A. Hoppe, N. S. Güldal, and A. R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomater, vol.32, pp.2757-2774, 2011.

L. L. Hench, The story of Bioglass, J. Mater. Sci. Mater. Med, vol.17, pp.967-78, 2006.

J. R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomater, vol.9, pp.4457-86, 2013.

R. K. Brow, Review: the structure of simple phosphate glasses, J. Non. Cryst. Solids, pp.263-264, 2000.

J. C. Knowles, Phosphate based glasses for biomedical applications, J. Mater. Chem, vol.13, p.2395, 2003.

I. Ahmed, C. A. Collins, M. P. Lewis, I. Olsen, and J. C. Knowles, Processing , characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, vol.25, pp.3223-3232, 2004.

T. Kasuga, Y. Hosoi, and M. Nogamie, Apatite Formation on Calcium Phosphate Invert Glasses in Simulated Body Fluid, vol.52, pp.450-452, 2001.

D. S. Brauer, N. Karpukhina, R. V. Law, and R. G. Hill, Effect of TiO2 addition on structure , solubility and crystallisation of phosphate invert glasses for biomedical applications, J. Non. Cryst. Solids, vol.356, pp.2626-2633, 2010.

N. Sharmin, C. D. Rudd, and A. J. , Parsons, I. Ahmed, Structure, viscosity and fibre drawing properties of phosphate-based glasses: effect of boron and iron oxide addition, J. Mater. Sci, vol.51, pp.7523-7535, 2016.

C. Combes and C. Rey, Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials, Acta Biomater, vol.6, pp.3362-3378, 2010.

D. M. Pickup, R. Jnewport, R. J. Barney, E. R. Kim, J. Y. Valappil et al., Characterisation of phosphate coacervates for potential biomedical applications, Journal of biomaterials applications, vol.28, pp.226-1234, 2014.

F. Gomez, P. Vas, and G. Willot, Influence of pH on the Formation of Polyphosphate Coacervates, Phosphorus Res. Bull, vol.11, pp.53-60, 2015.

R. M. Pilliar, R. A. Kandel, M. D. Grynpas, and Y. Hu, Porous calcium polyphosphate as loadbearing bone substitutes: In vivo study, J. Biomed. Mater. Res. -Part B Appl. Biomater. 101 B, pp.1-8, 2013.

A. Momeni and M. J. Filiaggi, Comprehensive study of the chelation and coacervation of alkaline earth metals in the presence of sodium polyphosphate solution, Langmuir, vol.30, pp.5256-5266, 2014.

C. Slater, D. Laurencin, V. Burnell, M. E. Smith, L. M. Grover et al., Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate, J. Mater. Chem, vol.21, pp.18783-18791, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641479

P. Gras, C. Rey, O. Marsan, S. Sarda, and C. Combes, Synthesis and characterisation of hydrated calcium pyrophosphate phases of biological interest, Eur. J. Inorg. Chem, pp.5886-5895, 2013.

J. Soulié, P. Gras, O. Marsan, D. Laurencin, C. Rey et al., Development of a new family of monolithic calcium (pyro)phosphate glasses by soft chemistry, Acta Biomater, vol.41, pp.320-327, 2016.

C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug, Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials, Mater. Sci. Eng. C, vol.27, pp.198-205, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00160944

F. J. Gennari, Disorders of potassium homeostasis. Hypokalemia and hyperkalemia, Crit. Care Clin, vol.18, pp.273-88, 2002.

L. M. Grover, A. J. Wright, U. Gbureck, A. Bolarinwa, J. Song et al., The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation, Biomaterials, vol.34, pp.6631-6637, 2013.

S. M. Naga, M. Awaad, H. F. El-maghraby, A. El-kady, and A. M. , Biological performance of calcium pyrophosphate-coated porous alumina scaffolds, Int. J. Appl. Ceram. Technol, vol.11, p.111, 2014.

S. Koo, B. König, S. Allegrini, M. Yoshimoto, M. J. Carbonari et al., Titanium implant osseointegration with calcium pyrophosphate in rabbits, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.76, pp.373-380, 2006.

J. H. Lee, B. S. Chang, U. O. Jeung, K. W. Park, M. S. Kim et al., The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral Lumbar fusion, Clin. Orthop. Surg, vol.3, pp.238-244, 2011.

H. Flodgaard and P. Fleron, Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of [Mg 2+ ], [K + ], and ionic strength determined from equilibrium studies of the reaction, J. Biol. Chem, vol.249, pp.3465-3474, 1974.

. Wn, F. Addison, E. S. Azari, M. T. Sørensen, and M. D. Kaartinen, McKnee Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity, J. Biol. Chem, vol.282, pp.15872-15883, 2007.

. Jk and . Heinonen, Biological Role of Inorganic Pyrophosphate, vol.25, 2001.

N. Vandecandelaère, E. Champion, F. Rossignol, A. Navrotsky, D. Grossin et al.,

C. Rollin-martinet, C. Drouet, and . Rey, Nanocrystalline apatites: The fundamental role of water, Am. Mineral, vol.103, pp.550-564, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02090303

P. Cheng, K. P. Pritzker, and S. C. Nyburg, Calcium Disodium Pyrophosphate Tetrahydrate, Acta Crystallogr, vol.36, pp.921-924, 1980.

F. Fayon, G. L. Saout, L. Emsley, and D. Massiot, Through-bond phosphorus-phosphorus connectivities in crystalline and disordered phosphates by solid-state NMR, Chem. Commun, vol.2, pp.1702-1703, 2002.

M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin, Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy, J. Chem. Phys, vol.110, pp.7983-7992, 1999.

