P. Libby, P. M. Ridker, and G. K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature, vol.473, pp.317-325, 2011.

M. R. Bennett, S. Sinha, and G. K. Owens, Vascular smooth muscle cells in atherosclerosis, Circ Res, vol.118, pp.692-702, 2016.

M. J. Frontini, C. O'neil, C. Sawyez, B. Chan, M. W. Huff et al., Lipid incorporation inhibits Src-dependent assembly of fibronectin and type I collagen by vascular smooth muscle cells, Circ Res, vol.104, pp.832-841, 2009.

M. A. Nieto, R. Y. Huang, R. A. Jackson, J. P. Thiery, and . Emt, Cell, vol.166, pp.21-45, 2016.

K. M. Newkirk, F. J. Duncan, E. M. Brannick, H. L. Chandler, A. E. Parent et al., The acute cutaneous inflammatory response is attenuated in Slug-knockout mice, Lab Invest, vol.88, pp.831-841, 2008.

S. H. Shirley, E. A. Grimm, and D. F. Kusewitt, Ultraviolet radiation and the slug transcription factor induce proinflammatory and immunomodulatory mediator expression in melanocytes, J Skin Cancer, p.410925, 2012.

G. Storci, S. Bertoni, D. Carolis, S. Papi, A. Nati et al., Bonaf e M. Slug/b-catenin-dependent proinflammatory phenotype in hypoxic breast cancer stem cells, Am J Pathol, vol.183, pp.1688-1697, 2013.

S. H. Shirley, J. E. Rundhaug, C. J. Perez, L. D. Coletta, and D. F. Kusewitt, Slug modulates UV radiation-induced cutaneous inflammation by regulating epidermal production of proinflammatory cytokines, J Invest Dermatol, vol.137, pp.532-534, 2017.

R. Ross, J. Masuda, E. W. Raines, A. M. Gown, S. Katsuda et al., Localization of PDGF-B protein in macrophages in all phases of atherogenesis, Science, vol.248, pp.1009-1012, 1990.

J. Andrae, R. Gallini, and C. Betsholtz, Role of platelet-derived growth factors in physiology and medicine, Genes Dev, vol.22, pp.1276-1312, 2008.

C. He, S. C. Medley, T. Hu, M. E. Hinsdale, F. Lupu et al., PDGFRb signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis, Nat Commun, vol.6, p.7770, 2015.

K. Xu, C. M. Kitchen, H. K. Shu, and T. J. Murphy, Platelet-derived growth factor-induced stabilization of cyclooxygenase 2 mRNA in rat smooth muscle cells requires the c-Src family of protein-tyrosine kinases, J Biol Chem, vol.282, pp.32699-32709, 2007.

M. Bond, R. P. Fabunmi, A. H. Baker, and A. C. Newby, Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B, FEBS Lett, vol.435, pp.29-34, 1998.

F. Cipollone, G. Cicolini, and M. Bucci, Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives, Pharmacol Ther, vol.118, pp.161-180, 2008.

P. Libby, Collagenases and cracks in the plaque, J Clin Invest, vol.123, pp.3201-3203, 2013.

S. Gross, P. Tilly, D. Hentsch, J. L. Vonesch, and J. E. Fabre, Vascular wall-produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors, J Exp Med, vol.204, pp.311-320, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00188315

T. Inaba, T. Gotoda, H. Shimano, M. Shimada, K. Harada et al., Platelet-derived growth factor induces c-fms and scavenger receptor genes in vascular smooth muscle cells, J Biol Chem, vol.267, pp.13107-13112, 1992.

R. G. Rowe, X. Y. Li, Y. Hu, T. L. Saunders, I. Virtanen et al., Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs, J Cell Biol, vol.184, pp.399-408, 2009.

D. Kong, Y. Li, Z. Wang, S. Banerjee, A. Ahmad et al., miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells, Stem Cells, vol.27, pp.1712-1721, 2009.

C. Lu, X. Sun, L. Sun, J. Sun, Y. Lu et al., Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chorioallantoic membrane, J Cell Physiol, vol.228, pp.1827-1833, 2013.

T. Liu, W. Ma, H. Xu, M. Huang, D. Zhang et al., PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma, Nat Commun, vol.9, p.3439, 2018.

J. V. Tapia-vieyra, B. Delgado-coello, and J. Mas-oliva, Atherosclerosis and cancer; a resemblance with far-reaching implications, Arch Med Res, vol.48, pp.12-26, 2017.

