetic algorithm that uses regret-based incremen-
tal elicitation techniques to select individuals from popula-
tions. Our algorithm, called RIGA for Regret-based Incre-
mental Genetic Algorithm, follows the traditional scheme of
genetic algorithms but differs in the following way:
• Our populations P are composed of pairs (ω, xω), where
ω is a possible instance of the preference parameters and
solution xω is fω-optimal (or almost).

• The crossover and mutation operators are applied on pa-
rameter instances not on solutions.

More precisely, RIGA takes as input a MOCO problem, a
threshold δ ≥ 0, a scalarizing function fω with unknown
parameters ω and an initial set Θ of preference statements.
It proceeds as follows (see Algorithm 1):

Initial Population. To generate the initial population, we
have to generate a set of possible preference parameters ω
and then determine a solution xω that is (near-)optimal for
the precise scalarizing function fω using an existing solving
algorithm. These parameters could be generated uniformly
at random but instead we propose to use the extreme points
of polyhedron ΩΘ to better cover the feasible region.

Crossover and Mutation. As already mentioned, we per-
form crossovers and mutations on parameter vectors (not
on solutions), and for every resulting parameter vector ω,
we proceed as follows: we determine a solution xω that is
fω-optimal (or almost) using an existing efficient solving



method, and then we add the pair (ω, xω) in population P .
To obtain a population of the desired size (say S), we create
new parameter vectors by means of convex combinations of
parameter vectors in P . This crossover operator is of partic-
ular interest in optimization problems with imprecise pref-
erence parameters because it only generates new admissible
parameters from admissible parameters. In our experiments,
we create a new parameter vector ω from two parameter vec-
tors ω′, ω′′ in P as follows: ω = λω′ + (1 − λ)ω′′ where
λ ∈ (0, 1) is generated uniformly at random. Then, given a
mutation rate µ, we perform Gaussian mutations on single
objectives which yield very good results, but more sophisti-
cated mutation operators would be worth investigating.

Selection. To create the new generation, we select K
promising pairs from population P as follows:

• First, we determine a (near-)optimal solution in popula-
tion P by means of regret-based incremental elicitation.
More precisely, let XP be the set of all solutions in P .
While MMR(XP ,ΩΘ) > δ, the DM is asked to com-
pare two solutions x, x′ ∈ XP and the set ΩΘ of admissi-
ble parameters is updated by inserting the linear constraint
fω(x) ≤ fω(x′) (or fω(x) ≥ fω(x′) depending on her
answer). OnceMMR(XP ,ΩΘ) drops below δ, we select
a solution that is optimal for the minimax regret criterion,
i.e. a solution x∗ in arg minx∈XP

MR(x,XP ,ΩΘ).

• Then, we compute the distance in objective space between
x and x∗ for every pair (ω, x) in P and we select the K
pairs that minimize the distance to breed the next gener-
ation. In our experiments, we use the Euclidean distance
but other distances would be worth investigating.

Termination. RIGA stops after M steps and returns a so-
lution arbitrary chosen in arg minx∈XP

MR(x,XP ,ΩΘ),
where P is the last generated population.

Computation Times and Number of Preference Queries.
Our algorithm has different tunable parameters: S the size
of the population (generated by crossovers and mutations),
K < S the number of pairs selected for the next genera-
tion and M the number of iterations steps. For any MOCO
problem with existing solving methods that run in polyno-
mial time (in the problem size), we can ensure that RIGA
also runs in polynomial time and asks no more than a poly-
nomial number of queries by carefully setting these tunable
parameters. More precisely, if S the size of the population
is also polynomial, then the selection step will generate at
most S2 comparison queries in order to determine x∗ the
preferred solution in the population. Then it is sufficient that
M the number of iteration steps be also polynomial to ob-
tain the desired performance guarantees. To give an exam-
ple, for the MTSP with a weighted sum, we can solve PMR-
optimization problems using linear programming and ap-
ply the Lin-Kerninghan heuristic (Lin and Kernighan 1973)
to efficiently solve the corresponding MOCO problem with
precise preferences.

