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ABSTRACT

Context. Fast rotation is responsible for important changes in the structure and evolution of stars and the way we see them.
Optical long baseline interferometry now allows for the study of its effects on the stellar surface, mainly gravity darkening and
flattening.
Aims. We aim to determine the fundamental parameters of the fast-rotating star Altair, in particular its evolutionary stage (represented
here by the core hydrogen mass fraction Xc), mass, and differential rotation, using state-of-the-art stellar interior and atmosphere
models together with interferometric (ESO-VLTI), spectroscopic, and asteroseismic observations.
Methods. We use ESTER two-dimensional stellar models to produce the relevant surface parameters needed to create intensity maps
from atmosphere models. Interferometric and spectroscopic observables are computed from these intensity maps and several stellar
parameters are then adjusted using the publicly available MCMC algorithm Emcee.
Results. We determined Altair’s equatorial radius to be Req = 2.008 ± 0.006 R�, the position angle PA = 301.1 ± 0.3◦, the inclination
i = 50.7 ± 1.2◦, and the equatorial angular velocity Ω = 0.74 ± 0.01 times the Keplerian angular velocity at equator. This angular
velocity leads to a flattening of ε = 0.220 ± 0.003. We also deduce from the spectroscopically derived v sin i ' 243 km s−1, a true
equatorial velocity of ∼314 km s−1 corresponding to a rotation period of 7h46m (∼3 cycles/day). The data also impose a strong corre-
lation between mass, metallicity, hydrogen abundance, and core evolution. Thanks to asteroseismic data, and provided our frequencies
identification is correct, we constrain the mass of Altair to 1.86± 0.03 M� and further deduce its metallicity Z = 0.019 and its core
hydrogen mass fraction Xc = 0.71, assuming an initial solar hydrogen mass fraction X = 0.739. These values suggest that Altair is
a young star ∼100 Myr old. Finally, the 2D ESTER model also gives the internal differential rotation of Altair, showing that its core
rotates approximately 50% faster than the envelope, while the surface differential rotation does not exceed 6%.

Key words. stars: individual: Altair – stars: interiors – stars: atmospheres – stars: rotation – stars: fundamental parameters –
stars: oscillations

1. Introduction

A large fraction of intermediate-mass and massive stars have
high rotation rates (Zorec & Royer 2012; Ramírez-Agudelo et al.
2013). Understanding the physics of their interiors requires an
understanding of how rotation affects them. Indeed, at high ini-
tial masses, stars rotate (on average) rapidly, up to several hun-
dred km s−1 for the fastest (Royer 2009). Such high rotation rates,
which sometimes bring stars close to break-up, have a strong
impact on their internal structure and evolution. For example,
unless they possess a strong magnetic field, and early-type stars
rarely do, many of these stars exhibit signs of differential rotation
(Reiners 2007). This differential rotation induces meridional cir-
culation and small-scale turbulence that carry matter and angu-
lar momentum (Mestel 1953). This effect is commonly called
“rotational mixing”, and while it brings fresh hydrogen to the
core, increasing the time the star spends in the main sequence
(MS) phase (some stars may even skip the Blue Loop in the giant
phase Georgy et al. 2013), it also brings elements formed in the

? Based on VLTI observations performed at ESO, Chile under pro-
gramme IDs 60.A-9164(A), 87.D-0150(A), and 094.C-0232(A).

core of the star up to the surface, where they can be observed.
Abnormal abundances are thus expected in fast rotating stars,
compared to the slowly rotating ones (e.g. Heger & Langer 2000;
Meynet & Maeder 2000). Yet, some fast rotators do not show the
expected abnormal abundances, while some slow rotators do show
abnormal abundances, as summarised in Cazorla et al. (2017).
Obviously, rotational mixing still requires further investigation.

These examples show that taking rotation into account in
stellar interior models is paramount to a more accurate descrip-
tion of stellar evolution. Unfortunately, as rotation has two-
dimensional (even three-dimensional) effects, it cannot be easily
accounted for by 1D models. For instance, the 1D MESA
models (e.g. Paxton et al. 2018) include rotational mixing as a
pure diffusive process while advection is known to be essen-
tial in the transport of angular momentum (Zahn 1992). The
difficulty is increased when one has to deal with data that
are directly influenced by the non-spherical nature of rotat-
ing stars, like spectro-interferometric observables. For example,
Domiciano de Souza et al. (2002) performed a detailed study
on how physical models can be used to investigate and con-
strain some model parameters from the observed interferometric
signatures of rotation, namely rotational flattening and gravity
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darkening (GD). From the observational side, many results were
obtained from spectro-interferometry, and van Belle (2012) give
a review of some of the different attempts made on several stars.
Although important advances were achieved thanks to these and
other theoretical and observational studies, they are based on
simplified models, not taking into account the 2D internal struc-
ture of the rotating stars.

Recent progress in programming techniques and computer
power has enabled the creation of fully two dimensional stel-
lar models by the ESTER code (Rieutord et al. 2016). ESTER
models indeed predict the differential rotation profile and the
associated meridional circulation of an early-type star at a given
stage of its MS evolution. The solution given by the code is
presently the steady state solution of an isolated rotating star.
Time evolution has not been implemented yet. However, by tun-
ing the hydrogen mass fraction in the convective core, a good
approximation of an evolved state on the MS can be computed.
Espinosa Lara & Rieutord (2013) have shown that the funda-
mental parameters of three nearby rapidly rotating stars obtained
with interferometry could be reproduced fairly well. The three
stars are α Leo (M ' 4.15 M�), α Lyr (M ' 2.2 M�) and α Oph
(M ' 2.4 M�). However, the fundamental parameters of these
stars have been derived from interferometric data using sim-
ple stellar models, namely Roche models with uniform rotation.
Gravity darkening, a non-uniform flux distribution on the stellar
surface as a result of rotation, was modelled using the modified
von Zeipel’s law Teff ∝ gβeff

, with the exponent β being adjusted.
Hence, several approximations of stellar structure are presently
used to interpret the interferometric data. One might therefore
wonder what would be the fundamental parameters derived from
interferometric data if more realistic 2D models were used. This,
in turn, would inform us on the validity domain of 1D models
and their approximations.

To test this new way of modelling fast rotators, we chose
to focus on the well studied A7V star Altair (α Aquilae,
HD 187642) for which numerous data sets are available.

To determine its parameters, we first endowed ESTER mod-
els with appropriate stellar atmosphere models. We thus obtained
spectra and intensity maps of Altair, the latter being constrained
with interferometric data. The results gave new fundamen-
tal parameters for Altair based on the most up-to-date two-
dimensional models. Interestingly, the new models enable an
interpretation of the δ-Scuti type oscillations of Altair detected
by Buzasi et al. (2005).

The paper is organised as follows: in Sect. 2, we list the
observational data that we use. In Sect. 3, the ESTER code is
briefly described. We present the preliminary models that match
the previous determinations of Altair’s parameters (Sect. 4). We
then focus on the combination of atmospheric models with inte-
rior models (ESTER and ω-model) and compute interferomet-
ric observables and spectra from the resultant intensity maps, to
be compared with the observational data (Sect. 5). The model-
fitting method we used and the results obtained are presented
in Sects. 6 and 7. Finally, we discuss several points of interest
(Sect. 8) and give some prospects for the future that this work
offers.

2. Data

2.1. Interferometry

Two sets of near-IR interferometric data from two different
VLTI beam-combiners were used to study Altair: 8 observa-
tions from PIONIER (H band; 1.65 µm) and 6 observations

Table 1. Altair’s observations done with the PIONIER instrument at
ESO’s VLTI in the H band.

Date Configuration Ground PA (◦)
baseline

2011-09-23T00:43
2011-09-23T01:49 46.64 m See
2011-09-24T00:46 A1-G1-I1-K0 to Fig. 2
2011-09-24T01:18 129.08 m
2011-09-24T03:33
2014-10-11T23:49 11.31 m See
2014-10-12T00:12 A1-B2-C1-D0 to Fig. 2
2014-10-12T00:34 36.09 m

Table 2. Altair’s observations done with the GRAVITY instrument at
ESO’s VLTI in the K band.