J. Galle and C. Wanner, Oxidized LDL and Lp(a). Preparation, modification, and analysis, Methods Mol Biol, vol.108, pp.119-130, 1998.

Z. Keuylian, J. De-baaij, M. Glorian, C. Rouxel, E. Merlet et al., The Notch pathway attenuates interleukin 1 (IL1)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation, J Biol Chem, vol.287, pp.24978-24989, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01545434

C. Jumeau, F. Awad, E. Assrawi, L. Cobret, P. Duquesnoy et al., Expression of SAA1, SAA2 and SAA4 genes in human primary monocytes and monocyte-derived macrophages, PLoS One, vol.14, p.217005, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02147656

A. Dhasarathy, D. Phadke, D. Mav, R. R. Shah, and P. A. Wade, The transcription factors snail and slug activate the transforming growth factor-beta signaling pathway in breast cancer, PLoS One, vol.6, p.26514, 2011.

M. Gueguen, Z. Keuylian, V. Mateo, N. Mougenot, A. M. Lompr-e et al., Implication of adenylyl cyclase 8 in pathological smooth muscle cell migration occurring in rat and human vascular remodelling, J Pathol, vol.221, pp.331-342, 2010.

K. Blirando, R. Blaise, N. Gorodnaya, C. Rouxel, O. Meilhac et al., The stellate vascular smooth muscle cell phenotype is induced by IL-1b via the secretion of PGE2 and subsequent cAMP-dependent protein kinase A activation, Biochim Biophys Acta, vol.1853, pp.3235-3247, 2015.

H. C. Stary, A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Arterioscler Thromb Vasc Biol, vol.15, pp.1512-1531, 1995.

F. Phan-hug, F. Guimiot, V. Leli-evre, A. L. Delezoide, P. Czernichow et al., Potential role of glucocorticoid signaling in the formation of pancreatic islets in the human fetus, Pediatr Res, vol.64, pp.346-351, 2008.

J. M. Rukstalis and J. F. Habener, Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas, Gene Expr Patterns, vol.7, pp.471-479, 2007.

L. S. Shankman, D. Gomez, O. A. Cherepanova, M. Salmon, G. F. Alencar et al., KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis, Nat Med, vol.21, pp.628-637, 2015.

Y. Vengrenyuk, H. Nishi, X. Long, M. Ouimet, N. Savji et al., Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype, Arterioscler Thromb Vasc Biol, vol.35, pp.535-546, 2015.

J. M. Miano, P. Cserjesi, K. L. Ligon, M. Periasamy, and E. N. Olson, Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis, Circ Res, vol.75, pp.803-812, 1994.

B. P. Zhou, J. Deng, W. Xia, J. Xu, Y. M. Li et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelialmesenchymal transition, Nat Cell Biol, vol.6, pp.931-940, 2004.

Z. Q. Wu, X. Y. Li, C. Y. Hu, M. Ford, C. G. Kleer et al., Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression, Proc Natl Acad Sci, vol.109, pp.16654-16659, 2012.

J. Y. Kim, Y. M. Kim, C. H. Yang, S. K. Cho, J. W. Lee et al., Functional regulation of Slug/Snail2 is dependent on GSK-3b-mediated phosphorylation, FEBS J, vol.279, pp.2929-2939, 2012.

S. H. Kao, W. L. Wang, C. Y. Chen, Y. L. Chang, Y. Y. Wu et al., GSK3b controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug, Oncogene, vol.33, pp.3172-3182, 2014.

P. Sklepkiewicz, R. T. Schermuly, X. Tian, H. A. Ghofrani, N. Weissmann et al., Glycogen synthase kinase 3beta contributes to proliferation of arterial smooth muscle cells in pulmonary hypertension, PLoS One, vol.6, p.18883, 2011.

R. Virtakoivu, A. Mai, E. Mattila, D. Franceschi, N. Imanishi et al., Vimentin-ERK signaling uncouples slug gene regulatory function, Cancer Res, vol.75, pp.2349-2362, 2015.

C. Cobaleda, M. Caro, and C. Vicente-dueñas, Garc ?a I. Function of the zinc-finger transcription factor SNAI2 in cancer and development, Annu Rev Genet, vol.41, pp.41-61, 2007.

M. Esfandiarei, S. A. Yazdi, V. Gray, S. Dedhar, and C. Van-breemen, Integrin-linked kinase functions as a downstream signal of platelet-derived growth factor to regulate actin polymerization and vascular smooth muscle cell migration, BMC Cell Biol, vol.11, p.16, 2010.

