A. Accardi and C. Miller, Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels, Nature, vol.427, issue.6977, pp.803-810, 2004.

A. K. Alekov, Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5, Front Physiol, vol.6, p.159, 2015.

A. K. Alekov and C. Fahlke, Channel-like slippage modes in the human anion/proton exchanger ClC-4, The Journal of General Physiology, vol.133, issue.5, pp.485-496, 2009.

D. Arosio and G. M. Ratto, Twenty years of fluorescence imaging of intracellular chloride, Frontiers in Cellular Neuroscience, vol.8, p.258, 2014.

G. C. Brailoiu and E. Brailoiu, Modulation of Calcium Entry by the Endo-lysosomal System, Advances in Experimental Medicine and Biology, vol.898, pp.423-447, 2016.

J. C. Crocker and D. G. Grier, Methods of digital video microscopy for colloidal studies, J Colloid Interface, vol.179, pp.298-310, 1996.

C. D'antonio, S. Molinski, S. Ahmadi, L. J. Huan, L. Wellhauser et al., Conformational defects underlie proteasomal degradation of Dent's disease-causing mutants of ClC-5, Biochem J, vol.452, issue.3, pp.391-400, 2013.

O. Devuyst, P. T. Christie, P. J. Courtoy, R. Beauwens, and R. V. Thakker, Intrarenal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease, Hum Mol Genet, vol.8, issue.2, pp.247-57, 1999.

O. Devuyst and A. Luciani, Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule, J Physiol, vol.593, issue.18, pp.4151-64, 2015.

R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. Mackinnon, X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity, Nature, issue.6869, pp.287-94, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02150160

R. Dutzler, E. B. Campbell, and R. Mackinnon, Gating the selectivity filter in ClC chloride channels, Science, vol.300, issue.5616, pp.108-120, 2003.

L. Feng, E. B. Campbell, Y. Hsiung, and R. Mackinnon, Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle, Science, vol.330, issue.6004, pp.635-676, 2010.

T. Friedrich, T. Breiderhoff, and T. J. Jentsch, Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents, J Biol Chem, vol.274, issue.2, pp.896-902, 1999.

T. Gensch, V. Untiet, A. Franzen, P. Kovermann, and C. Fahlke, Determination of Intracellular Chloride Concentrations by Fluorescence Lifetime Imaging, Advanced Time-Correlated Single Photon Counting Applications, pp.189-211, 2015.

C. M. Gorvin, M. J. Wilmer, S. E. Piret, B. Harding, L. P. Van-den-heuvel et al., Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients, Proc Natl Acad Sci U S A, vol.110, issue.17, pp.7014-7023, 2013.

F. L. Graham and A. J. Van-der-eb, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology, vol.52, issue.2, pp.456-467, 1973.

T. Grand, S. L'hoste, D. Mordasini, N. Defontaine, M. Keck et al., Heterogeneity in the processing of CLCN5 mutants related to Dent disease, Hum Mutat, vol.32, issue.4, pp.476-83, 2011.

T. Grand, D. Mordasini, S. L'hoste, T. Pennaforte, M. Genete et al., Novel CLCN5 mutations in patients with Dent's disease result in altered ion currents or impaired exchanger processing, Kidney Int, vol.76, issue.9, pp.999-1005, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02452509

M. Grieschat and A. K. Alekov, Multiple discrete transitions underlie voltagedependent activation in CLC Cl(-)/H(+) antiporters, Biophysical Journal, vol.107, issue.6, pp.13-15, 2014.

C. Grimm, E. Butz, C. Chen, C. Wahl-schott, and M. Biel, From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease, Cell Calcium, 2017.

W. Gunther, A. Luchow, F. Cluzeaud, A. Vandewalle, and T. J. Jentsch, ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells, Proc Natl Acad Sci U S A, vol.95, issue.14, pp.8075-80, 1998.

W. Gunther, N. Piwon, and T. J. Jentsch, The ClC-5 chloride channel knock-out mouse -an animal model for Dent's disease, Pflugers Arch, vol.445, issue.4, pp.456-62, 2003.

O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Archiv: European Journal of Physiology, vol.391, issue.2, pp.85-100, 1981.

R. R. Hoopes, . Jr, A. E. Shrimpton, S. J. Knohl, P. Hueber et al., Dent Disease with mutations in OCRL1, Am J Hum Genet, vol.76, issue.2, pp.260-267, 2005.

D. H. Hryciw, J. Ekberg, C. A. Pollock, and P. Poronnik, ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake, Int J Biochem Cell Biol, vol.38, issue.7, pp.1036-1078, 2006.

D. H. Hryciw, K. A. Jenkin, A. C. Simcocks, E. Grinfeld, A. J. Mcainch et al., The interaction between megalin and ClC-5 is scaffolded by the Na + -H + exchanger regulatory factor 2 (NHERF2) in proximal tubule cells, The International REFERENCES, 2012.

A. Accardi and C. Miller, Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels, Nature, vol.427, issue.6977, pp.803-810, 2004.