Date Configuration Ground PA (◦)
baseline

2016-06-16T06:50
2016-06-16T06:58 48.86 m
2016-06-16T07:06 A0-G1-J2-K0 to See
2016-06-18T06:06 129.34 m Fig. 2
2016-06-18T06:14
2016-06-18T06:22

from GRAVITY (K band; 2.2 µm). The PIONIER observations
(listed in Table 1) were obtained from the JMMC1 web service
OiDB2 and combine two different observing programmes. The
data reduction and calibration process for both programmes were
done using the PNDRS pipeline (Le Bouquin et al. 2011). The
first part is made of five observations done over two nights in
September 2011. Seven channels in the H band are available.
The second part is composed of three observations done in one
night, in October 2014, for the Exozodi survey (the details of
the observation are given in Marion et al. 2014). They were con-
ducted with a compact configuration (AT) and three wavelength
channels in the H band. This second part of PIONIER data was
used despite the three-year gap with the first one, as the compact
configuration will only be sensitive to large scales, such as the
overall shape of the star, which does not change significantly in
such a short time for Altair.

The second set of data is made of two nights of GRAVITY
observations (see Table 2). They were obtained during the first
Science Verification Time (SVT) of the instrument (programme
ID: 60.A-9164(A)). They were reduced using the GRAVITY
pipeline (Lapeyrere et al. 2014), with the star HD 188310 used
as calibrator, through reduction recipes made available by the
GRAVITY consortium in their python toolkit3. Six squared visi-
bilities and four closure phases were obtained with each observa-
tion, for both the p and s polarisation directions. This yields two
data sets at high resolution in the K band (R ∼ 4000), and two
at low resolution for the fringe tracker. As there was no signif-
icant difference between the data sets for the two polarisations,
we averaged them. Only the science detector data was used in
our analysis.

1 Jean-Marie Mariotti Center.
2 Optical interferometry DataBase.
3 Available at http://version-lesia.obspm.fr/repos/DRS_
gravity/python_tools/

A78, page 2 of 20

http://version-lesia.obspm.fr/repos/DRS_gravity/python_tools/
http://version-lesia.obspm.fr/repos/DRS_gravity/python_tools/


K. Bouchaud et al.: A realistic two-dimensional model of Altair

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d 

vi
sib

ilit
y

pionier
B2-D0
C1-D0
B2-C1
A1-B2
A1-D0
A1-C1

A1-G1
A1-K0
G1-I1
G1-K0
A1-I1
I1-K0

gravity
J2-K0
G1-K0
A0-K0
G1-J2
A0-J2
A0-G1

10 20 30 40 50 60 70 80
Spatial frequency (M )

150

100

50

0

Cl
os

ur
e 

Ph
as

e

20 30 40 50 60
Spatial frequency (M )

Altair vs Model (M = 1.86 M , Z = 0.019, Xc/Xe = 0.96,  = 0.74 bk, i = 50.6 , PA = 301.1 )

Fig. 1. Interferometric observables (squared visibilities and closure phases) versus theoretical predictions from the best model (see Sect. 7). Each
colour indicates a different baseline, with the corresponding telescopes shown in legend.

The uv-plane for both instruments is shown in Fig. 2, and the
observables are shown in Fig. 1 along with the theoretical data.

2.2. Spectroscopy

The spectrum used for the spectroscopic analysis of the star was
obtained on October 1st, 2003, using the ELODIE instrument at
the Observatoire de Haute-Provence. After merging the orders
of the initial echelle spectra, Reiners & Royer (2004) combined
five single exposures, with a spectral resolution of 42000. They
calibrated and normalised it using HD 118623 and γ Boo as cal-
ibrators. The spectrum has a signal-to-noise ratio (S/N) of 228
(average S/N for the five exposures), between λ = 3850 and
6800 Å. As no error bars were computed in the process, we
averaged the relative errors found in the files of the five sin-
gle exposures, available in the ELODIE archives4. The part of
the spectrum used in our analysis is shown in Fig. 3 along with
the theoretical line.

3. ESTER: Modelling stellar interiors in 2D

3.1. Partial differential equations

Several attempts at modelling stars in two dimensions have been
made over the last 50 years or so, but all have failed to describe
the large-scale dynamics of the interior, with realistic internal
rotation. The aim of the ESTER project has therefore been to
address this issue, thus leading to the eponymous code. We shall
briefly describe the models here, but a more detailed presen-
tation may be found in Espinosa Lara & Rieutord (2013) and
Rieutord et al. (2016).

4 http://atlas.obs-hp.fr/elodie/fE.cgi?ob=objname,
dataset,imanum&c=o&o=altair

ESTER models describe the (quasi) steady state of an iso-
lated, non-magnetic early-type star made of a convective core
and a radiative envelope. The core is assumed to be isentropic,
which is very close to what the mixing-length modelling says.

The four partial differential equations that determine such a
model are:

∆φ = 4πGρ
ρTu · ∇S = −∇ · F + ε∗
ρu · ∇u = −∇P − ρ∇φ + Fv
∇ · (ρu) = 0.

(1)

These are Poisson’s equation (φ is the gravitational potential, ρ
the density, and G the gravitational constant), the equation of
entropy S (T is the temperature, u the velocity, F the heat flux,
and ε∗ the nuclear heat sources), the momentum equation in an
inertial frame (P is the pressure and Fv the viscous force), and
the equation of mass conservation.

These equations are completed by the expressions of the heat
flux, the viscous force, the energy generation, the equation of
state and opacities. For these latter quantities OPAL tables are
used (Rogers et al. 1996).

3.2. Boundary conditions

The system of equations needs to be completed with appropriate
boundary conditions, in particular at the surface: (i) the gravita-
tional potential must match that of a field in vacuum, vanishing
at infinity; (ii) the velocity field must match stress-free condi-
tions; and (iii) the temperature must meet the local black body
radiation condition.

These conditions are applied on the bounding surface, cho-
sen as the isobar where the pressure is equal to the polar one,
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Fig. 2. uv coverage of PIONIER and GRAVITY observations of Altair.

defined as

Ps = τs
gpole

κpole
, (2)

where τs is the optical depth that defines the polar photosphere,
gpole is the polar gravity and κpole is the polar opacity (for more
details see Espinosa Lara & Rieutord 2013). The surface radius,
chosen as the radius of the polar isobar, coincides with the
polar photospheric radius, but slightly differs from the actual
photosphere radius elsewhere. However, it can be shown (see
Appendix A) that as long as the flattening of the star, defined as

ε = 1 −
Rpole

Req
, (3)

does not exceed 0.2, the difference between the two radii is less
than one percent. Interestingly, ε ∼ 0.2 is the value obtained for
the models of Altair presented in Sect. 7.

Finally, either the total angular momentum or the surface
equatorial velocity Veq has to be specified.

3.3. Numerical solver

For the numerical part, the star is subdivided into multiple
domains in the radial direction. In each domain, a Gauss-Lobatto
collocation grid appropriate for spectral methods based on
Chebyshev polynomials is used. The advantage of a multi-
domain approach is that even for spectral methods, it is possible
to increase the resolution where it is needed, in particular near
the stellar surface where rapid variations occur. An appropriate
set of coordinates, which adapts itself to the centrifugal distor-
tion of the star, is used.

The set of Eq. (1) is then solved over the stellar interior using
Newton’s method. This iterative method has a quadratic conver-
gence if the initial solution given in input is not too far from the
real one. Usually, a 1D model computed with ESTER is given as
input for the computation of a 2D one when the rotation velocity

Fig. 3. Observed and theoretical Mgii line at 4481 Å of the best ESTER
model (see Sect. 7. The parameters of the corresponding model are
shown in Table 5).

does not exceed 50 to 70 % of the break-up value (the break-up
rotation velocity is defined as the velocity at which the centrifu-
gal force and the gravitational force at the equator are equal).
Above that rotation rate, an intermediate 2D model must be com-
puted first and given as input.