For illustration purposes, we now present an execution of
our algorithm on a small MTSP instance:
Example 1 Consider the instance of the MTSP depicted in
Figure 1, which includes 6 vertices and n = 3 additive cost
functions to be minimized. In this optimization problem, the
set X of feasible solutions is the set of all Hamiltonian cy-
cles, i.e. cycles that include every node exactly once. We as-
sume here that the DM’s preferences over Hamiltonian cy-
cles can be represented by a weighted sum with the hidden
weight ω∗ = (0.2, 0.1, 0.7). We now apply RIGA on this in-
stance with δ = 0, S = 4, K = 2, M = 2.

Figure 1: A MTSP instance with 6 vertices and 3 objectives.

We start the procedure with an empty set of preference
statements (i.e. Θ = ∅); hence ΩΘ the set of preference pa-
rameters is formally defined by:

ΩΘ = {ω = (ω1, ω2, ω3) ∈ (0, 1)3 | ω1 + ω2 + ω3 = 1}.
In Figure 2, polyhedron ΩΘ is represented by the triangle
ABC in the space (ω1, ω2); ω3 is implicitly defined by the
constraint ω3 = 1− ω1 − ω2.

ω1

ω2

•ω
∗

•B1

•A

0
•
C

1

Figure 2: Initial set ΩΘ.

Initial population: We generate the initial population
by determining one optimal solution for every extreme
point of polyhedron ΩΘ. For this problem, we have P =
{(ωA, xA), (ωB , xB), (ωC , xC)} where ωA = (0, 0, 1),
ωB = (0, 1, 0), ωC = (1, 0, 0), y(xA) = (23, 34, 26),
y(xB)=(20, 30, 31), and y(xC)=(17, 34, 34).



First iteration step: First, we must perform crossovers
and mutations to obtain a population of size S = 4; since
|P | = 3, we have to generate one more pair. Assume
that vector ω′ = (0.05, 0.45, 0.5) is generated by RIGA
by applying the crossover operator on ωB = (0, 1, 0) and
ωA = (0, 0, 1) and then performing a Gaussian mutation on
the first objective. Then, weighted sum fω′ is optimized by
RIGA, resulting in the generation of solution x′ whose cost
vector is (21, 32, 27) and the insertion of (ω′, x′) in P .

Now the selection step begins. We must ask preference
queries to the DM until MMR(XP ,ΩΘ) ≤ δ = 0, where
XP = (xA, xB , xC , x′). Since MMR(XP ,ΩΘ) = 4 > 0,
we ask the DM to compare two solutions in XP , say xA
and xB . Since fω∗(y(xB)) = 28.7 > fω∗(y(xA)) =
26.2, the DM answers: “solution xA is better than solu-
tion xB”. Then Θ the set of preference statements is up-
dated by adding the pair (y(xA), y(xB)); thus we have
Θ = {((23, 34, 26), (20, 30, 31))}. Moreover, ΩΘ the set of
admissible parameters is restricted by imposing the linear
constraint fω(y(xA)) ≤ fω(y(xB)), i.e. ω2 ≤ 5

9 −
8
9ω1.

Now ΩΘ is represented by the triangle ADE in Figure 3.

ω1

ω2

•ω
∗

•A

0

1−

D•

•E +

1

Figure 3: ΩΘ after 1 query.

Since we have MMR(XP ,ΩΘ) = 0.75 > 0, the DM is
asked again to compare two solutions in XP , say xA and
xC . Here the DM prefers solution xA to solution xC since
we have fω∗(y(xC)) = 30.6 > fω∗(y(xA)) = 26.2. There-
fore we must perform the following updates: we add the pair
((23, 34, 26), (20, 30, 31)) to Θ and we restrict ΩΘ by im-
posing the linear constraint fω(y(xA)) ≤ fω(y(xC)), i.e.
ω2 ≤ 1− 7

4ω1 (see Figure 4 where polyhedron ΩΘ is repre-
sented by ADFG).

