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ABSTRACT
 

 

Dent’s disease is an X-linked recessive disorder affecting the proximal tubules, and is 

frequently associated with mutations in CLCN5, which encodes the electrogenic Cl
-
/H

+
 

exchanger ClC-5. Here, we screened five new CLCN5 mutations, consisting of four 

missense mutations (G179D, S203L, G212A, L469P) and one nonsense mutation 

(R718X), and three published mutations (L200R, C219R and C221R). Their 

functional consequences were investigated in Xenopus laevis oocytes and HEK293 

cells expressing either wild-type or mutant ClC-5. Two different types of mutant could 

be distinguished. The type-I mutant (G212A) trafficked normally to the cell surface 

and to early endosomes, like wild-type ClC-5, but exhibited significantly reduced 

currents. The type-I mutant underwent complex glycosylation at the cell surface, like 

wild-type ClC-5. Type-II mutants (G179D, L200R, S203L, C219R, C221R, L469P 

and R718X) were improperly N-glycosylated and were shown to be non-functional 

because of endoplasmic reticulum retention. In conclusion, we have identified distinct 

mechanisms by which mutations in CLCN5 could impair ClC-5 function in Dent’s 

disease. 

 

KEYWORDS 

Dent’s disease; chloride/proton exchanger; ClC-5; mutation 
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INTRODUCTION 

 

Dent’s disease is a heterogeneous group of X-linked inherited disorders that have in 

common a renal phenotype consisting mainly of the urinary loss of low-molecular-weight 

protein (LMWP), hypercalciuria, nephrocalcinosis, and progressive renal failure, all of which 

are sometimes associated with other proximal tubule dysfunctions. Inactivating mutations of 

CLCN5 are present in approximately two thirds of patients, whereas mutations of OCRL1, a 

gene encoding a Phospho-Inositide (PI) phosphatase, have been reported in only a few 

cases.
1,2

 

CLCN5 encodes ClC-5, an electrogenic Cl
-
/H

+
 exchanger.

3,4
 In the kidney, ClC-5 is 

predominantly expressed in the proximal tubule and α-intercalated cells of the collecting duct. 

Lower levels are also expressed in the thick ascending limb of Henle’s loop.
5,6

 In proximal 

tubule cells, ClC-5 is present on the membranes of intracellular subapical vesicles, where it 

colocalizes with the v-type H
+
-ATPase, markers of early endosomes and proteins that have 

just been internalized by endocytosis.
5-9

 This suggests that ClC-5 may neutralize currents of 

vesicular H
+
-ATPases and that ClC-5 loss-of-function could lead to the defective endocytosis 

observed in the syndrome by impairing the crucial step of endosomal acidification.
6,10-12

 ClC-

5 disruption also led to a trafficking defect of megalin and its co-receptor cubilin.
10,13

  

Furthermore, ClC-5 may also contribute to protein-protein interactions required for receptor-

mediated endocytosis at the proximal tubule cell surface as a result of its binding with 

cofilin,
14

 an actin-depolymerizing protein, the PDZ-domain protein NHERF2,
15

 and Nedd-4,
16

 

which by ubiquinating ClC-5 at its PY motif may shuttle it from the cell surface into early 

endosomes. Thus, as a whole, the mechanisms by which ClC-5 dysfunction results in Dent’s 

disease still remain largely unknown. 
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Despite the large number of CLCN5 mutations already reported, there has so far been 

only two reports providing a full functional analysis of some ClC-5 mutations.
17,18 

 Here, we 

report data that help to shed more light on the functional implications of ClC-5 in Dent’s 

disease by describing five new and three previously reported CLCN5 mutations, and 

investigating their consequences in X. laevis oocytes and HEK293 in terms of electrical 

activity, protein trafficking, expression and subcellular localization. 
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RESULTS 

 

Clinical data from patients carrying the previously unreported mutations are shown in 

Table 1. All these patients presented with low-molecular-weight-proteinuria, hypercalciuria 

and/or nephrocalcinosis, and at least one other renal proximal tubular defect (glycosuria, 

aminoaciduria, phosphaturia). 