3.4. Limitations

Apart from the already mentioned assumptions concerning
the star, such as the absence of a magnetic field, ESTER mod-
els face other limitations. The major one is that convection in
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Table 3. Comparison between observationally derived parameters of
Altair by Monnier et al. (2007) and a manual fit to effective temper-
atures, radii and equatorial velocity with a two-dimensional ESTER
model.

Parameters Monnier et al. (2007) ESTER model

M (M�) 1.791 1.65
Tpole (K) 8450± 140 8450
Teq (K) 6860± 150 6849
Rpole (R�) 1.634± 0.011 1.627
Req (R�) 2.029± 0.007 2.027
veq (km s−1) 285.5± 6 274
Z 0.014
[M/H] −0.2
Xc – 0.35

Notes. The values in boldface are the ones which were adjusted so
that the other parameters (output of ESTER) would match those of
Monnier et al. (2007).

surface layers (other than the core) has not yet been imple-
mented, thus stars with a mass below about 1.6 M� and evolved
stars cannot be modelled, as convective layers start to form in
these stars just below the surface. Altair is thus a good test for
ESTER since it is a well studied star and its mass is close to the
lower mass limit manageable by the code. On the high mass side,
the limit is around 40 M� presently (e.g. Gagnier et al. 2019).

4. Altair’s fundamental parameters

Altair is a nearby (5.13± 0.02 pc, van Leeuwen 2007) rapidly
rotating star that has already been studied extensively in OLBI.
van Belle et al. (2001) were the first ones to measure the oblate-
ness of Altair, using data from the Palomar Testbed Interferome-
ter (PTI). They found an oblateness ε (Eq. (3)) of 0.122± 0.022,
and also derived a projected rotation velocity v sin i, inde-
pendently of spectroscopic analyses, of 210± 13 km s−1. This
value falls within the range of velocities determined through
different spectral line studies, from 190 km s−1 (Carpenter et al.
1984) to 250 km s−1 (Stoeckley 1968), the latest estimate being
227± 11 km s−1 (Reiners & Royer 2004).

Ohishi et al. (2004) then showed evidence of gravity dark-
ening from NPOI data (Navy Prototype Optical Interferome-
ter). Domiciano de Souza et al. (2005) confirmed that Altair was
compatible with the von Zeipel relationship between Teff and g
for hot stars (Teff ∝ gβ, with β = 0.25) after adding VLTI’s
VINCI data to the two previously mentioned data sets, analysing
the star in different spectral bands. They also gave a broad esti-
mate of the inclination angle i (angle between the polar axis and
the line of sight), between 40 and 65◦. Peterson et al. (2006) gave
a more precise value of 63.9 ± 1.7◦.

The latest interferometric study of Altair led to the first
“direct” imaging (via image reconstruction techniques), by
Monnier et al. (2007), exploiting data from the CHARA array’s
instrument MIRC. They found a departure from von Zeipel’s the-
orem, with a value of β = 0.19 in their models allowing a better
fit to the data.

Along with interferometry, other observation techniques give
us additional information on Altair. In addition to the projected
velocity, Reiners & Royer (2004) determined its inclination to be
greater than 68◦ at a 1σ-level (45◦ at a 2σ-level). On the aster-
oseismic side, let us mention the works of Buzasi et al. (2005)

and Suárez et al. (2005) who showed with data from the WIRE
satellite that Altair exhibits δ Scuti-type pulsations.

Using two-dimensional models from the ESTER code, we
aim at further improving the determination of Altair’s funda-
mental parameters by better modelling the effects of fast rota-
tion. This can be done by comparing the observational data with
our models, but it requires replacing the Roche models (simple
and fast to create) with the more numerically demanding ESTER
models. To test the feasibility of this processing we first derived
an ESTER model of Altair by a manual adjustment of its parame-
ters to the parameters found by Monnier et al. (2007). The result
given in Table 3 shows that ESTER models can reproduce fairly
well the parameters obtained by Monnier et al. (2007). We note
that the equatorial velocity is slightly off the error bars and that
the derived mass is smaller than the one derived by Monnier et al.
Nevertheless, this first attempt encouraged us to take up the chal-
lenge of deriving again, ab initio, the fundamental parameters of
Altair from the above data using ESTER models.

5. Atmospheric models for ESTER models

The analysis of interferometric and spectroscopic data requires
monochromatic intensity maps of the surface of the star from
which the complex visibility will be computed. The interfero-
metric observables and the spectrum will then be extracted from
it. To obtain these intensity maps, model atmosphere codes cou-
pled with radiative transfer codes must be used.

5.1. Atmosphere models

Among the different existing atmosphere codes, we decided to
use models from the PHOENIX code5 (Husser et al. 2013), as
it is the code that best matches our needs in terms of surface
parameters (see Table 3), spectral range, and specific intensity.

Indeed, these spherically symmetric atmospheres were used
to produce specific intensities (low resolution, but for differ-
ent values of the emission angle) and spectra (high resolu-
tion), from 500 to 26 000 Å, which suits our study since we
are analysing observational data in the visible range (ELODIE),
the H band (PIONIER), and the K band (GRAVITY). Mod-
els computed for 0.5< log g< 6.0, 2300 K<Teff < 12 000 K and
−1.0< [M/H]< 1.0 were selected from the PHOENIX online
library.

To compute the intensity maps, as seen from Earth, we need
the specific intensities as a function of the emission angle I(µ).
These are available in the PHOENIX database, but only with a
1 Å step. This kind of resolution is sufficient to analyse PIONIER
and GRAVITY data, but as most lines are blended together by
rapid rotation, initial high resolution spectra are needed to obtain
an accurate broadened spectrum in the visible, which we need
for the analysis of our spectroscopic data. Such high resolution
spectra are only available in the database as fluxes, independent
of the direction of emission. To compute the desired quantity,
we used Claret (2000)’s expression of limb darkening (Eq. (6)),
using the ak-coefficients found in the dedicated Vizier catalogue
(Claret 2018, most recent catalogue for the wavelengths of inter-
est). The expression

Iλ(µ) = Iλ(µ = 1)

1 − 4∑
k=1

ak

(
1 − µ

k
2

) , (4)

5 PHOENIX atmosphere models, spectra and specific intensities are
available at http://phoenix.astro.physik.uni-goettingen.
de/
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can be coupled with

Fλ = 2π

1∫
0

Iλ(µ)µdµ (5)

to yield

Fλ = Iλ(µ = 1)π

1 − 4∑
k=1

ak
k

k + 4

 · (6)

Thus Iλ(µ = 1) can be obtained from the flux Fλ, followed by
I(µ), that is the specific intensity emitted in any direction. Let us
point out that this method, based on band-integrated limb dark-
ening coefficients, can only be approximate, especially if some
thermal convection is present at the surface (Dravins 1982). A
more precise method is however premature at this stage of the
investigations.

5.2. Linking interior and atmosphere models: ESTERIAS

Once a complete grid of stellar models and a grid of atmo-
sphere models are made, we use them both to create intensity
maps. This is done with ESTERIAS (ESTER for Interferometry,
Asteroseismology, Spectroscopy), the Python tool we developed
to compute interferometric and spectroscopic observables with
ESTER.

5.2.1. The stellar surface grid

A grid is used to represent the surface of the star, dividing it in
surface elements dS . We chose to construct the grid as “rings”
of constant co-latitude θ, each point of a ring being defined by
a φ value. In order to do this, we impose the number of rings
(θ values) from pole to pole, and the number of azimuthal points
(φ values) of the first ring (from the pole). The radial dis-
tance (function of θ) corresponding to every ring (the star being
axisymmetric) must then be interpolated from the ESTER model
over the θ values chosen for the grid. Indeed, ESTER mod-
els only require 20 grid points in latitude to achieve a precise
solution. However, this is not enough for an accurate represen-
tation of the stellar spectra. Fortunately, the spectral representa-
tion with spherical harmonics allows the user to get the value of
any parameter at any co-latitude, without losing numerical accu-
racy. Some tests showed us that the relative difference between
a model computed with Nθ = 100 θ-values and parameters inter-
polated on these 100 co-latitudes from a model made with only
Nθ = 10 never exceeded 10−4.