A. K. Alekov, Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5, Front Physiol, vol.6, p.159, 2015.

A. K. Alekov and C. Fahlke, Channel-like slippage modes in the human anion/proton exchanger ClC-4, The Journal of General Physiology, vol.133, issue.5, pp.485-496, 2009.

D. Arosio and G. M. Ratto, Twenty years of fluorescence imaging of intracellular chloride, Frontiers in Cellular Neuroscience, vol.8, p.258, 2014.

G. C. Brailoiu and E. Brailoiu, Modulation of Calcium Entry by the Endo-lysosomal System, Advances in Experimental Medicine and Biology, vol.898, pp.423-447, 2016.

J. C. Crocker and D. G. Grier, Methods of digital video microscopy for colloidal studies, J Colloid Interface, vol.179, pp.298-310, 1996.

C. D'antonio, S. Molinski, S. Ahmadi, L. J. Huan, L. Wellhauser et al., Conformational defects underlie proteasomal degradation of Dent's disease-causing mutants of ClC-5, Biochem J, vol.452, issue.3, pp.391-400, 2013.

O. Devuyst, P. T. Christie, P. J. Courtoy, R. Beauwens, and R. V. Thakker, Intrarenal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease, Hum Mol Genet, vol.8, issue.2, pp.247-57, 1999.

O. Devuyst and A. Luciani, Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule, J Physiol, vol.593, issue.18, pp.4151-64, 2015.

R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. Mackinnon, X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity, Nature, issue.6869, pp.287-94, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02150160

R. Dutzler, E. B. Campbell, and R. Mackinnon, Gating the selectivity filter in ClC chloride channels, Science, vol.300, issue.5616, pp.108-120, 2003.

L. Feng, E. B. Campbell, Y. Hsiung, and R. Mackinnon, Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle, Science, vol.330, issue.6004, pp.635-676, 2010.

T. Friedrich, T. Breiderhoff, and T. J. Jentsch, Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents, J Biol Chem, vol.274, issue.2, pp.896-902, 1999.

T. Gensch, V. Untiet, A. Franzen, P. Kovermann, and C. Fahlke, Determination of Intracellular Chloride Concentrations by Fluorescence Lifetime Imaging, Advanced Time-Correlated Single Photon Counting Applications, pp.189-211, 2015.

C. M. Gorvin, M. J. Wilmer, S. E. Piret, B. Harding, L. P. Van-den-heuvel et al., Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients, Proc Natl Acad Sci U S A, vol.110, issue.17, pp.7014-7023, 2013.

F. L. Graham and A. J. Van-der-eb, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology, vol.52, issue.2, pp.456-467, 1973.

T. Grand, S. L'hoste, D. Mordasini, N. Defontaine, M. Keck et al., Heterogeneity in the processing of CLCN5 mutants related to Dent disease, Hum Mutat, vol.32, issue.4, pp.476-83, 2011.

T. Grand, D. Mordasini, S. L'hoste, T. Pennaforte, M. Genete et al., Novel CLCN5 mutations in patients with Dent's disease result in altered ion currents or impaired exchanger processing, Kidney Int, vol.76, issue.9, pp.999-1005, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02452509

M. Grieschat and A. K. Alekov, Multiple discrete transitions underlie voltagedependent activation in CLC Cl(-)/H(+) antiporters, Biophysical Journal, vol.107, issue.6, pp.13-15, 2014.

C. Grimm, E. Butz, C. Chen, C. Wahl-schott, and M. Biel, From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease, Cell Calcium, 2017.

W. Gunther, A. Luchow, F. Cluzeaud, A. Vandewalle, and T. J. Jentsch, ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells, Proc Natl Acad Sci U S A, vol.95, issue.14, pp.8075-80, 1998.

W. Gunther, N. Piwon, and T. J. Jentsch, The ClC-5 chloride channel knock-out mouse -an animal model for Dent's disease, Pflugers Arch, vol.445, issue.4, pp.456-62, 2003.

O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Archiv: European Journal of Physiology, vol.391, issue.2, pp.85-100, 1981.

R. R. Hoopes, . Jr, A. E. Shrimpton, S. J. Knohl, P. Hueber et al., Dent Disease with mutations in OCRL1, Am J Hum Genet, vol.76, issue.2, pp.260-267, 2005.

D. H. Hryciw, J. Ekberg, C. A. Pollock, and P. Poronnik, ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake, Int J Biochem Cell Biol, vol.38, issue.7, pp.1036-1078, 2006.

D. H. Hryciw, K. A. Jenkin, A. C. Simcocks, E. Grinfeld, A. J. Mcainch et al., The interaction between megalin and ClC-5 is scaffolded by the Na + -H + exchanger regulatory factor 2 (NHERF2) in proximal tubule cells, The International Journal of Biochemistry & Cell Biology, vol.44, issue.5, pp.815-823, 2012.

,

D. H. Hryciw, W. A. Kruger, J. F. Briffa, C. Slattery, A. Bolithon et al., Sgk-1 is a positive regulator of constitutive albumin uptake in renal proximal tubule cells, Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, vol.30, issue.5, pp.1215-1226, 2012.