ω1

ω2
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•
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1

Figure 4: ΩΘ after 2 queries.

Now we have MMR(XP ,ΩΘ) = MR(xA, XP ,ΩΘ) =
0 ≤ δ. We move to the next population: x∗ = xA and as
K = 2 we need to select one more pair. The closest solution
according to the Euclidean distance is x′ and thus we have
P = {(ωA, xa), (ω′, x′)}.

Second iteration step: Since |P | = 2 and S = 4,
we need to generate two more pairs. Assume that we
obtain (0.08, 0.4, 0.52) and (0.01, 0.1, 0.89) by applying
the crossover operator on ωA and ω′, and then perform-
ing a mutation on the resulting vectors. We then opti-
mize the corresponding weighted sums and we obtain so-
lutions x′′ and x′′′ whose cost vectors are y(x′′) =
(21, 32, 27) and y(x′′′) = (23, 34, 26). Hence we
have P = ((ωA, xA), (ω′, x′), (ω′′, x′′), (ω′′′, x′′′)). Since
MMR(XP ,ΩΘ) = MR(xA, XP ,ΩΘ) = 0 ≤ δ, no
questions are needed at this step. This step ends by setting
x∗ = xa and P ((ωA, xA), (ω′′′, x′′′)).

Thus, after two generations, RIGA stops by returning the
solution x∗ = xA (corresponding to cycle 1 − 4 − 3 − 2 −
5 − 6 − 1) which is actually the optimal solution accord-
ing to the DM’s preferences. Note that only two preference
queries were needed to discriminate between the 60 feasible
solutions (among which 10 are Pareto-optimal).

Experimental Results
In this section, we provide numerical results aiming to es-
timate the performance of RIGA in terms of computation
time (given in seconds), number of queries and gap to op-
timality (expressed in terms of percentage from the optimal
solution). In our experiments, we use existing Euclidean in-
stances of the MTSP with 50 and 300 cities, and n = 3 to 7
objectives2.

The DM’s Preferences. We first assume that the DM’s
preferences over solutions can be represented by a weighted
sum fω with imprecise weights, and we start with an empty
set of preference statements; therefore we initially have
ΩΘ = {ω ∈ Rn+ :

∑n
i=1 ωi = 1}. During the execu-

tion of RIGA, the answers to queries are simulated using a
weighting vector ω randomly generated before running the
algorithm. This weighting vector is generated using the pro-
cedure presented in (Rubinstein 1982) so as to guarantee a
uniform distribution of the weights.

Query Generation Strategy. Recall that, at each itera-
tion step of RIGA algorithm, we ask preference queries to
the DM until the inequality MMR(XP ,ΩΘ) ≤ δ holds,
where XP is the set of all solutions in the current popula-
tion P . Here queries are generated using the Current Solu-
tion Strategy (Boutilier et al. 2006): at each step, the DM is
asked to compare a solution x ∈ XP achieving the mini-
max regret to one of its adversary’s choice (i.e. a solution in
arg maxy∈XP

PMR(x, y,ΩΘ)).

2https://eden.dei.uc.pt/˜paquete/tsp/

https://eden.dei.uc.pt/~paquete/tsp/


Implementation Details. Numerical tests were performed
on a Intel Core i7-8550U CPU with 16 GB of RAM, with a
program written in C++. PMR-optimizations are performed
by CPLEX Optimizer3 and MTSP instances with precise
weights are solved using the Lin-Kernighan heuristic from
the Concorde website4. To generate the initial population,
the library polymake5 is used to determine the extreme
points of polyhedron ΩΘ.

In this section, we will compare the following regret-
based solving procedures:

• RIGA: the proposed algorithm. Due to space constraint,
we only give the results obtained with M = 15 genera-
tions, S = 30 solutions per iteration, K = 5 solutions
selected per iteration, and δ = 0.1, which corresponds to
the best results achieved by RIGA on these instances.