Once the “radius” and co-latitude of each ring are deter-
mined, the number of azimuthal points must be set. To determine
the appropriate numbers of points per ring, we first imposed a
number of points Nφ0 on the first ring. The area dS 0 of these Nφ0

surface elements is then computed and is identical for all points
on the ring, as dS only depends on θ, dθ and dφ, see Eq. (7).
Finally, Nφ is computed for each ring such that dS is as close to
dS 0 as possible. This is done using Eq. (A.51) of Rieutord et al.
(2016):

dS = r2

√
1 +

rθ2

r2 sin θ dθdφ, (7)

with dS the surface element area, and r and rθ the radial coordi-
nate and its derivative with respect to the θ coordinate.

Apart from r and rθ, the relevant stellar surface parameters
that must be extracted from the models and interpolated on our
θ values are: Teff , the effective temperature; log g, the logarithm
of the effective gravity; and Ω, the angular velocity. The linear
velocity vφ = r(θ)Ω(θ) sin θ is then computed.

We are thus left with a set of points, each associated
with a set of (r(θ), θ, φ) coordinates, and physical parameters
(Teff(θ), log g(θ),Ω(θ)), that define our star surface.

5.2.2. The visible grid

Once the surface grid is determined, it can be used to gener-
ate a number of “visible grids”, representing the visible side of
the star, as viewed from an earthbound observer, for any value
of the inclination i of the star’s rotation axis. For this we asso-
ciate with each point a parameter µ which is the cosine of the
angle α between the normal to the surface and the line of sight
(see Fig. 4):

µ = cosα

=
(r cos θ + rθ sin θ) cos i + (r sin θ − rθ cos θ) cos φ sin i[

r2 + r2
θ

]1/2 · (8)

We then keep only the points for which µ ≥ 0.
Once the “visible grid” is ready, we can compute the geomet-

rical parameters Y′, Z′ and dsproj, respectively the two Cartesian
coordinates projected onto the plane of the sky (see Fig. 4) and
the projected surface element, as well as the linear velocity pro-
jected onto the line of sight vproj. We find that:

Y ′ = r sin θ sin φ, (9)
Z′ = r (cos θ sin i − sin θ cos φ cos i),
dsproj = r sin θdθdφ (cos φ sin i (r sin θ − rθ cos θ)

+ cos i (r cos θ + rθ sin θ)),
vproj = r Ω sin θ sin φ sin i.

At this step in the process, we have a two-dimensional repre-
sentation of the stellar surface (a 2D projection of a 3D object
actually), giving a map of its shape, temperature, gravity, and
rotation velocity.

5.2.3. The intensity map

Several operations (mainly interpolations) are necessary to get
the final intensity maps from the specific intensity files. First it
is necessary to associate the original intensity Iλ from the files,
which were computed for fixed values of effective temperature
and gravity, with every point on the grid. Then, for each µ asso-
ciated with each visible grid surface element, the Iλ are interpo-
lated from the original files, or computed with Claret’s formula
(Eq. (4)). Finally, the Doppler shift due to the rotation of the star
is computed. We thus get one intensity map per wavelength value
(monochromatic intensity maps), for which the several observ-
ables (e.g. interferometric, spectroscopic) can be computed.

5.2.4. Observable quantities

For the interferometric data, the two components of the sky-
projected baselines (Bx, By), the squared visibilities and closure
phases with their associated errors, and the wavelengths are
extracted, and the spatial frequencies

(
u = Bx

λ
, v =

By

λ

)
are com-

puted. Here, the x and y subscripts refer to the cartesian sky (angu-
lar) coordinates, with x positive towards the east and y to the north.
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Y // Y'
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Fig. 4. Side view of a flattened star. The primed coordinates are the
Cartesian coordinates used to describe the plane of the sky, as seen from
Earth. (Y′, Z′) are the axes of the sky plane, and X′ the line of sight.
The non-primed coordinates are linked to the star, and can be obtained
by rotating the primed coordinates around the Y′ axis so that the rotation
axis Z is at an inclination angle i from the line of sight. α is the angle
between the normal n to the surface at an arbitrary point on the stellar
surface and the line of sight. We recall that µ = cosα (cf. Eq. (8)). The
star is shaded based on a 3D rendering of its shape, and not on physical
effects such as gravity or limb-darkening. Other figures such as Figs. 12
and 13 show such effects.

A transformation taking into account the position angle of the star
(PA, the angle between the northern direction and the axis of rota-
tion projected onto the plane of the sky, counted positive to the
east) must be applied on Y ′ and Z′ (from Fig. 4) to get x and y
(e.g. in Eq. (11)). As the star is made of a series of rings of differ-
ent sizes, with non-uniform spatial discretisation, a Fast Fourier
Transform algorithm cannot be used. We thus computed the dis-
crete Fourier Transform via the classical formulas:

Ĩλ(u, v) =

"
Iλ(x, y)e−2iπ(xu+yv)dxdy (10)

'
∑

j

Iλ(x j, y j)e−2iπ(x ju+y jv) dS proj,j

d2 , (11)

d being the distance to the star. The complex visibility, at each
λ, is then given by

V =
Ĩ(u, v)
Ĩ(0, 0)

, (12)

with Ĩ(0, 0) the flux integrated over the visible surface of the star
(observed flux). The squared visibilities and closure phases are
computed from the complex visibilities with

V2 = |V |2, Ψcl = Ψ12 + Ψ23 − Ψ13.

Ψij being the phase of the complex visibility computed at the
projected baseline defined by telescopes i and j, for i, j, and
i, j = 1, 2, 3 (three telescopes).

6. Model fitting

We apply a model-fitting approach to find the parameters that best
represent the star, using the emcee code (Foreman-Mackey et al.
2013). This Python implementation of the Markov chain Monte
Carlo (MCMC) method allows the user to easily tweak the
parameters of the fit: the number of values to test at every step,

the number of steps, the priors to apply to constrain our fit, etc.
The MCMC method consists in drawing a constant number of
random “walkers”, i.e sets of values for the free parameters of the
problem, within the allowed range for each parameter, and com-
puting the posterior probability density function associated with
each set. A new ensemble of values is then randomly drawn, and
each walker will be replaced by the new value with some proba-
bility, the probability being higher if the new value gives a better
fit than the previous one. The process is then repeated for a preset
number of steps, or until convergence is met. Indeed, as the pro-
cess proceeds, the walkers will be more and more closely gath-
ered around the best-fitting solution(s). The randomness of the
process enables to detect and avoid local minima, at the condi-
tion that the parameter space be sufficiently sampled (by choos-
ing a high enough number of walkers, and the right parameter
space domain).

Unfortunately, as some parameters become more “extreme”
(mass below 2 M�, low or high metallicity, high rotation velocity,
etc.), ESTER will fail to create the model if the input model is
not really close to the output solution. A step-by-step approach,
creating intermediate models before reaching the desired one,
can be used, but not as part of an MCMC model-fitting. Indeed,
as there is no way to know beforehand whether ESTER will
converge on a solution, this step-by-step approach has to be
done manually, changing the increment, or the input parameter
to increment, if needed. Furthermore, computing ESTER mod-
els is very time-consuming, as one model takes between 30 s and
several minutes to produce. This may be fast for the computation
of the full two-dimensional structure of a star, but isn’t appropri-
ate for a model-fitting needing the computation of several tens
of thousands of models.

We thus decided to first create a grid of stellar models with
ESTER, with fixed increments in parameter values. The param-
eter space covered was chosen by taking into account either the
parameter values found in the literature (when available) or var-
ious assumptions concerning plausible ranges for other parame-
ters (Xc for example). Then, ESTERIAS was made so that when
random values of parameters are drawn by the MCMC routine,
the parameters which are relevant for our star surface (effective
temperature and gravity, radius, and rotation velocity) are lin-
early interpolated for these values from the closest models in
our grid (selected via Delaunay triangulation).

