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CONVEXITY FOR HAMILTONIAN TORUS ACTIONS ON

b-SYMPLECTIC MANIFOLDS

VICTOR GUILLEMIN, EVA MIRANDA, ANA RITA PIRES,
AND GEOFFREY SCOTT

Abstract. In [GMPS] we proved that the moment map image of a b-
symplectic toric manifold is a convex b-polytope. In this paper we obtain
convexity results for the more general case of non-toric hamiltonian torus
actions on b-symplectic manifolds. The modular weights of the action
on the connected components of the exceptional hypersurface play a
fundamental role: either they are all zero and the moment map behaves
as in classic symplectic case, or they are all nonzero and the moment
map behaves as in the toric b-symplectic case studied in [GMPS].

1. Introduction

It is well-known that the moment map image of a hamiltonian torus action
on a symplectic manifold is convex [At, GS1, GS2]. When the action is
toric, the Delzant theorem states that the symplectic toric manifold can be
recovered from this moment map image.

The Delzant theorem has been generalized to the context of b-symplectic
manifolds (also called log-symplectic manifolds), which are even-dimensional
Poisson manifolds (M2n,Π) for which Πn intersects the zero section of
Λ2nTM transversally. In this paper, we prove that the moment map image
of a hamiltonian torus action on a b-symplectic manifold is convex, even
when the dimension of the torus is less than n. The proof uses techniques
introduced in [GMPS] and is strongly inspired by the convexity proof of [At]
in the classic symplectic setting. Since our proof uses the classic convexity
theorem applied to the symplectic leaves on the singular locus of Π, we will
assume that these leaves are compact (by a result in [GMP1], it is enough
to assume that each component of the singular locus has a compact leaf).

Examples of these torus actions include integrable systems on b-symplectic
manifolds (cf. [KMS, KM]), and products of a toric b-surface (cf. [GMPS,
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§3]) with a symplectic manifold endowed with a Hamiltonian torus action.
More generally, consider the construction of a b-symplectic toric manifold
as a fibration of b-symplectic toric surfaces over a standard symplectic toric
manifold described in [GMPS, Remark 39]. To obtain instead a b-symplectic
manifold with a torus action, we can replace the toric base by one with a
Hamiltonian action of a torus of smaller dimension, for instance, an almost
toric manifold [LS, K, KT].

This paper is organized as follows: in Section 2 we recall the necessary
definitions and properties of b-symplectic manifolds, in Sections 3 and 4
respectively we examine the cases of torus actions for which the modular
weights of the various connected components of the exceptional hypersurface
are all nonzero or all zero. Finally, in Section 5 we prove that these two
extreme cases are the only possible ones and we conclude with some final
remarks on possible further directions in Section 6.

2. Preliminaries

In this section we recall definitions and properties related to b-symplectic
manifolds. A more detailed exposition can be found in [GMP1, GMP2].

Let (M2n,Π) be a Poisson manifold. If the map

p ∈ M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then we say that Π is a b-Poisson struc-

ture and that Z = {p ∈ M |(Π(p))n = 0} is the exceptional hypersurface.
The symplectic foliation of a b-Poisson structure has an open symplectic leaf
for each component of M\Z. The exceptional hypersurface Z is a Poisson
submanifold of (M2n,Π) and is foliated by symplectic leaves of dimension
2n − 2. There exists a Poisson vector field v on Z transverse to the sym-
plectic foliation. If the symplectic foliation of a component Z ′ of Z contains
a compact leaf L, then Z ′ is the mapping torus of the symplectomorphism
φ : L → L determined by the flow of v.

It is possible to study b-Poisson manifolds using symplectic techniques by
replacing the tangent and cotangent bundle by the b-tangent and b-cotangent
bundles. A b-manifold is a pair (M,Z), where M is an oriented smooth
manifold and Z is a closed embedded hypersurface in M . A vector field
v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The b-tangent bundle is
defined as the vector bundle whose sections are b-vector fields, and the b-
cotangent bundle bT ∗M is the dual (bTM)∗. Sections of Λp(bT ∗M) are
called b-forms and the set of b-forms is denoted by bΩp(M). The standard
de Rham differential extends to b-forms.