To characterize the CLCN5 mutations, we injected the corresponding human ClC-5 

mutants and wild-type (WT) ClC-5 cRNA into oocytes. Two-electrode voltage-clamp 

recordings revealed strongly outwardly-rectifying currents from the oocytes expressing WT 

ClC-5, as previously reported (Figure 1A-B).
3,4,19,20

 The currents for the G212A mutant were 

significantly reduced by 56% (n = 18) by comparison to oocytes expressing WT ClC-5 

(Figure 1A). Despite reduced current amplitude, the voltage dependence of the currents for 

the G212A mutant resembled those of WT ClC-5 (Figure 1). In good agreement with a 

residual ClC-5 activity, currents from this mutant were reduced with partial replacement of 

extracellular Cl
-
 by I

-
, an anion for which WT ClC-5 has lower permeability (data not 

shown).
19

  In contrast, we failed to record any currents with the G179D (n = 26), S203L (n = 

6), C219R (n = 22), L469P (n = 14), R718X (n = 13) mutants (Figure 1A). The L200R (n = 7) 

and C221R (n = 22) mutants were also found to be non-functional, as already reported.
18,21

 

To further elucidate the mechanisms leading to reduced currents, we then investigated 

the cell surface targeting of WT and mutant ClC-5 proteins. The normalized 

chemiluminescence signals for the G212A mutant were not different from those of WT ClC-

5, indicating that there was no impairment of cell surface expression with this mutant (Figure 

2). These findings suggested that the significant decrease in current amplitudes for the G212A 

mutant (Figure 1A-B and Figure 2) were not due to impairment in protein trafficking to the 

cell surface. This could be explained by changes in conductance or in the regulation of the 
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mutant proteins. In contrast, the normalized chemiluminescence signals for the G179D, 

L200R, S203L, C219R, L469P and R718X mutants were not different from those observed in 

non-injected oocytes. No surface expression was detected with the C221R mutant, as had 

already been demonstrated.
18

 The absence of significant electrical activity in oocytes carrying 

these mutants could be explained by an impairment of cell surface expression due to a 

mistargeting (Figure 1A-B, Figure 2) or by altered protein expression.  

Total cell lysates isolated from oocytes expressing either WT or mutant ClC-5 were 

subjected to a western blot analysis (Figure 3A). In the lane loaded with WT ClC-5, a 

~90-100 KDa diffuse immunoreactive band was detected, consistent with data already 

reported.
10

 On the one hand, when an equivalent amount of proteins was loaded in each lane, 

no significant difference in density or size could be detected between WT ClC-5 and the 

G212A mutant. Thus, the decreased currents of the G212A mutant were not attributable to 

different protein expression levels. On the other hand, expression of the G179D, L200R, 

S203L, C219R, and L469P mutants was reduced compared to WT ClC-5. This could be 

explained by a change in the processing of the mutant proteins. The C221R mutant also 

showed this reduced protein expression, which conflicted with previously published data.
18

 

The R718X mutant exhibited a band smaller than those of WT ClC-5, as would be expected 

for the truncation mutation, and the protein abundance was lower than that of WT ClC-5. 

The diffuse immunoreactive band observed with WT ClC-5 at ~90-100 kDa suggested 

that hClC-5 may have undergone post-translational modification, as previously described.
22

 

To gain more insight into the processing of WT and mutant forms of ClC-5, total cell lysates 

were treated with the Endo H and PNGase F (Figure 3B and C). Endo H cleaves high-

mannose glycosylations, and some hybrid oligosaccharides form of N-linked glycoproteins. 