• RIGAS : RIGA where genetic operators are directly ap-
plied to solutions (instead of parameter vectors). Here we
use single point crossovers and Gaussian mutations on
single objectives.

• IEEPδ: the exact solving method introduced in (Benabbou
and Lust 2019) which returns a solution x ∈ X such that
MR(x,X ,ΩΘ) ≤ δ holds at the end of the procedure.

• Two-Phaseδ: a two-phase method which consists in re-
ducing the size of the Pareto front by constructing a “well-
represented” set (Jaszkiewicz 2018) and then applying the
CSS strategy on this set until the minimax regret drops be-
low threshold δ ≥ 0; here we generate sets of size 3000.

In the following tables, the results are averaged over 100
runs and “/” means that the timeout (45 mins) is exceeded.

Firstly, we compare the performances of RIGA and
RIGAS (see Tables 1-2). We observe that RIGAS generates
very few preference queries (at most 5 against 26 for RIGA)
and ends after only one minute (against three minutes for
RIGA). This shows that RIGAS mainly produces solutions
that are quite easy to discriminate without preference infor-
mation (Pareto-dominated solutions); note that RIGA can-
not produce Pareto-dominated solutions when using an exact
solving method to generate new solutions during crossovers
and mutations. Moreover, RIGAS induces an error that is
much larger than that of RIGA (about 20% against at most
2%). Therefore, we can conclude that RIGA generates so-
lutions that are more relevant according to the DM’s maker
preferences. Thus it seems more appropriate to apply genetic
operators on possible parameters rather than applying them
on feasible solutions for solving MOCO problems with un-
known preference parameters.

Secondly, we compare RIGA to IEEPδ . We use two dif-
ferent tolerance thresholds: δ = 0 to obtain the optimal solu-
tion and δ = 0.02 to allow for the same error as RIGA (to be
as fair as possible). In Table 3, we observe that computing

3https://www.ibm.com/analytics/
cplex-optimizer

4http://www.math.uwaterloo.ca/tsp/concorde
5http://polymake.org

n time(s) queries error
3 130.80 17.92 0.04
4 171.14 20.10 0.22
5 178.23 21.88 0.62
6 185.27 24.06 1.12
7 202.23 25.54 1.97

Table 1: RIGA for the MTSP instances with 300 cities.

n time(s) queries error
3 53.08 2.01 18.78
4 62.41 3.58 19.63
5 65.21 3.76 21.29
6 65.75 4.13 19.47
7 67.50 4.89 21.09

Table 2: RIGAS for MTSP instances with 300 cities.

the optimal solution is very costly both in terms of computa-
tion time (the timeout is exceeded for n > 5) and number of
preference queries (56 queries are needed for n = 5). Then,
when comparing Tables 1 and 4, we see that IEEP0.02 is bet-
ter than RIGA on the smaller instances (n = 3 criteria) but
RIGA outperforms IEEP0.02 on the bigger instances; to give
an example, for n = 7 criteria, RIGA is significantly faster
than IEEP0.02 (12 times faster) and both procedures need no
more than 26 queries to solve the problem.

n time(s) queries error
3 156.76 19.77 0
4 445.69 34.00 0
5 1817.68 56.30 0
6 / / /
7 / / /

Table 3: IEEP0 for MTSP instances with 300 cities.

n time(s) queries error
3 50.46 6.47 1.07
4 132.02 10.47 1.16
5 307.87 15.53 0.91
6 802.49 19.80 1.06
7 2336.73 25.67 0.94

Table 4: IEEP0.02 for MTSP instances with 300 cities.

Thirdly, we compare RIGA to Two-Phaseδ with δ = 0.02
(see Tables 1 and 5). In all the settings, RIGA outper-
forms Two-Phaseδ in terms of computation time, number
of queries and error6. This illustrates the efficiency of inter-
weaving search and regret-based elicitation for the determi-
nation of a near-optimal solution in combinatorial domains.