A b-symplectic form is a closed nondegenerate b-form of degree 2. It
can be thought of as a smooth symplectic form on M with a mild singularity
along Z; inverting this singular form gives a b-Poisson structure. Thus, b-
Poisson structures can be seen as symplectic structures modeled over a Lie
algebroid (the b-tangent bundle). We remind the reader that all b-symplectic
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manifolds in this paper are assumed to have a compact symplectic leaf in
each component of their exceptional hypersurface.

Just as we allow our differential forms on a b-manifold to have mild sin-
gularities, it is also helpful to allow functions to have mild singularities.
The sheaf bC∞(M) of b-functions on M consists of functions which are
smooth on M\Z, and locally around a point on Z can be written in the
form c log|y|+ g, where c ∈ R, y is a local defining function for Z, and g is
a smooth function.

Definition 1. An action of Tk on a b-symplectic manifold (M,ω) is Hamil-

tonian if for all X,Y ∈ t:

• the one-form ιX#ω is exact, i.e., has a primitive HX ∈ bC∞(M);
• ω(X#, Y #) = 0.

where X# is the fundamental vector field for the action associated to X ∈ t.

When a b-function f ∈ C∞(M) is expressed as c log |y| + g locally near
some point of a component Z ′ of Z, the number cZ′(f) := c ∈ R is uniquely
determined by f , even though the functions y and g are not.

Definition 2. Given a Hamiltonian T
k-action on a b-symplectic manifold,

the modular weight of a connected component Z ′ of Z is the map vZ′ :
t → R given by vZ′(X) = cZ′(HX). This map is linear and therefore we can
regard it as an element of the dual of the Lie algebra vZ′ ∈ t

∗. We denote
the kernel of vZ′ by tZ′ .

Definition 3. The adjacency graph of a b-manifold (M,Z) is a graph
G = (V,E) with a vertex for each component of M \ Z and an edge for
each connected component of Z. The endpoints of the edge corresponding
to Z ′ ⊆ Z are the vertices corresponding to the components of M \ Z that
Z ′ separates. Multiple edges may have the same pair of endpoints. The
weighted adjacency graph of a b-symplectic manifold endowed with a
hamiltonian T

k-action is G = (G,w) where G = (V,E) is the adjacency
graph of (M,Z) and the weight function w : E → t

∗ sends each edge to the
modular weight of the corresponding component of Z.

A group action is effective if no non-trivial subgroup acts trivially. A
toric action is an effective T

k action on a manifold M such that k =
1
2
dim(M). For a toric Hamiltonian action on a b-symplectic manifold,

the modular weight of each connected component of Z is nonzero ([GMPS,
Claim 13]). This will not necessarily be the case for general torus actions
that the present paper examines. Indeed, the cases of zero and the nonzero
modular weights are very different and we will study them separately.

Remark 4. Without loss of generality we will assume that T
k acts effec-

tively on M . Otherwise, we can take the quotient of Tk by the kernel of its
action on M to get an effective action of a quotient group, which will still
be a torus [Au, Proposition I.1.7].
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3. The case of nonzero modular weights

In this section we prove that if the modular weight (corresponding to a
Hamiltonian T

k action) of a connected component of Z is nonzero, then the
action and the moment map must “split” in a fashion similar to the toric
case studied in [GMPS], as detailed in Proposition 5. Indeed, many of the
results and proofs in this section follow the results and proofs in that paper.