We present in the next section the different attempts at deter-
mining the following parameters of Altair: mass (M), equatorial
radius (Req), angular velocity (Ω, expressed as a fraction of the

Keplerian angular velocity6, ΩK =

√
GM/R3

eq), metallicity (Z),
hydrogen mass fraction in the core (Xc), inclination (i), posi-
tion angle (PA), and the metallicity of the atmosphere models
([M/H]). The envelope hydrogen content X is also considered, as
it turns out it plays an important role in the convergence towards
a physically realistic solution.

7. Results

7.1. Fitting interferometric and spectroscopic data

First, our attempts to determine Altair’s parameters by fitting
interferometric and spectroscopic data are described. Additional

6 The true critical velocity Ωc is indeed unknown unless the actual
(critical) model is computed. Often the critical angular velocity of the
Roche model is used as a reference, but it is a mere transformation of the
actual Keplerian velocity, which we use. Further details may be found
in the appendix of Rieutord (2016).

A78, page 7 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936830&pdf_id=4


A&A 633, A78 (2020)

Fig. 5. Corner plot showing the convergence of the MCMC model-fitting for Req, Ω, i, and PA, using interferometric observations (PIO-
NIER + GRAVITY) and theω-model. The run was made with 200 steps and 100 walkers. Only the last 50% steps are displayed here as convergence
was met within the first 100 steps (“burn-in” phase). These results are listed in Table 5.

constraints obtained through other methods are presented in the
following sections.

7.1.1. ω-model

Initially, an attempt was made to constrain simultaneously all
the parameters previously mentioned, using ESTER models and
only interferometric data. The χ2 was computed in a way that
the two sets of data (PIONIER and GRAVITY) had the same
weight. Convergence could not be achieved, as there were sev-
eral correlations between parameters, such as M, Z and Xc, or Ω
and i, and constraining all seven parameters with only interfer-
ometry was impossible. To disentangle this, we decided to study
the parameters in smaller groups. As ESTER models need all
the parameters as input, and are quite heavy to use, they were
replaced by the so-called “ω-model” (Espinosa Lara & Rieutord
2011; Rieutord 2016) for this first step. This gravity-darkening
model provides all of the relevant surface parameters (Teff , geff ,
r, etc.) without going through the difficult process of comput-
ing the whole internal structure of the star (a Roche-model is
used to compute the effective gravity). It stems from simple

assumptions, namely energy is conserved, there are no energy
sources in the envelope, and the radiative flux is anti-parallel
to the effective gravity. Thus, the resulting models, while being
in almost-perfect agreement with ESTER models (see Fig. 5
from Rieutord 2016 and Fig. 3 from Espinosa Lara & Rieutord
2011), do not allow us to adjust internal parameters such as the
metallicity or hydrogen fraction in the core. They are still suit-
able for studying the shape of the star and the distribution of
flux on the surface though, making it perfect for the analysis
of the interferometric data, which is mostly sensitive to these
two signatures of rotation. Such an analysis was already done by
Domiciano de Souza et al. (2018), who succeeded in reproduc-
ing the interferometric observables of the star Sargas, an evolved
5.1 M� rapidly rotating star, with the use of the ω-model.

The parameters we are constraining with interferometric data
and theω-model are the equatorial radius, Req, the angular veloc-
ity, Ω (again, here, as a fraction of the Keplerian equatorial
velocity), the inclination, i, and the position angle, PA. The
mass, M, and luminosity, L, must also be given as input, but as
they only affect the scale of Teff and geff , not their distribution,
the interferometric observables won’t be sensitive to those. We
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used M = 1.8 M� and L = 10.6 L�, both taken from Peterson et al.
(2006). Altair’s distance was fixed to 5.13 pc, from the
Hipparcos parallax of 194.95± 0.57 milliarcsecond (mas).
Clear convergence was obtained for Req and PA (see Fig. 5). For
Ω and i, convergence is still achieved, but an effect due to the res-
olution of the intensity maps is clearly visible. This is discussed
in Sect. 8. The envelope of the peaks in the histograms of Fig. 5
is of Gaussian shape, with a relatively small width (judging from
the ±1σ values).

In the above MCMC model-fitting, we used model atmo-
spheres with a fixed value of the metallicity, namely [M/H] = 0.3.
However, one may wonder what impact this metallicity can have
on the fitting process. Accordingly, we computed the χ2 value of
the fit to the interferometric data with only Ω and i as free param-
eters, for different values of the metallicity of the atmosphere
models. We recall that the metallicity of the PHOENIX atmo-
spheres is defined as

[M/H] = log
(

nM

nH

)
− log

(
nM

nH

)
�

, (13)

where n is the number density of elements in the star, and M the
sum of all metals. As seen in Fig. 6, showing the i and Ω coor-
dinates of the χ2 minima, the location of the best fit (in terms
of (Ω, i) coordinates) hardly changes. This means that the fitting
of the interferometric data is nearly independent of this param-
eter. Spectroscopy is the go-to method to determine the metal-
licity of a star’s atmosphere. Yet, only an extensive analysis of
Altair’s spectrum would allow us to get an accurate estimate of
its composition. Indeed, at such a high rotation rate, neighbour-
ing metallic lines are blended together. Thus, the integrated spec-
trum will not only depend on the lines’ depth, but also on the
list of lines included in the computation of the opacities and on
the relative abundances of all elements in the atmosphere. These
effects may be responsible for a mismatch between theoretical
and observed spectra. Such work needs a dedicated study and is
beyond the scope of this paper. We settled on using the line of
Mgii at 4481 Å to get an appropriate atmosphere metallicity for
the next steps. This line is strong and isolated enough that blend-
ing is not too much of an issue, and was deemed by Royer (2009)
as a valid candidate for v sin i measurement in an A7-type star,
which will give us one more constraint on this parameter. The
line depth will give us an estimate on [M/H], keeping in mind
that the abundance ratios in PHOENIX atmospheres are solar-
like. We computed a high resolution spectrum in the range of the
Mgii line, and found that a value of [M/H] = +0.45 gave the best
concordance with the observed spectrum (the integrated theoret-
ical line is identical to the one obtained with our best ESTER
model, shown in Fig. 3). We also computed v sin i, and found
∼238 km s−1, at the limits of the range 227± 11 km s−1 found by
Reiners & Royer (2004).

7.1.2. ESTER models

We now want to determine the mass M, the metallicity Z, and
hydrogen mass fractions in the envelope and core, X and Xc
respectively. ESTER models are used, with i, PA and Ω fixed
to the previously obtained values. Interferometric and spectro-
scopic data are analysed simultaneously.

The metallicity of the stellar model must be addressed here.
Ideally, this metallicity should match that of the model atmo-
spheres unless some physical phenomena, such as diffusion,
were to lead to a different composition in the surface layers. In
the present case, we treat the two metallicities as independent

46 49 52 55
i (°)

0.714

0.726

0.738

0.750

0.762

0.774

(
k)

Fig. 6. Positions in the (i, Ω) plane of the χ2 minima when fitting inter-
ferometric data with Ω and i as free parameters, using M = 1.80 M�,
and several values of [M/H] for the atmosphere models. [M/H] goes
from −0.5 to 0.9 with a 0.1 step. The grey rectangle shows the area
enclosed within the error on i and Ω shown in Fig. 5.