Therefore, Endo H-sensitive proteins likely remain in the endoplasmic reticulum without 

further processing, and are only core-glycosylated. PNGase F cleaves complex, hybrid, and 
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high-mannose glycosylations. The lane loaded with WT ClC-5 demonstrated specific bands of 

~90 and ~100 kDa. The 90 kDa band of WT ClC-5 was sensitive to Endo H, whereas the 100 

kDa band was not (Figure 3B). This indicates that the 90 kDa protein contains high-mannose 

glycosylation and is retained in the endoplasmic reticulum, whereas the 100 kDa protein 

contains complex glycosylation. In contrast, the 100 kDa band was sensitive to PNGase F 

(Figure 3B). The Endo H and PNGase F digestion showed that the core protein migrated with 

an apparent molecular size of 83 kDa (Figure 3B). Similar treatments revealed that the G212A 

mutant displayed the WT ClC-5 complex glycosylation (Figure 3C). In contrast, only core-

glycosylation was observed with the C219R mutant (Figure 3C). The G179D, L200R, S203L, 

C221R, L469P and R718X mutants also exhibited core-glycosylation (data not shown). 

Thus, abolition of conduction and surface expression for the G179D, L200R, S203L, 

C219R, C221R, L469P and R718X mutants are compatible with impaired N-glycosylation, 

which is likely to result in rapid degradation of the products within the cell. 

To further document the subcellular localization of WT and mutants ClC-5, we 

performed confocal microscopy imaging of indirect immunofluorescence in transiently 

transfected HEK293 cells. As shown in Figure 4, WT ClC-5 staining colocalized with 

biotinylated cell-surface proteins and with the early endosomes marker EEA1. A weak 

colocalization between WT ClC-5 and the endoplasmic reticulum marker calnexin was also 

observed. Likewise, the G212A mutant colocalized with biotinylated cell-surface proteins and 

EEA1. To further confirm plasma membrane expression for WT ClC-5 and the G212A 

mutant, we carried out surface biotinylation experiments. No significant difference could be 

detected in the surface fraction containing WT ClC-5 compared with the G212A mutant 

(Figure 5). Interestingly, in contrast to the total cell lysates, the biotinylated protein fraction 

contained only the complex-type glycosylated fraction of ClC-5, indicating that the plasma 

membrane ClC-5 component is complex glycosylated. In contrast, the G179D, L200R, 
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S203L, C219R, C221R, L469P and R718X mutants were retained in the endoplasmic 

reticulum compartment, as shown by their colocalization with the endoplasmic reticulum 

marker calnexin, and were excluded from the plasma membrane and the early endosomes 

(Figure 4). Surface biotinylation experiments also demonstrated that the C219R mutant was 

excluded from the surface biotinylated protein fraction (Figure 5). The G179D, L200R, 

S203L, L469P and R718X mutants were also excluded from the apical biotinylated protein 

fraction (data not shown). As a whole, abolition of conduction and surface expression of these 

mutants are compatible with their endoplasmic reticulum retention, which is likely to result in 

rapid degradation of the products within the cell. 
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DISCUSSION 

 

Here, we have explored the functional effects of five novel CLCN5 mutations found in 

patients with Dent’s disease, including four missense mutations (G179D, S203L, G212A and 

L469P) and one nonsense mutation (R718X), plus three previously published missense 

mutations (L200R, C219R and C221R). 

The G179D, L200R, S203L, C219R, C221R, L469P and R718X mutants displayed a 

defective protein surface expression, electrical activity and lacked the complex glycosylation 

showed by WT ClC-5. Our immunocytochemical analysis in HEK293 transfected cells 

revealed that these mutants are not detected at the cell surface because they are retained in the 

endoplasmic reticulum, probably due to improper folding. As a consequence, they may be 

subjected to early degradation by quality control mechanisms thus accounting for their 

reduced protein expression and their core-glycosylation form. As far as we are aware, only 

one CLCN5 mutation is known to result in impaired N-glycosylation, the G333R mutation 