Proposition 5. Let (M,ω) be a b-symplectic manifold endowed with an
effective Hamiltonian T

k-action such that the modular weight vZi
for a con-

nected component Zi of the exceptional hypersurface is nonzero. Then:

(a) for X a representative of a primitive lattice vector of t/tZi
that pairs

positively with vZi
, we have 〈X, vZi

〉 = c, where c is the modular period
of Zi;

(b) Zi ≃ L× S
1, where Li is a symplectic leaf of Zi;

(c) in a neighborhood of Zi there is a splitting t ≃ tZi
×〈X〉, which induces a

splitting T
k ≃ T

k−1
Zi

×S
1. The T

k−1
Zi

-action on Zi induces a Hamiltonian

T
k−1
Zi

-action on Li, let µLi
: Li → t

∗
Zi

be its moment map;

(d) there is a neighborhood Li × S
1 × (−ε, ε) ≃ U ⊂ M of Zi such that the

(Tk−1
Zi

× S
1)-action on U \ Zi is given by (g, θ) · (ℓ, ρ, t) = (g · ℓ, ρ+ θ, t)

and has moment map

µU\Zi
: Li × S

1 × ((−ε, ε) \ {0}) → t
∗ ≃ t

∗
Zi

× R

(ℓ, ρ, t) 7→ (µLi
(ℓ), c log |t|).

Proof. In light of Remark 4, the proofs of [GMPS, Proposition 15, Corollary
16, Lemma 17, Proposition 18] for the toric case hold in this context with
the obvious changes. �

From the splitting in the local model we conclude, as in the toric case,
that the moment image of U \Zi where U is a neighborhood of a connected
component of Zi is of the form ∆Li

× (−∞, N) for some N ∈ R, where the
convex polytope ∆L ⊂ t

∗
Zi

is the image of µLi
.

Proposition 6. Let (M,ω) be a b-symplectic manifold endowed with an
effective Hamiltonian T

k-action and let Z1 and Z2 be two connected compo-
nents of the exceptional hypersurface Z which correspond to edges incident
on the same vertex of the adjacency graph of (M,ω). If the modular weights
of Z1 and Z2 are both nonzero, then they are a negative scalar multiple
of each other, and there are no other edges incident to that vertex on the
adjacency graph. Therefore tZ1

= tZ2
.

In particular, if the modular weights of all connected components of Z are
nonzero, then the adjacency graph of M is either a line with any number
of vertices or a circle with an even number of vertices and in both cases
tZ := tZi

∀i is well-defined.

Proof. The discussion and proofs from [GMPS, Section 4.2] hold. �
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This allows us to define a moment map for a Hamiltonian torus action
on a b-symplectic manifold (M,ω) in the case when the modular weight
corresponding to each component of Z is nonzero. Its codomain is the b-
manifold (RG ,ZG), where G = (G = (V,E), w) is the weighted adjacency
graph, and

RG = t
∗ × V ⊔ t

∗
Z × E

ZG = t
∗
Z ×E.

This space can be endowed with a smooth structure that depends on the
weight function w, the technical details are the same as in [GMPS, Section
5].

Definition 7. Let (M,ω) be a b-symplectic manifold endowed with an ef-
fective Hamiltonian T

k-action such that that the modular weights for the
connected components of the exceptional hypersurface are all nonzero. A
smooth T

k-invariant b-map µ : M → RG is a b-moment map for the action
if the map t ∋ X 7→ µX ∈ C∞(M) given by µX(p) := 〈pr1 ◦µ(p),X〉 is linear
and

ιX#ω = dµX ,

where X# is the vector field on M generated by X, where pr1 is the projec-
tion RG\ZG → t

∗.

We recover from [GMPS, Definitions 29 and 30] the notion of a b-polytope
in RG : it is a bounded subset P that intersects each component of ZG and
can be expressed as a finite intersection of half-spaces. Note that there are
two types of hyperplanes in RG which divide RG into two connected com-
ponents and therefore give rise to (two) half-spaces: hyperplanes that are
perpendicular to a vector in t \ tZ and are completely contained in t

∗ × {v}
for some vertex v of G, and hyperplanes which are perpendicular to a vector
in tZ and intersect each component of ZG .