T. J. Jentsch, Discovery of CLC transport proteins: cloning, structure, function and pathophysiology, The Journal of Physiology, 2015.

S. E. Lloyd, S. H. Pearce, W. Gunther, H. Kawaguchi, T. Igarashi et al., Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5), J Clin Invest, vol.99, issue.5, pp.967-74, 1997.

S. Lourdel, T. Grand, J. Burgos, W. Gonzalez, F. V. Sepulveda et al., ClC-5 mutations associated with Dent's disease: a major role of the dimer interface, Pflugers Arch, vol.463, issue.2, pp.247-56, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02452454

M. Ludwig, J. Doroszewicz, H. W. Seyberth, A. Bokenkamp, B. Balluch et al., Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization, Hum Genet, vol.117, issue.2-3, pp.228-265, 2005.

M. J. Mahon, pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein, Advances in Bioscience and Biotechnology (Print), vol.2, issue.3, pp.132-137, 2011.

L. Mansour-hendili, A. Blanchard, N. Le-pottier, I. Roncelin, S. Lourdel et al., Mutation Update of the CLCN5 Gene Responsible for Dent Disease 1, Hum Mutat, vol.36, issue.8, pp.743-52, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850627

J. J. Matsuda, M. S. Filali, M. M. Collins, K. A. Volk, and F. S. Lamb, , 2010.

-. Cl, H+ antiporter becomes uncoupled at low extracellular pH, J Biol Chem, vol.285, issue.4, pp.2569-79

G. Miesenböck, D. A. De-angelis, and J. E. Rothman, Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins, Nature, vol.394, issue.6689, pp.192-195, 1998.

I. Neagoe, T. Stauber, P. Fidzinski, E. Y. Bergsdorf, and T. J. Jentsch, The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression, J Biol Chem, vol.285, issue.28, pp.21689-97, 2010.

G. Novarino, S. Weinert, G. Rickheit, and T. J. Jentsch, Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis, Science, vol.328, issue.5984, pp.1398-401, 2010.

A. Picollo and M. Pusch, Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5, Nature, vol.436, issue.7049, pp.420-423, 2005.

N. Piwon, W. Gunther, M. Schwake, M. R. Bosl, and T. J. Jentsch, ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease, Nature, vol.408, issue.6810, pp.369-73, 2000.

W. S. Rasband, N. Y. Loh, S. Terryn, J. D. Lippiat, C. Partridge et al., CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease, Am J Physiol Renal Physiol, vol.298, issue.2, pp.365-80, 2010.

H. Sakamoto, Y. Sado, I. Naito, T. H. Kwon, S. Inoue et al., Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase, Am J Physiol, vol.277, issue.6, pp.957-65, 1999.

N. Satoh, H. Yamada, O. Yamazaki, M. Suzuki, M. Nakamura et al., A pure chloride channel mutant of CLC-5 causes Dent's disease via insufficient V-ATPase activation, Pflugers Archiv: European Journal of Physiology, vol.468, issue.7, pp.1183-1196, 2016.

O. Scheel, A. A. Zdebik, S. Lourdel, and T. J. Jentsch, Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins, Nature, vol.436, issue.7049, pp.424-431, 2005.

C. C. Scott and J. Gruenberg, Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH, BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, vol.33, issue.2, pp.103-110, 2011.

A. J. Smith and J. D. Lippiat, Direct endosomal acidification by the outwardly rectifying CLC-5 Cl(-)/H(+) exchanger, The Journal of Physiology, vol.588, pp.2033-2045, 2010.

A. J. Smith, A. A. Reed, N. Y. Loh, R. V. Thakker, and J. D. Lippiat, Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure, Am J Physiol Renal Physiol, vol.296, issue.2, pp.390-397, 2009.

T. Stauber and T. J. Jentsch, Chloride in vesicular trafficking and function, Annual Review of Physiology, vol.75, pp.453-477, 2013.

K. Steinmeyer, B. Schwappach, M. Bens, A. Vandewalle, and T. J. Jentsch, Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease, J Biol Chem, vol.270, issue.52, pp.31172-31179, 1995.

S. Sato, S. Artoni, P. Landi, S. Cozzolino, O. Parra et al., Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.114, pp.8770-8779, 2017.

T. Suzuki, T. Rai, A. Hayama, E. Sohara, S. Suda et al., Intracellular localization of ClC chloride channels and their ability to form heterooligomers, J Cell Physiol, vol.206, issue.3, pp.792-800, 2006.

X. Tang, M. R. Brown, A. G. Cogal, D. Gauvin, P. C. Harris et al., Functional and transport analyses of CLCN5 genetic changes identified in Dent disease patients, Physiological Reports, issue.8, p.4, 2016.

,

Y. Wang, H. Cai, L. Cebotaru, D. H. Hryciw, E. J. Weinman et al., ClC-5: role in endocytosis in the proximal tubule, Am J Physiol Renal Physiol, vol.289, issue.4, pp.850-62, 2005.

S. Weinert, S. Jabs, C. Supanchart, M. Schweizer, N. Gimber et al., Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl-accumulation, Science, issue.5984, pp.1401-1403, 2010.