located in the J helix.
23

 The authors speculated that the mutation may induce a disruption of 

the interface between the homodimers,
24,25

 and that would lead in turn to the formation of 

misfolded proteins and rapid degradation. These data do not help to explain our findings, 

because the five missense mutations are located quite some distance from the transporter 

interface. However, it is interesting to note that apart from G179D and R718X they are all 

located in α-helices (Figure 6). These mutations may significantly affect the stability of the α-

helices, thus enhancing protein degradation. Lack of complex glycosylation is usually 

observed in mutant proteins not reaching the plasma membrane. This is the case for instance 

for the NCC protein carrying mutations for Gitelman syndrome.
26,27

 However, Schmieder et 

al. studying X. laevis ClC-5 (xClC-5) with mutations on N-glycosylation sites observed that a 
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significant fraction of non-glycosylated xClC-5 mutants escaped from endoplasmic reticulum 

retention and was targeted to the plasma membrane.
28

  

Our results for the R718X mutant, which predict a loss of 28 amino acids from the 

C-terminus and a deletion of a part of CBS2 domain, are in sharp contrast with previous 

findings reported for the Y617X, R648X and R704X ClC-5 mutants that affect the CBS1 and 

CBS2 domains. Residual activity was found for the R648X mutant,
18

 but not for the Y617X 

and R704X mutants.
21,29

 However, the last three mutants were all found to be targeted to the 

cell surface, with an increase in surface expression for the R648X mutant.
18,30,31

  Our findings 

raise the possibility that the R718X mutation may interfere with the proper folding of the C-

terminus of ClC-5 that is necessary to pass the quality controls of the endoplasmic reticulum. 

In contrast to the previous mutants, the G212A mutant underwent further processing 

and appeared to be modified into complex glycosylated forms, and trafficked to the cell 

surface and to the early endosomes, like WT ClC-5.  

This mutant displayed reduced currents with normal cell surface expression. The 

G212A mutation is located at the beginning of helix F (Figure 5).
24,25

  It directly follows the 

“gating glutamate” which is responsible for coupling the Cl
-
 flux to the H

+
 counter-transport 

in ClC Cl
-
/H

+
 exchangers.

3,4,32
  Neutralization of the “gating glutamate” converted EcClC-1, 

ClC-4 and ClC-5 into pure anion conductances and abolished the strong outward rectification 

of ClC-4 and ClC-5.
3,4,32

 Here, we demonstrated that the G212A mutation reduced the 

electrical activity without abolishing the outward rectification. Several mechanisms can 

account for the reduced currents amplitudes: the mutation could eliminate the H
+
 coupling to 

Cl
-
, the mutant protein could exhibit lower transport rates, the stoichiometry of Cl

-
/H

+
 

coupling could be modified and the probability of the mutant protein of being in an active 

state could be affected. Future studies are needed to examine the specific effects of the 

G212A mutation. 
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By using whole-cell recordings and a vesicular acidification assay in HEK-MSR cells 

expressing ClC-5 pathogenic mutations, Smith et al. recently demonstrated that the R280P 

mutation resulted in altered electrical activity, reduced plasma membrane expression, 

increased expression in early endosomes and enhanced endosomal acidification. To explain 

the abnormal decrease of intraluminal pH, the authors raised the hypothesis that an 

accumulation of the mutant protein in early endosomes would ideally support and enhance 

endosomal acidification.
17

 Here, we have demonstrated that the G212A mutant also displayed 

reduced electrical activity like the R280P mutant. However, because the G212A mutant 

trafficked normally to the plasma membrane and early endosomes like WT ClC-5, further 

investigations are required to determine the possible effects of the mutation on the 

intraluminal pH. 