Proposition 8. Let (M,ω) be a b-symplectic manifold endowed with an
effective Hamiltonian T

k-action such that that the modular weights for the
connected components of the exceptional hypersurface are all nonzero, and
let G be its weighted adjacency graph. Then:

(a) there exists a b-moment map µ : M → RG;
(b) the image of this map is a b-polytope in RG;
(c) the vertices of the b-polytope are precisely the fixed points of the T

k-
action.

Proof. (a) The proofs of [GMPS, Proposition 26 and Theorem 27] hold.
(b) Using the local model of Proposition 5(d) we see that locally near µ(Z)

the moment image is a b-polytope. By performing symplectic cutting
on M arbitrarily close to each connected component of Z we can con-
struct a collection of compact connected symplectic manifolds, whose
moment images are, by the convexity results for classic symplectic man-
ifolds, convex polytopes. We note that symplectic cutting is possible:
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it can be done using the component of the moment map which in the
local coordinates of Proposition 5(d) is of the form c log |t| (recall that
t is a defining function for that particular connected component of Z).
The image µ(M) is the union of these polytopes with the b-polytopal
neighborhoods of µ(Z), which produces a b-polytope. As the location
of the symplectic cuts approaches Z, the polytopes enlarge; the limit is
a polytope with recession cone equal to the modular weight vectors cor-
responding to the adjacent components of Z (this can be seen using the
description of a moment map near Z from Proposition 5(d). This shows
that the moment map polytopes obtained from the symplectic cuts on
the complement of Z glue consistently with the product-type moment
map polytopes obtained from neighborhoods of the connected compo-
nents of Z. The result can be described as a finite union of half-spaces
in the following way. First, each half-space that defines the polytope
∆L ⊂ t

∗
Z (the polytope “at infinity”), is described by a perpendicular

vector in tZ and a scalar; this same data defines a half-space in RG of
the type whose boundary hyperplane intersects every component of ZG .
Second, each half-space that defines the limit polytopes in t

∗ also define
(using the same data) a half-space in t

∗ × {v} for the v correspond-
ing to the component of M\Z described by this limit polytope. Taken
together, these half-spaces define the moment map image in RG .

(c) By the local form for the action in Proposition 5(d), no point in Z is
fixed by the action. The fixed points are therefore contained in M \ Z,
and again by performing symplectic cutting on M arbitrarily close to
each connected component of Z we can construct a collection of compact
connected symplectic manifolds Mi,ε, one for each edge of the adjacency
graph, whose union contains a copy of a neighborhood of each of the
fixed points of M . By the classic convexity results, the fixed points map
to vertices of the moment polytopes of the symplectic manifolds Mi,ε.
When we take the union of the moment polytopes of the Mi,ε with the
b-polytopal neighborhoods of µ(Z) we conclude that the fixed points of
M map exactly to the vertices of µ(M).

�

4. The case of zero modular weights

We now study the Hamiltonian torus actions for which the modular
weights of the connected components of Z are all zero. This means that
for any X ∈ t the b-form ιX#ω is an honest de Rham form and has a prim-
itive HX which is a smooth function. Because each X# is a Hamiltonian
vector field onM with respect to the Poisson structure given by inverting the
b-symplectic form, each X# is tangent to the symplectic leaves in Z. In this
case, there is a well-defined map µ : M → t

∗ given by µ(p)(X) = HX(p), so
we extend the definition for the classic symplectic case and call it a moment
map for the action.
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We begin this section by proving some facts about effective circle actions
with zero modular weights (i.e., with a smooth Hamiltonian), following [At]’s
argument for the symplectic case, and then conclude with the consequences
for effective Tk-actions with zero modular weights on b-symplectic manifolds.

4.1. Effective circle actions on b-symplectic manifolds with smooth

Hamiltonians.

Lemma 9. Let (M,ω) be a b-symplectic manifold endowed with an effective
S
1-action generated by the b-vector field X#, and let Z be the exceptional

hypersurface.
If p ∈ Z is fixed by the action, then X# vanishes at p as a section of bTM .

Moreover, if HX is a smooth Hamiltonian for X#, then dHX vanishes at p
as a section of T ∗M .