parameters as they are subject to different constraints. Indeed,
the atmospheric metallicity is especially sensitive to spectro-
scopic constraints as shown above. In contrast, the stellar model
bulk metallicity is subject to both interferometric and spectro-
scopic constraints due to its impact on the stellar structure. Fur-
thermore, it is correlated with M, X, and Xc. Indeed, when the
mass decreases, the size of the star also decreases; but increas-
ing Z increases its size, thereby compensating the effects of the
mass decrease. Decreasing Xc (for a fixed X) mimics a more
evolved star and, therefore, also increases its size. The depen-
dence of stellar size on X is more complex. In order to circum-
vent these difficulties, we decided to separate the parameters,
and search for Z and Xc simultaneously, for different values of
the mass and envelope hydrogen mass fraction. We chose two
values of X, namely X = 0.700 (Grevesse & Noels 1993) and
X = 0.739 (Asplund et al. 2005). Figure 7 shows the resulting χ2

maps. For both values of X, Xc is such that 0.5 < Xc/X < 1.0. We
started with X = 0.700, covering masses from 1.70 to 1.80 M�,
expecting Altair to be in this range, between our first estimate
of Sect. 4 and Peterson et al. (2006)’s value. Then, as an aster-
oseismic study of these models favoured higher masses (see
Sect. 7.3), we opted for masses between 1.75 and 1.85 M� for
X = 0.739. A mass of 1.90 M� or higher would lead to a higher
hydrogen mass fraction in the core than in the envelope, which
wouldn’t make sense with regard to current theories of stellar
formation and evolution. Figure 8 shows cuts at fixed Z values
(upper row), and along the valley with low χ2 values (lower row),
for X = 0.739. The figure would be the same for X = 0.700, with
χ2 minima shifted towards higher values of Xc/X.

For a fixed value of X, the loci (in (Z, Xc) coordinates) of
the χ2 minima as a function of the mass (red points in Fig. 7)
show almost linear relations for Z = f (M) and Xc = f (M), but
a degree 2 polynomial seems to fit them better. We thus obtain
two degree 2 polynomials as a function of M for Z, and two for
Xc. We then do a linear interpolation on the coefficients of these
polynomials between X = 0.700 and X = 0.739, and obtain
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Fig. 7. χ2 maps of the fitting of ESTER models to both interferometric and spectroscopic data. The upper and lower rows correspond to X = 0.739
and 0.700, respectively. For each mass and X value, only Z and Xc vary, while every other parameter is fixed to the values previously obtained (see
Fig. 5). The decimal logarithm of the reduced χ2 is shown in colour. The red dot in each subpanel corresponds to the minimum χ2 value.

a single expression for Z, as a function of both M and X, and
likewise for Xc:

Z ' (0.0626 X − 0.0494) M2

+ (−0.5922 X + 0.5145) M
+ (0.7403 X − 0.6602), (14)

and

Xc ' (−17.062 X + 9.754) M2

+ (79.124 X − 45.647) M
+ (−88.777 X + 52.334). (15)

We may now check whether these relations allow us to retrieve
the parameters we had found in Sect. 4 by matching the tem-
perature and radius of Monnier et al. (2007). Extrapolating these
relations to a lower mass of M = 1.65 M� and an X value of
0.700, we get Z ∼ 0.008, and Xc ∼ 0.30. This is somewhat dif-
ferent from our first estimate (see Fig. 3). This is not surpris-
ing, as our results using both the ω-model and ESTER give a
slightly smaller size and broader surface temperature range than
Monnier et al. (2007) (this is discussed in Sect. 8).

If we can now obtain a value for the mass and hydrogen mass
fraction through other means, we will get Z and Xc at the same
time. In what follows, we investigate what constraints can be
placed on the mass.

7.2. Spectral energy distribution

One solution to determine the mass is to compare the spectral
energy distribution (SED) of the model with the observed SED
of Altair. The SED, which is a measure of the energy received
on Earth from the star at different wavelengths, increases as the

mass increases (as it mainly depends on the effective tempera-
ture of the star, and its radius). But this is only true when the
other physical parameters of the star are kept constant. The cor-
relation between M, Z, X, and Xc makes it so that the models
which follow the previously found relation have a similar tem-
perature range and distribution (this includes the size and shape
of the model star), despite having a different mass. Their SED
should thus be fairly similar, the higher-mass models nonethe-
less having a slightly lower mean temperature (∼270 K decrease
from M = 1.70 M� to M = 1.80 M�, for X = 0.700, and ∼170 K
decrease from M = 1.75 M� to M = 1.85 M�, for X = 0.739).
To test this hypothesis, we computed the SED of three models
for X = 0.700 (corresponding to four different masses), and 3
models for X = 0.739, with Z and Xc following the relations pre-
viously found. The result is shown in Fig. 9. The observational
data used is available on Altair’s page of the Vizier photome-
try viewer7. Apart from the blue part of the curve, where the
effect of the temperature difference is visible, the SED are nearly
identical.

Comparing the projected rotation velocities of the models
did not help, as the v sin i found for these 4 ESTER models
ranges from 229 to 238 km s−1 with increasing mass, still within
the error bars of Reiners & Royer (2004).

7.3. The word of asteroseismology

Since Altair is a δ Scuti, an alternate approach to constrain-
ing its mass is to model its observed pulsation spectrum.
Indeed, acoustic pulsation modes (p modes) potentially provide
a tight constraint on the mean density (e.g. Reese et al. 2008;

7 Data points and their associated references can be found on: http:
//vizier.u-strasbg.fr/vizier/sed/
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Fig. 8. χ2 cuts at fixed Z values (upper row), and along the valley with low χ2 values (lower row), for X = 0.739. The points in the lower row
correspond to the minima in the upper row. As can be seen, a definite minimum appears even within the valley with low χ2 values. Z values are
shown in legend, and only the values for which the optimal Xc/X is in the range [0.5−1.0] are shown in the lower row.

García Hernández et al. 2015), which when combined with the
volume, provides the mass. δ Scuti type pulsations were discov-
ered in Altair thanks to the star tracker on the WIRE satellite
(Buzasi et al. 2005). The pulsation frequencies and amplitudes
are reproduced in Table 4 for convenience, with the first seven
being arranged in order of increasing frequency, while keep-
ing the original indices of Buzasi et al. 2005, who ordered
the modes by decreasing amplitude. Suárez et al. (2005) subse-
quently attempted to interpret Altair’s pulsations using a second
order perturbative approach to model the effects of rotation on
the pulsations. In the present study, we use a full 2D approach,
both for stellar structure and pulsations, which is necessary for a
star rotating as rapidly as Altair (e.g. Reese et al. 2006).

One of the difficulties with which Suárez et al. (2005) were
confronted and which still remains in the current study is the
fact that the mode identification, i.e. the correspondence between
observed and theoretically calculated modes (as characterised
through a set of quantum numbers), is unknown. Rather than
carrying out an exhaustive search for best fitting pulsation spec-
tra using a χ2 minimisation, we prefer to make a few simpli-
fying assumptions and see to what conclusions they lead. First
of all, the frequencies f1, f2, f7, f3, and f6 form a regular
pattern with subsequent frequencies being spaced by roughly
5 or 2.5 cycles/day. Furthermore, their amplitudes alternate
between higher and lower values. A compelling interpretation
is to assume that these are a sequence of island acoustic modes
with the same ˜̀ and m values and consecutive ñ values, with a
mode missing between f1 and f2 (see e.g. Lignières & Georgeot
2009; Pasek et al. 2012 for an explanation on island modes and
associated quantum numbers). The alternating amplitudes could
partially be explained by the fact that modes with even ñ val-
ues are symmetric with respect to the equator whereas those
with odd values are antisymmetric. Indeed, for a given mode

normalisation, this would lead to different apparent pulsation
amplitudes (or mode visibilities) when integrating the intensity
fluctuations over the visible disk because of differing degrees of
cancellation.