In conclusion, two types of ClC-5 mutants can be distinguished. Type-I mutants are 

properly targeted to the plasma membrane and early endosomes, but with reduced electrical 

activity (G212A). Type-I mutants are complex glycosylated. Type-II mutants fail to induce 

currents, because of defective processing in N-glycosylation resulting of endoplasmic 

reticulum retention (G179D, L200R, S203L, C219R, C221R, L469P and R718X). 
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MATERIALS AND METHODS 

 

DNA Sequence analysis of the CLCN5 gene 

Peripheral blood samples were obtained and genomic DNA was extracted by standard 

methods. The coding exons (2 to 12) and intron-exon junctions were amplified with CLCN5-

specific primers described elsewhere using PCR amplification.
33

 We carried out direct 

sequencing using the dioxy chain termination method on an automated Perkin Elmer/Applied 

Biosystems Division 373A Stretch DNA capillary sequencer, and evaluated sequences with 

Sequencher software. 

 

Molecular Biology 

ClC-5 mutants were synthesized from human wild-type ClC-5 extracellularly HA 

tagged and subcloned either into the pTLN expression vector for expression in X. laevis 

oocytes or into the peGFP expression vector for expression in HEK293 cells. The coding 

sequence for GFP in the peGFP vector have been substituted for those of WT or mutant ClC-

5. Site directed mutagenesis was performed with the Quickchange site-directed mutagenesis 

kit (Stratagene, La Jolla, CA, USA). All constructs were fully sequenced.  

 

Expression in X. laevis oocytes 

Capped cRNA were synthetized in vitro from wild-type and mutants ClC-5 expression 

vectors using the SP6 mMessage mMachine Kit (Ambion, Austin, TX, USA). Defolliculated 

X. leavis oocytes were injected with 20 ng of the different cRNAs and were then kept at 17°C 

in modified Barth’s solution containing (in mM): 88 NaCl, 1 KCl, 0.41 CaCl2, 0.32 Ca(NO3)2, 

0.82 MgSO4, 10 HEPES, pH 7.4 and gentamicin (20 µg/ml).  
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Electrophysiology 

Five days after injection, two-electrode voltage-clamp experiments were performed at 

room temperature using a TEV-200A amplifier (Dagan, Minneapolis, MN, USA) and PClamp 

8 software (Axon Instruments, USA). Currents were recorded in ND96 solution containing (in 

mM): 96 NaCl, 2 KCl, 1.5 CaCl2, 1 MgCl2, 5 HEPES, pH 7.4. For pH 5.5 and 6.5, 5 mM 

HEPES was replaced by 5 mM MES. In the iodide substitution experiment, 80 mM Cl
-
 was 

replaced by equivalent amounts of I
-
. Currents were recorded in response to a voltage protocol 

consisting of 20 mV steps from –100 mV to +100 mV during 800 ms from a holding potential 

of –30 mV. 

 

Surface labeling of oocytes 

Experiments were essentially performed as previously described,
34

 using a rat 

monoclonal anti-HA antibody (3F10, Roche Diagnostics, Meyland, France) as primary 

antibody and a peroxidase-conjugated goat anti-rat antibody (Jackson ImmunoResearch, West 

Grove, PA, USA) as secondary antibody. Chemiluminescence was quantified in a Turner TD-

20/20 luminometer (Turner Designs, Sunnyvale, CA, USA) by placing individual oocytes in 

50 µl of SuperSignal Elisa Femto Maximum Sensitivity Substrate Solution (Pierce, Rockford, 

IL, USA). 

 

Cell culture and transfection 

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

(GIBCO, invitrogen, CA, USA) supplemented with 10% fetal bovine serum, penicillin (100 

units/ml), and streptomycin (100 µg/ml) at 37°C in 5% CO2. The cells were transiently 
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transfected using Fugene 6 according to the manufacturer’s instructions (Roche Diagnostics, 

Meyland, France). 