6Note that the error with TwoPhaseδ may exceed 2% since it
focuses on a subset of the Pareto front.

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.math.uwaterloo.ca/tsp/concorde
http://polymake.org


n time(s) queries error
3 182.17 11.55 0.67
4 346.44 18.38 1.16
5 422.79 24.16 1.48
6 542.82 31.86 2.78
7 546.18 36.02 3.78

Table 5: Two-Phase0.02 for MTSP instances with 300 cities.

Finally, we give the results obtained by RIGA when as-
suming that the DM’s preferences are represented by an or-
dered weighted averaging (OWA) operator (Yager 1988):

fω(x) =

n∑
i=1

ωiy(i)(x)

where ω = (ω1, . . . , ωn) ∈ Rn+ and (.) is a permutation
sorting the components of y(x) = (y1(x), . . . , yn(x)) in
decreasing order. Moreover, we use decreasing weights to
model preferences for well-balanced solutions (as the larger
weights are associated with the worst values). Since the
OWA operator is not linear in y(x), we cannot reduce the
multi-objective TSP to a single-objective TSP. Therefore,
to approximately solve the problem with known weights,
we use a simple local search based on the 2-opt neighbor-
hood function (Croes 1958). In addition, to solve the prob-
lem with known weights exactly (to be able to compute the
error), we use a well-known linearization of the OWA oper-
ator with decreasing weights (see (Ogryczak and Sliwinski
2003)). Since solving the corresponding linear program is
very costly in practice (more than two hours for 50 cities
and n = 6), we only provide the results for the MTSP in-
stances with 50 cities and n ranging from 3 to 6 objectives.
Results are averaged over 100 runs.

In Table 6, we observe that RIGA is very efficient both in
terms of computation times and number of queries. More-
over, we see that the error is below 1% for all the in-
stances. This shows that RIGA can also be used to solve
multi-objective optimization problems with complex deci-
sion models, even for problems such that there is no efficient
algorithm for the determination of the optimal solution with
known preference parameters.

n time(s) queries error
3 42.92 15.50 0.89
4 39.26 15.80 0.65
5 40.91 15.47 0.83
6 44.13 15.63 0.88

Table 6: RIGA for MTSP instances with 50 cities and an
OWA aggregation function.

Conclusion
In this paper, we have proposed a general method based
on genetic algorithms and regret-based preference elicita-
tion (called RIGA) for solving hard multi-objective com-
binatorial optimization problems with imprecise preference

parameters. Our interactive method makes use of regret-
based incremental elicitation techniques to generate infor-
mative preference queries during the search. Moreover, one
can ensure that RIGA asks no more than a polynomial num-
ber of queries (in the problem size) by simply limiting the
size of the populations and the number of generations. Sim-
ilarly, one can ensure that RIGA runs in polynomial time
for MOCO problems that can be (approximately) solved in
polynomial time when preferences are precisely known.

We have applied the proposed method on existing in-
stances of the MTSP, considering two different aggrega-
tion functions: the weighted sum and the ordered weighted
averaging operator. We have compared the performances
achieved by RIGA on these instances with that of different
regret-based interactive solving methods. In particular, the
provided numerical results show that our method achieves
better results than IEEP (the state-of-the-art regret-based in-
cremental solving method for the MTSP) on the bigger in-
stances (300 cities and more than 4 criteria). Overall, RIGA
was shown to be very efficient in practice: it returned very
high quality solutions (the error was always less than 2%) in
a few minutes with a relatively small number of queries.

Our algorithm can be applied to any MOCO problem for
which preferences are represented by an aggregation func-
tion that is linear in its parameters. The next step is to ex-
tend our approach to more complex decision models (e.g.,
Chebyshev functions) so as to enhance descriptive and per-
spective possibilities.
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