Remark 10. By Lemma 9, the fixed points of a Hamiltonian S
1-action

with smooth Hamiltonian HX are exactly the points where dHX vanishes
as a smooth form, as in classic symplectic geometry. However, unlike in
classic symplectic geometry, the same does not hold for R-actions. For
example, consider the b-symplectic manifold (R2, 1

x
dx ∧ dy) endowed with

the R-action generated by the b-vector field X# = x ∂
∂y
, which fixes all

points of the exceptional hypersurface Z = {0}×R. The Hamiltonian is the
smooth function HX(x, y) = x, whose differential dx never vanishes, and in
particular doesn’t vanish at the fixed locus Z.

Proof. In order to prove the first assertion, take local coordinates x̄ =
(x1, . . . , xn) around p such that Z = {x̄ : x1 = 0}. Then the b-vector
field can be written as

X# = a1x1
∂

∂x1
+

n
∑

i=2

ai
∂

∂xi

for smooth functions ai = ai(x̄), with ai(0̄) = 0 for i ≥ 2. Assume towards a
contradiction that a1(0̄) 6= 0, and without loss of generality that a1(0̄) > 0.
Let U = {x̄ : a1(x̄) > 0}, and U ′ be a smaller open set containing 0̄ such that
the time-1 flow (assume that S1 is parametrized from 0 to 1) of any point in
U ′ remains in U . Then for any point in U ′ ∩{x̄ : x1 > 0}, the time-1 flow of
the trajectory has monotonically increasing x1-coordinate, and therefore the
trajectory cannot be periodic, which yields a contradiction with it coming
from an S

1-action.
Now consider the case that there exists a smooth Hamiltonian HX for the

action. Then by the argument above X# vanishes at p as a b-vector field,
so dHX vanishes at p as a b-form, i.e., dHX(v) = 0 for all v ∈ TpZ. This
implies that the kernel of dHX ∈ Ω1(M) (as a smooth form) at p contains
the codimension-1 subspace TpZ. By [GMPS, Lemma 17], it follows that
dHX vanishes at p (as a smooth form). �
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Lemma 11. Let (M,ω) be a b-symplectic manifold endowed with an effective
S
1-action generated by the b-vector field X# and with a smooth Hamiltonian

HX . Let p be a fixed point on the exceptional hypersurface Z, and L be the
symplectic leaf containing p.

Then there exist vectors vZ ∈ TpZ\TpL and vM ∈ TpM\TpZ that are fixed
by the isotropy representation on TpM .

Proof. Let φt be the time-t flow of the S
1 action. Choose an S

1-invariant
metric on M , and let vM be any nonzero element of TpZ

⊥ and vZ be any

element of TpL
⊥ ∩ TpZ. By the invariance of the metric, and because TpL

and TpZ are dφt-invariant subspaces, the span of vZ in TpM and the span of
vM in TpM are both invariant subspaces. Because the only representation
of S1 on a one-dimensional real subspace is the identity representation, it
follows that vZ and vM are both fixed by the isotropy representation dφt. �

Proposition 12. Let (M,ω) be a b-symplectic manifold endowed with an
effective S

1-action generated by the b-vector field X# and with a smooth
Hamiltonian HX . Then HX is Morse-Bott and all its indices and coindices
are even.

More precisely, for points p ∈ Z where dHX(p) = 0, the indices and
coindices of Hessp(HX) are the same as those of Hessp(HX

∣

∣

L
), where L is

the symplectic leaf through p.

Proof. We need to show that the set Y := {p ∈ M | dHX(p) = 0} is a
smooth manifold, that for each such p ∈ Y , the tangent space TpY coincides
with the kernel of Hessp(HX), and that all indices and coindices are even.
Away from Z we are in a symplectic manifold and therefore these facts hold
[At, Lemma 2.2], so we are left with proving them for points p ∈ Z ∩ Y .