 

Immunocytochemistry 

Transfected HEK293 cells were plated on 12 mm diameter Petri dishes. Cells were 

then fixed in 4% paraformaldehyde and permeabilized with 0.3% Triton. Nonspecific binding 

sites were blocked with 16% goat serum solution. Primary antibodies were mouse anti-HA 

(Sigma, St Louis, MO, USA), rabbit anti-EEA1 (Sigma, St Quentin Fallavier, France), rabbit 

anti-calnexin (Stressgen, Ann Arbor, MI, USA). FITC-conjugated goat anti-mouse (Jackson 

ImmunoResearch, West Grove, PA, USA), TRITC-conjugated goat anti-rabbit (Jackson 

ImmunoResearch, West Grove, PA, USA), or Cy5-conjugated streptavidin (Sigma, St 

Quentin Fallavier, France) were added to the cells as secondary antibodies. Labeled cells were 

analyzed with a Zeiss LSM 510 confocal laser scanning microscope. 

 

Surface biotinylation of HEK293 cells 

48 h after transfection, cells were placed on ice and rinsed twice with a cold rinsing 

solution containing PBS, 100 µM CaCl2 and 1 mM MgCl2. Cells were then incubated at 4°C 

for 1 h with PBS and 1.5 mg/ml NHS-biotin (Pierce, Rockford, IL, USA). They were 

incubated in quenching solution containing 0.1% BSA diluted in PBS and rinsed 3 times with 

the rinsing solution. After lysis in a solution containing 20 mM Tris HCl, 2 mM EDTA, 2 mM 

EGTA, 30 mM NaF, 30 mM NaPPi, 1% Triton, 0.1% SDS and a protease inhibitor mix 

(Complete, Roche Diagnostics, France), equal amount of proteins were precipitated at 4°C 

overnight using streptavidin-agarose beads (Pierce, Rockford, IL, USA). Samples were then 

centrifuged at 2,500 x g during 2 min at 4°C with TLB solution containing 50 mM Tris-HCl, 

pH 7.4, 100 mM NaCl, 5 mM EDTA and the protease inhibitor mix.  
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Protein isolation 

Total cell lysates were isolated from oocytes after homogenization of the cells in an 

ice-cold solution containing (in mM): 250 sucrose, 0,5 EDTA, 5 Tris-HCl, pH 7.4, and a 

protease inhibitor mix (Complete, Roche Diagnostics, France). Samples were centrifuged 3 

times at 500 x g for 2 minutes to remove yolk platelets. Protein concentration in the resulting 

supernatant was quantified using a protein assay quantification kit (BCA Protein Kit Assay, 

Pierce, Rockfort, IL, USA). Digestion of proteins with N-glycosidase F (PNGase F) and 

endoglycosidase H (Endo H) (New England Biolabs, Ipswich, MA, USA) was performed 

according to the protocol provided by the manufacturer. 

For the isolation of total cell lysates from HEK293, cells were incubated 10 min on ice 

with the lysis solution. Samples were centrifugated at 13,000 rpm for 5 minutes. Protein 

concentration in the supernatant was quantified using the protein assay quantification kit.  

 

Western blot analysis 

The proteins were separated on an 8% SDS-PAGE gel and transferred to PVDF 

membranes. Primary rat anti-HA monoclonal antibody (3F10, Roche Diagnostics, Meyland, 

France), rabbit anti-GAPDH monoclonal antibody (Abcam, Cambridge, UK) and secondary 

peroxidase-conjugated goat anti-rat antibody (Jackson ImmunoResearch, West Grove, PA, 

USA) and anti-rabbit (Promega, Madison, WI, USA) were diluted in TBS-blocking solution. 

Detection was performed using the ECL Western Blotting Substrate (Pierce, Rockford, IL, 

USA). 
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Statistics 

Results are shown as mean ± SEM. n indicates the number of experiments. 

Significance was analyzed by a paired Student’s t-test. P < 0.05 was considered significant. 
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FIGURE LEGENDS 

 

Figure 1. Electrophysiological properties of WT and mutants ClC-5. A. Steady-state 

current-voltage relationships obtained in ND96 solution (pH 7.4). Each data point represents 

the mean ± SEM for at least 6 oocytes from three different oocyte batches. NI, Non-Injected 

oocytes. B. Representative original voltage-clamp recordings obtained from oocytes 

expressing WT CLC-5, G179D mutant CLC-5, and from non-injected oocytes under same 

conditions as described in A. 