A. M. Robida, K. Xu, M. L. Ellington, and T. J. Murphy, Cyclosporin A selectively inhibits mitogen-induced cyclooxygenase-2 gene transcription in vascular smooth muscle cells, Mol Pharmacol, vol.58, pp.701-708, 2000.

J. G. Lyons, V. Patel, N. C. Roue, S. Y. Fok, L. L. Soon et al., Snail up-regulates proinflammatory mediators and inhibits differentiation in oral keratinocytes, Cancer Res, vol.68, pp.4525-4530, 2008.

A. R. Tall, L. Yvan-charvet, N. Terasaka, T. Pagler, and W. N. Hdl, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis, Cell Metab, vol.7, pp.365-375, 2008.

S. Nagao, K. Murao, H. Imachi, W. M. Cao, X. Yu et al., Platelet derived growth factor regulates ABCA1 expression in vascular smooth muscle cells, FEBS Lett, vol.580, pp.4371-4376, 2006.

G. Ding, J. Fang, S. Tong, L. Qu, H. Jiang et al., Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer, Prostate, vol.75, pp.957-968, 2015.

N. Coll-bonfill, V. I. Peinado, M. V. Pisano, M. Blanco, I. Evers et al., Slug is increased in vascular remodeling and induces a smooth muscle cell proliferative phenotype, PLoS One, vol.11, p.159460, 2016.

P. Lacolley, V. Regnault, P. Segers, and S. Laurent, Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease, Physiol Rev, vol.97, pp.1555-1617, 2017.

S. Yang, Z. M. Ye, S. Chen, X. Y. Luo, S. L. Chen et al., MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages, J Mol Cell Cardiol, vol.123, pp.139-149, 2018.

A. Tedgui and Z. Mallat, Apoptosis as a determinant of atherothrombosis, Thromb Haemost, vol.86, pp.420-426, 2001.

D. Medici and R. Kalluri, Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype, Semin Cancer Biol, vol.22, pp.379-384, 2012.

S. Phillips and C. Kuperwasser, SLUG: critical regulator of epithelial cell identity in breast development and cancer, Cell Adh Migr, vol.8, pp.578-587, 2014.

F. B. Mehrhof, R. Schmidt-ullrich, R. Dietz, and C. Scheidereit, Regulation of vascular smooth muscle cell proliferation: role of NF-kappaB revisited, Circ Res, vol.96, pp.958-964, 2005.

D. Gomez, P. Swiatlowska, and G. K. Owens, Epigenetic control of smooth muscle cell identity and lineage memory, Arterioscler Thromb Vasc Biol, vol.35, pp.2508-2516, 2015.

S. Allahverdian, C. Chaabane, K. Boukais, G. A. Francis, and M. L. Bochaton-piallat, Smooth muscle cell fate and plasticity in atherosclerosis, Cardiovasc Res, vol.114, pp.540-550, 2018.

J. R. Mann, M. G. Backlund, F. G. Buchanan, T. Daikoku, V. R. Holla et al., Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression, Cancer Res, vol.66, pp.6649-6656, 2006.

Q. Su, Y. Sun, Z. Ye, H. Yang, and L. Li, Oxidized low density lipoprotein induces endothelial-to-mesenchymal transition by stabilizing Snail in human aortic endothelial cells, Biomed Pharmacother, vol.106, pp.1720-1726, 2018.

S. Balzan and V. Lubrano, LOX-1 receptor: a potential link in atherosclerosis and cancer, Life Sci, vol.198, pp.79-86, 2018.

J. C. Kovacic, S. Dimmeler, R. P. Harvey, T. Finkel, E. Aikawa et al., Endothelial to mesenchymal transition in cardiovascular disease: JACC Stateof-the-Art Review, J Am Coll Cardiol, vol.73, pp.190-209, 2019.

W. Hu and Y. Huang, Targeting the platelet-derived growth factor signalling in cardiovascular disease, Clin Exp Pharmacol Physiol, vol.42, pp.1221-1224, 2015.

M. G. Pouwer, E. J. Pieterman, L. Verschuren, M. Caspers, C. Kluft et al., The BCR-ABL1 inhibitors imatinib and ponatinib decrease plasma cholesterol and atherosclerosis, and nilotinib and ponatinib activate coagulation in a translational mouse model. Front Cardiovasc Med, vol.5, p.55, 2018.