Figure 10 shows a comparison between observed and the-
oretical frequencies for six models that satisfy the interfero-
metric and spectroscopic constraints. For the theoretical modes,
we used ( ˜̀, m) = (0, 0) which was the simplest assumption to
make and leads to selecting the most visible modes. In terms of
spherical quantum numbers, these would be the rotating equiv-
alents to ` = 0 and ` = 1 modes. Furthermore, we calcu-
lated disk-integrated mode visibilities using the approach given
in Reese et al. (2013), the inclination obtained from interferom-
etry (i.e. i = 50.65◦), and a photometric band deduced from
Fig. 8 of Buzasi (2004). The modes were normalised such that
the maximal Lagrangian displacement times the square of the
frequency is kept constant. In Reese et al. (2013), this was found
to keep approximately constant visibilities for island modes with
the same (`,m) values and to penalise gravity modes which tend
to have a low surface amplitude. As can be seen, the alternat-
ing amplitudes are correctly reproduced in most cases, at least
qualitatively, by the alternating mode visibilities, the most visi-
ble modes being symmetric with respect to the equator, i.e. their
ñ value is even (or ` = 0).

A cluster of modes is shown around 15 c/d. This is where the
fundamental mode is expected. We note that Suárez et al. (2005)
also found solutions for which f1 was the fundamental. In our
case, it was difficult to precisely identify which of the numer-
ically calculated modes corresponds to the fundamental mode
since a large number of gravity modes (g modes) also appear in
the same frequency range thus leading to multiple mode inter-
actions and an unclear mode geometry. Indeed, rotation causes
acoustic modes, which are located in the envelope, to decrease
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Fig. 9. Spectral energy distribution produced in the direction of the
observer (the inclination of the star being the one shown in Table 5),
for different ESTER models with X = 0.700 and 0.739. T is the mean
surface temperature of the models. The blue dots correspond to the
observed SED data from the Vizier website.

in frequency due to the increase in equatorial radius, whereas the
gravity modes, which are located more deeply in the star, are less
affected. This causes the two mode domains to overlap, in partic-
ular where the fundamental mode is located. The modes shown
in Fig. 10 have large visibilities and a relatively simple geometry
in the outer portion of the star. This interaction between g modes
and the fundamental mode might explain why there are three
observed pulsations in this region. In any case, one can easily
exclude the possibility that f1, f4, and f5 are a rotational multi-
plet. Indeed, the rotation rate as based on the above best-fitting
models is around 2.9 c/d which is much larger than the frequency
separations between these modes.

Overall, the model frequencies are somewhat too low (see
left panel of Fig. 10). This is an indication that the mean
densities of the models are too low, provided the mode identifica-
tion is correct. We therefore scaled the models using a homolo-
gous transformation to see what masses (assuming the equatorial
radius is fixed as given by interferometry) would lead to a bet-
ter match with the observations (specifically, we fitted the three
upper pulsation frequencies). The scaled frequencies and masses
are indicated in the right panel of Fig. 10. As can be seen, the
scaled frequencies match the observations fairly well, and the
scaled masses converge towards 1.86−1.89 M�. For X = 0.700,
due to the correlation between M and Xc (see Eq. (15)), such
a mass leads to Xc/X slightly larger than unity, i.e. a core with
slightly more hydrogen than the envelope. From a physical point
of view, such a solution must of course be rejected. For the mod-
els at X = 0.739, however, Xc/X remains below unity. We there-
fore searched for the best fitting model with X = 0.739, thus
obtaining M = 1.863 M�. The corresponding values for Z and
Xc are shown in Table 5. A full theoretical pulsation spectrum
is displayed in Fig. 11 where the mode visibilities are calcu-
lated using the same normalisation as above. As can be seen,
the ( ˜̀, m) = (0, 0) islands modes (highlighted in red) are a
good match to the observed frequencies, especially at higher

Table 4. Altair’s pulsation spectrum (reproduced from Buzasi et al.
2005).

Mode ν (c/d) A (ppm)

f1 15.768 420
f4 15.989 195
f5 16.183 140
f2 20.785 377
f7 23.280 108
f3 25.952 245
f6 28.408 123
f8 2.570 104
f9 3.526 92

frequencies. At lower frequencies they seem to be more strongly
affected by avoided crossings, thus potentially explaining the
offsets between these and the observed pulsations. At high fre-
quencies, the island modes have the highest visilibities, whereas
at low frequencies a large number of gravito-inertial modes with
non-negligible visibilities are present.

7.4. Final result

Based on the results presented in the previous sections, we give
in Table 5 the parameters of our best model along with the val-
ues obtained by Monnier et al. (2007). These results and their
uncertainties are discussed in the next section.

Surface maps of several relevant parameters of this model are
shown in Figs. 12–16. The temperature map and the associated
monochromatic intensity (in the continuum at one arbitrary wave-
length in the H band) are shown in Figs. 12 and 13. Figures 14–16
show the internal and surface rotation profiles of the model star,
while Fig. 17 shows its surface velocity projected onto the line
of sight. Interestingly, the slight curvature in the lines of constant
projected velocity is caused by the differential rotation. The fit of
the interferometric observables was already displayed in Fig. 1,
while Fig. 3 shows the fit to the spectrum.

8. Discussion

8.1. Obtained parameters

We discuss here the parameter values obtained for our best
ESTER model, shown in Table 5, and how they compare with
previous estimates.

Radius. Through our analysis of interferometric data,
we found for the equatorial and polar radii, Req and Rpole,
smaller values than both Domiciano de Souza et al. (2005) and
Monnier et al. (2007; hereafter D05 and M07, respectively), out-
side of their error bars. Our polar radius especially, being 4%
smaller than that of M07, induces a higher flattening of the star
in our best model (∼0.22 against ∼0.19). This translates into
a smaller apparent angular diameter in the polar direction of
�max

p = 3.08 mas, compared to ∼3.30 mas for D05 (M07 only
gave an equivalent angular radius to the polar radius of their
model, not the actual observed apparent angular radius in the
polar direction). One can make the assumption that this effect
comes directly from the difference in intensity distribution over
the stellar surface compared with previous studies, which stems
from the more realistic physics in our models (of great impor-
tance here is the modelling of GD). This could also explain

A78, page 12 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936830&pdf_id=9


K. Bouchaud et al.: A realistic two-dimensional model of Altair

15 20 25 30 35

Frequency,  (in c/d)

Vi
sib

ilit
y 

(a
rb

itr
ar

y 
un

its
)

M = 1.70 M
X = 0.700

M = 1.75 M
X = 0.700

M = 1.80 M
X = 0.700

M = 1.75 M
X = 0.739

M = 1.80 M
X = 0.739

M = 1.85 M
X = 0.739

15 20 25 30 35

Frequency,  (in c/d)

Vi
sib

ilit
y 

(a
rb

itr
ar

y 
un

its
)

M = 1.700 M
X = 0.700
Mscaled = 1.863 M

M = 1.750 M
X = 0.700
Mscaled = 1.875 M

M = 1.800 M
X = 0.700
Mscaled = 1.870 M

M = 1.750 M
X = 0.739
Mscaled = 1.895 M

M = 1.800 M
X = 0.739
Mscaled = 1.885 M

M = 1.850 M
X = 0.739
Mscaled = 1.870 M

Fig. 10. Observed and theoretical pulsations for Altair. The vertical grey lines that span the plots are the observed pulsations (modes f1 to f7).
Their thicknesses are proportional to the observed amplitudes. The blue vertical segments are theoretical pulsations for six different ESTER models
which satisfy Eqs. (14) and (15). The theoretical modes are successive m = 0, ˜̀ = 0 (or equivalently ` = 0 and 1) modes apart from the first
mode (see text for details). The lengths of these segments are proportional to the disk-integrated mode visibilities. Left plot: theoretical frequencies
whereas the right plot shows the same set of frequencies after applying a suitable homology scaling (e.g. Kippenhahn & Weigert 1990), thus
leading to the scaled masses indicated on the figure (assuming the equatorial radius is fixed).

Table 5. Comparison of the fundamental parameters of Altair derived
by Monnier et al. (2007) and from our work where we use X = 0.739
from Asplund et al. (2005).