 

Figure 2. Currents/cell surface expression relationship for WT and mutants ClC-5. 

Currents at +100 mV are from the same data as in Figure 1A. For cell surface expression, the 

values (measured in RLU, Relative Light Units) were normalized to those of WT ClC-5 in the 

same batch of oocytes. Each column represents the mean ± SEM for at least 6 oocytes for 

current recordings, and at least 60 oocytes from three different batches of oocytes for the 

surface expression. *, P < 0.001 is the difference between WT or mutants ClC-5 vs NI. #, P < 

0.001 is the difference between NI or mutants ClC-5 vs WT ClC-5. 

 

Figure 3. Western blot analysis of WT and mutants ClC-5.  A. Total cell lysates were 

isolated from NI and injected oocytes. B and C. Total cell lysates were isolated from oocytes 

injected with WT or mutants ClC-5. Some preparations were treated with PGNase F (F) and 

Endo H (H). CTL, Control. Data are typical results for 40 oocytes from three different batches 

of oocytes. 

 

Figure 4.  Immunocytochemical localization of WT and mutants ClC-5 in HEK293 

transfected cells.  ClC-5 expression was detected by green fluorescence. Organelles were 
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stained with one of three markers : biotin (plasma membrane), EEA1 (early endosomes), 

calnexin (endoplasmic reticulum) and were detected by red fluorescence. The yellow 

fluorescence indicates that both proteins overlap. Scale bars, 7 µm.  

 

Figure 5. Cell surface expression of WT and mutants ClC-5 in HEK293 transfected cells. 

A. Western blot analysis of the surface biotinylated protein fraction (S) or total cell lysates 

(T). B. Relative quantification of cell surface expression of WT and mutants ClC-5. 

Densitometric analysis of total and cell surface ClC-5 is shown as the ratio of biotinylated 

surface proteins to total cells lysates quantified by densitometry. Each column represents the 

mean ± SEM from 5 experiments. UT, untransfected cells. 

 

Figure 6. Amino acid sequence alignment of several ClCs showing the position of the 

CLCN5 mutations characterized in this study. The conserved regions are shown in bold 

and highlighted in gray. Mutations are shown above the sequences. The alignment was 

performed using BioEdit. 
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Table 1. Clinical and biochemical abnormalities in probands with Dent syndrome and new CLCN5 mutations 

   

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 

Age at first symptom (years) 4 8 7 3 4 1 

Failure to thrive + - - - - - 

LMWP + + + + + + 

Hypercalciuria + - + + + + 

Renal impairment +
1
 - - - - + 

Nephrocalcinosis + - + + * + + 

Nephrolithiasis - - - - - - 

Phosphate diabetes + + NA - - - 

Rickets + - - - - - 

Aminoaciduria + - NA NA - + 

Glycosuria NA NA NA - - - 

Hypouricemia NA NA NA NA + + 

Polyuria + - - - - - 

Country Portugal Portugal Belgium North Africa France France 

Mutation          Nucleotide 

                         Protein 

c.1406T>C 

p.Leu469Pro 

c.635G>A 

p.Gly212Ala 

c.2152c>T 

p.Arg718X 

c.536G>A 

p.Gly179Asp 

c.608C>T 

p.Ser203Leu 

+ = present, - = absent. NA: not available. LMWP: low-molecular-weight-proteinuria. 
1
Renal function impairment at 10 years.  

* Nephrocalcinosis at 12 years. Numbering is according to the cDNA sequence (GenBank entry NM 000084).  The A of the ATG of the 

initiator Methionine codon is denoted as nucleotide 1. Patients 1 and 2 are brothers. 
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