By Lemma 9, the fixed points of the action on Z are exactly the points of
Z ∩ Y . Let p ∈ Z ∩ Y , and consider an invariant metric in a neighborhood
of p. Then the exponential map (with respect to this metric) gives a local
diffeomorphism between the fixed subspace of the tangent space and the set
of fixed points of the action, so Y is indeed (locally, and therefore globally)
a submanifold.

Let v ∈ TpY ⊆ TpM , and pick an extension ṽ of v to a neighborhood of p
such that ṽ is tangent to Y . Because the tangent space of Y coincides with
the kernel of the hessian of HX for points of Y away from Z, i.e.,

ṽq ∈ ker (Hessq(HX)) for all q ∈ Y \(Y ∩ Z),

by continuity and because Y is not a subset of Z (in Lemma 11, the existence
of vM proves this) it follows that v ∈ ker(Hessp(f)).

If we choose a basis for TpM so that the first n− 2 vectors are a basis for
TpL, and the last two vectors are vZ and vM (from Lemma 11), the argument
in the paragraph above implies that the Hessian matrix with respect to this
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basis will be




Hessp(HX

∣

∣

L
) 0 0

0 0 0
0 0 0





which proves that the index and coindex of Hessp(HX) equals the index and
coindex of Hessp(HX

∣

∣

L
), each of which must be even by the classic argument

for Hamiltonian S
1-actions on compact symplectic manifolds (considering

HX

∣

∣

L
as Hamiltonian on (L, ωL), where ωL is the symplectic form on L

induced by the Poisson structure ω−1 [At, Lemma 2.2]. �

Remark 13. [MS, Lemma 5.51] The level sets of a Morse-Bott function
with no indices or coindices equal to 1 are connected.

Proposition 14. Let (M,ω) be a connected b-symplectic manifold endowed
with an effective S

1-action generated by the b-vector field X# and with a
smooth Hamiltonian HX . Let L be a symplectic leaf of one component of
the exceptional hypersurface Z. Then,

HX(L) = HX(M).

Proof. Clearly HX(L) ⊆ HX(M), and because we are assuming that the
symplectic leaves are compact, HX(L) is an interval in R, say [a, b]. By
Proposition 12 and Remark 13, the level set H−1

X (b) is connected and con-
tains a point p ∈ L which is a fixed point of the S1-action. By Lemma 9, this
is a critical point of HX , so H−1

X (b) must contain this critical submanifold
of the Morse-Bott function.

The coindex of Hessp(HX) equals the coindex of the Hessp(HX

∣

∣

L
), which

is zero because b is a global maximum of the restriction of HX to L. Then,
the component of H−1

X (b) containing p is a local maximum, which must be

a global maximum since H−1
X (b) is connected. �

4.2. Effective T
k-actions with zero modular weights. A moment map

for an effective T
k-action with zero modular weights is a collection of the

smooth Hamiltonians for the actions of its coordinate circles. Then, as a
direct consequence of Proposition 14 we have:

Corollary 15. Let (M,ω) be a b-symplectic manifold endowed with an ef-
fective Hamiltonian T

k-action such that that the modular weights for the
connected components of the exceptional hypersurface are all zero.

Then there exists a moment map µ : M → t
∗, its image is the convex hull

of the image of the fixed point set, and more precisely

µ(M) = µ|Z(Z) = µ|L(L),

where L is a symplectic leaf of any of the connected components of the ex-
ceptional hypersurface Z.
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5. Why zero and nonzero modular weights cannot coexist

In the previous sections we have obtained convexity results for two ex-
treme cases: when the modular weights of the connected components of Z
are either all zero or all nonzero. In this section we show that only these
extreme cases occur.

Theorem 16. Let (M,ω) be a connected b-symplectic manifold endowed
with an effective Hamiltonian T

k-action. Then either the modular weights
for the connected components of the exceptional hypersurface Z are all zero,
or they are all nonzero.