O. Lafon, Q. Wang, B. Hu, F. Vasconcelos, J. Trébosc et al., Indirect detection via spin-1/2 nuclei in solid state NMR spectroscopy: Application to the observation of proximities between protons and quadrupolar nuclei, J. Phys. Chem. A, vol.113, pp.12864-12878, 2009.

F. A. Perras, J. Viger-gravel, K. M. Burgess, and D. L. Bryce, Signal enhancement in solid-state NMR of quadrupolar nuclei, Solid State Nucl. Magn. Reson, pp.1-15, 2013.

Z. Gan, I. Hung, X. Wang, J. Paulino, G. Wu et al.,

J. L. Lendi, M. D. Schiano, I. R. Bird, J. Dixon, G. S. Toth et al., NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet, J. Magn. Reson, vol.284, pp.125-136, 2017.

C. Bonhomme, X. Wang, I. Hung, Z. Gan, C. Gervais et al.,

J. V. Smith, S. Hanna, P. Sarda, C. Gras, D. Combes et al., Pushing the limits of sensitivity and resolution for natural abundance 43 Ca NMR using ultra-high magnetic field (35.2 T), Chem. Commun, vol.54, pp.9591-9594, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01861127

L. L. , P. Sepulveda, and J. R. Jones, Characterization of Melt-Derived 45S5 and sol-gelderived 58S Bioactive Glasses, J. Biomed. Mater. Res, pp.564-569, 2001.

C. Rouse, D. Peacor, and R. Freed, Pyrophosphate groups in the structure of canaphite : The first phosphate as a mineral occurrence of a condensed phosphate as a mineral, vol.7, pp.161-171, 1988.

H. E. Mason, A. Kozlowski, and B. L. Phillips, Solid-state NMR study of the role of H and Na in AB-type carbonate hydroxylapatite-Supporting Information 1, pp.1-6, 2008.

P. Gras, A. Baker, C. Combes, C. Rey, S. Sarda et al.,

D. Gervais, C. Laurencin, and . Bonhomme, From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective, Acta Biomater, vol.31, pp.348-357, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01221038

E. Gambuzzi, A. Pedone, M. C. Menziani, F. Angeli, P. Florian et al., Calcium environment in silicate and aluminosilicate glasses probed by 43Ca MQMAS NMR experiments and MD-GIPAW calculations, Solid State Nucl. Magn. Reson, vol.68, pp.31-36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157457

S. Rollin-martinet, A. Navrotsky, E. Champion, D. Grossin, and C. Drouet, Thermodynamic basis for evolution of apatite in calcified tissues, Am. Mineral, vol.98, p.2045, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00946168

J. T. Ratnayake, M. Mucalo, and G. J. Dias, Substituted hydroxyapatites for bone regeneration: A review of current trends, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.105, pp.1285-1299, 2017.

J. Soulié, J. Lao, E. Jallot, and J. M. Nedelec, Influence of mesostructuration on the reactivity of bioactive glasses in biological medium: a PIXE-RBS study, J. Mater. Chem, vol.22, p.20680, 2012.

C. Brinker and G. Scherer, Sol ? gel ? glass: I. Gelation and gel structure, vol.70, pp.301-322, 1985.

D. Grossin, S. Rollin-martinet, C. Estournès, F. Rossignol, E. Champion et al., Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects, Acta Biomater, vol.6, pp.577-585, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00449219

F. Pourpoint, C. Gervais, L. Bonhomme-coury, T. Azaïs, C. Coelho et al., Calcium phosphates and hydroxyapatite: Solid-state NMR experiments and first-principles calculations, Appl. Magn. Reson, vol.32, pp.435-457, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00343640

D. S. Brauer, C. Rüssel, and J. Kraft, Solubility of glasses in the system P2O5-CaO-MgO-Na2O-TiO2: Experimental and modeling using artificial neural networks, J. Non. Cryst. Solids, vol.353, pp.263-270, 2007.

D. S. Brauer, R. M. Wilson, and T. Kasuga, Multicomponent phosphate invert glasses with improved processing, J. Non. Cryst. Solids, vol.358, pp.1720-1723, 2012.

F. Herbert and B. Sylvia, Mechanism of calcification: inhibitory role of pyrophosphate, Nature, p.911, 1962.

N. Eidelman and W. E. Brown, The effect of pyrophosphate concentrations on calcium phosphate growth on well-crystallized octacalcium phosphate and hydroxyapatite seed crystals, vol.108, pp.385-393, 1990.

C. Thouverey, G. Bechkoff, S. Pikula, and R. Buchet, Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles, Osteoarthr. Cartil, vol.17, pp.64-72, 2009.

F. Betts and A. S. Posner, An X-ray radial distribution study of amorphous calcium phosphate, Mater. Res. Bull, vol.9, pp.353-360, 1974.

G. Treboux, P. Layrolle, N. Kanzaki, K. Onuma, and A. Ito, Existence of posner's cluster in vacuum, J. Phys. Chem. A, vol.104, pp.5111-5114, 2000.

M. Andersson, Transformation of amorphous calcium phosphate to bone-like apatite, Nat. Commun, 2018.

P. Gras, Etude Physico-Chimique Et Structurale De Pyrophosphates De Calcium Hydrates: Application Aux Micro-Calcifications Associees a L'Arthrose, p.208, 2014.

N. H. De-leeuw, D. Di, and N. H. De-leeuw, Detection of Posner's clusters during calcium phosphate nucleation: a molecular dynamics study, J. Mater. Chem. B, vol.5, pp.7274-7284, 2017.

X. Yang, M. Wang, Y. Yang, B. Cui, Z. Xu et al., Physical origin underlying the prenucleation-cluster-mediated nonclassical nucleation pathways for calcium phosphate, Phys. Chem. Chem. Phys, vol.9, 2019.