Proof. Assume towards a contradiction that there exist Z1 and Z2 two con-
nected components of Z such that the modular weight of Z1 is zero and the
modular weight of Z2 is vZ2

6= 0. Take any element X ∈ t in the period
lattice that pairs positively with vZ2

and pick a Hamiltonian b-function HX

for the vector field X#. By definition of modular weight, this function will
equal −∞ at Z2. But we can take a symplectic cut at an arbitrarily large
negative number −N , and the S1-action given by X# on the symplectic cut
M≥−N is now an action by a smooth Hamiltonian function, and therefore
HX(L) = HX(M≥−N ) where L is a leaf inside Z1. If we choose −N smaller
than the minimum of HX(L), this gives a contradiction. �

6. Final remarks

6.1. T
k-actions on generalizations of b-symplectic manifolds. We can

generalize the definition of b-symplectic manifold by allowing the exceptional
hypersurface Z to have transverse self-intersections, instead of insisting that
it is embedded. In keeping with the spirit of [Me], we refer to these structures
as c-symplectic – b for boundary, c for corner. The simplest example of
a c-symplectic manifold is the product of two b-symplectic manifolds, see
[GLPR] for more examples under the generic notation of log symplectic (for
both b- and c-symplectic manifolds).

We have proved that for b-symplectic manifolds, zero and nonzero mod-
ular weights cannot coexist. To examine the c-symplectic case, consider the
c-symplectic manifold (M = T

2
1 × T

2
2, ω1 + ω2) which is the product of two

b-symplectic tori: (T2
1, ω1 = 1

sin θ1
dθ1 ∧ dα1) and (T2

2, ω2 = 1
cos θ2

dθ2 ∧ dα2).

The exceptional hypersurface of (T2
1, ω1) consists of the union of the two cir-

cles Z1 = {θ1 = 0, π}, as does that of (T2
2, ω2), with Z2 =

{

θ2 =
π
2
, 3π

2

}

. The

exceptional hypersurface Z of M is the union (Z1×T
2
2)∪(T2

1×Z2). This set
has a stratification given by the rank of the Poisson structure: one stratum
(the lowest-dimensional one) is the intersection Sc = (Z1 × T

2
2) ∩ (T2

1 × Z2)
and the other is the symmetric difference (Z1 × T

2
2)∆(T2

1 × Z2), where the
c-symplectic structure is actually b-symplectic.

Consider the circle action on M generated by ∂
∂α1

: its modular weight

would be nonzero for the set (Z1×T
2
2)\Sc but zero for the set (T2

1×Z2)\Sc.
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6.2. Deficiency-one torus actions and circle actions on four dimen-

sional b-symplectic manifolds. One could try to generalize the tools
developed in [KT] to treat periodic hamiltonian flows on 4-dimensional b-
symplectic manifolds. Possible applications would be to adapt the classifica-
tion of S1-actions on 4-symplectic manifolds [K] to the b-case, and to study
when torus actions on b-symplectic manifolds extend to toric actions. In
particular, it would be interesting to determine if there exists a b-analogue
of the following result:

Theorem 17. [K] Every 4-dimensional compact Hamiltonian S
1-space with

isolated fixed points comes from a Kähler toric manifold by restricting the
action to a sub-circle.

6.3. Reduction and Duistermaat-Heckman theory. In [GMPS] we de-
scribe the moment b-polytope as a fibration by one-dimensional b-polytopes
(b-lines or b-circles, moment images of b-Hamiltonian S

1-spaces) over the
moment polytope ∆L of a leaf of Z.

In the general case of a T
k-action with non-zero modular weights1 we can

also apply the reduction scheme with respect to a T
k−1-action. The corre-

sponding b-Hamiltonian S
1-spaces may vary depending on which chamber

of ∆ they sit over – a chamber is a connected component of ∆ determined
by regular values of the moment map. Observe that in the toric case there
is only one such chamber, which is why all the fibers are of the same type:
either all b-spheres or all b-tori. One could apply a similar scheme to the
case of general torus actions and relate the diffeomorphism type of the fibers
with the different types of chambers.
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