Parameters Monnier et al. (2007) This work

i (◦) 57.2± 1.9 50.65 ± 1.23
PA (◦) 298.2± 0.8 301.13 ± 0.34
M (M�) 1.791 1.86 ± 0.03
Tpole (K) 8450± 140 8621
Teq (K) 6860± 150 6780
Rpole (R�) 1.634± 0.011 1.565± 0.014
Req (R�) 2.029± 0.007 2.008± 0.006
veq (km s−1) 285.5± 6 313
v sin i (km s−1) 240 242
Ω (Ωk) 0.695± 0.009 0.744 ± 0.010
Z – 0.019
[M/H] −0.2 0.19
Xc – 0.71
ε 0.195± 0.002 0.220± 0.003
β 0.190± 0.012 0.185

Notes. The last column shows the parameters of the ESTER model
which best reproduce all interferometric, spectroscopic and seismic
data. The values in boldface are inputs of the model, and were obtained
via fitting of the data, while the others are output of ESTER.

our slightly broader range of temperatures, while our mean tem-
perature of 7594 K agrees well with Erspamer & North (2003)’s
value of 7550 K.

To compute the error ∆Req on the equatorial radius, we pro-
ceeded as follows: as the distance Earth–Altair was fixed in our
MCMC run, the resulting ±1σ error on Req (given by our MCMC
run) corresponds in fact to an error on the angular radius �eq. The
±0.001 R� error on Req thus corresponds to an error on �eq of
±0.001 mas. Coupled with the 0.3% error on the distance given
by Hipparcos (quadratically adding them), we get a relative error
on the linear radius of 0.3%. This error is high enough to cover
for the combined effects of the wavelength calibration accu-
racy of PIONIER (∼0.4%) and GRAVITY (a few ∼0.01%). The

error on the polar radius directly comes from its definition in the
ω-model, as a function of Req and Ω.

Position angle. Also based on the interferometry, the
position angle was accurately constrained to a value of
301.13± 0.34◦, which is slightly above the value of 298.2◦
obtained by M07. D05 found 298± 17◦ from the analysis of
NPOI closure phases and squared visibilities from PTI and
VINCI (Table 3, BMIRCP column), agreeing nicely with our
result.

Ω, i, and v sin i. Our v sin i agrees very well with that of
M07, with 243 km s−1 against 240 km s−1 for them. Yet, the indi-
vidual values of the inclination angle i and rotation velocity Ω
are heavily dependent on the brightness distribution over the sur-
face of the star. As stated above, this distribution differs in our
models from those of previous studies, leading to a lower inclina-
tion and higher rotation velocity, with the inclination still within
the 2σ estimate of Reiners & Royer (2004), that is i > 45◦.
Errors on i, Ω, and PA are the ±1σ tolerance on the MCMC
model-fitting with the ω-model.

Mass. Our mass determination (M = 1.863 M�) is signif-
icantly higher than previous determinations, with D05 citing
Malagnini & Morossi (1990)’s estimate of 1.80 M�, and M07
using Peterson et al. (2006)’s value of 1.791 M�. Both masses
were obtained by looking for a 1D non-rotating Geneva model
(Schaller et al. 1992) which would reproduce the position of the
star in the HR diagram for the former, and the corrected luminos-
ity and polar radius estimates of the latter. Finding a ∼4% differ-
ence in mass with their estimates, through the seismic study of a
2D stellar model which reproduces well the interferometric data,
is not surprising. The error on the mass was determined through
asteroseimology. As was done in Sect. 7.3, we computed the
scaled masses needed to match the observed pulsation frequen-
cies for models corresponding to the upper and lower boundaries
for Z and Xc, for all M and X values shown in Fig. 7. The result-
ing scaled masses were all between 1.84 and 1.89 M�, that is at
most 0.03 M� away from the value of M = 1.863 M�, which
is the mass that comes out when studying the pulsation frequen-
cies of models which verify relations (14) and (15), as previously
stated. This is the value we adopted for the error on the mass.
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Fig. 11. Theoretical pulsation spectrum for the M = 1.863 M�, X = 0.739 model. The dark grey lines that vertically span the plot are the
observed pulsations (modes f1 to f7). Their thicknesses are proportional to the observed amplitudes. The light grey lines of different heights are the
theoretical pulsations computed from the model. The red line segments correspond to identified island (or mixed gravito-island) modes, assumed
to correspond to the observed modes. Meridional cross-sections of these 6 modes, labelled with the letters “a” to “f”, are shown in Fig. B.1. We
note that no island pulsation mode was clearly identified around 18 c/d, probably as a result of an avoided crossing.

Fig. 12. Surface map of the effective temperature of our best ESTER
model (parameters in Table 5). The dashed line marks the equator. The
values are in Kelvin.

Temperature. The error on the temperature is trickier. Com-
puting the temperature of the models at M = 1.86±0.03 M� with
Z and Xc following relations (14) and (15), for both X = 0.700
and 0.739, we get errors on the equatorial and polar tempera-
ture of about 40 K and 55 K respectively. Yet, this only accounts
for the uncertainty on the mass. We can estimate an uncertainty
on Z and Xc by multiplying their standard deviation (computed
as the square root of the diagonal elements of the covariance
matrix) by the square root of the minimum of the reduced χ2, as
is often done to account for the dispersion of the data. While not
ideal, this method gives an idea of the uncertainties on the model
parameters as a result of the dispersion of the observations with

Fig. 13. Monochromatic intensity map of our best ESTER model
(parameters in Table 5), at 1.5 µm in the H band. The values are in
erg s−1 cm−2 cm−1 srad−1.

respect to the fit. This gives us a ∼0.008 uncertainty on Z, and
∼0.185 on Xc. We may only compare the retained model (see
Table 5) with the one corresponding to the lower bounds on Z
and Xc, as the upper bound on Xc leads to Xc/X > 1. Doing that,
we get a difference of about 640 K at the equator, and 810 K at
the pole. This again highlights the need for an accurate deter-
mination of Altair’s surface composition, as more constraints
on Z and X would greatly help reduce this 9.4% error on the
temperature.

Z, X, and Xc. This considerable uncertainty on Z, X, and
Xc led us not to give the error on these parameters in Table 5.
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Fig. 14. Meridional cut of our best ESTER model (parameters in
Table 5). The colours represent the angular rotation rate.

Fig. 15. Surface map of the rotation rate of our best ESTER model
(parameters in Table 5). The colour represents the rotation period (in
hours).

However, our results all point towards the fact that, whatever
Altair’s composition is, as long as it is in the range of compo-
sitions found for stars in the vicinity of the Sun (where Altair
is located), Altair is a young star, close to the zero-age main
sequence (ZAMS). This conclusion actually agrees with the lat-
est estimate of Altair’s age made by Peterson et al. (2006) who
also place Altair close to the ZAMS. We used the CESAM
code (Morel & Lebreton 2008) to get an estimate of the time it
would take for a 1.86 M� star with an initial hydrogen content
X = 0.739 to evolve from Xc = 0.739 to Xc = 0.710. The result-
ing age is ∼93 Ma. Since this age was evaluated with a 1D model
taken outside its range of validity, as far as rotation is concerned,
we estimate the age of Altair to be around 100 Myr.

[M/H]. We note that the metallicity obtained for the best
ESTER model does not match that of the model atmosphere
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Fig. 16. Surface rotation rate as a function of the co-latitude, for our
best ESTER model (parameters in Table 5).

Fig. 17. Surface map of the velocity of our best ESTER model (parame-
ters in Table 5) projected onto the line of sight. The values are in km s−1.

used to reproduce the observed spectrum. Indeed, the correla-
tion between M and Z (see Eq. (14)) leads to Z = 0.019 for
X = 0.739. Knowing that

[M/H] = log
(

X�
Z�

Z
X

)
, (16)

we get a corresponding [M/H] = 0.19 using the solar composi-
tion from Asplund et al. (2005). This is lower than the metal-
licity used in the model atmosphere (i.e. [M/H] = 0.45). As
this mismatch is not entirely satisfactory, we carried out pre-
liminary calculations with an atmospheric metallicity match-
ing the bulk metallicity. This led to a slightly worse fit to the
spectroscopic data and incompatible results with the interfer-
ometric constraints. Remembering that the metallicity for the
atmosphere was obtained by fitting the spectroscopic data for
a single absorption line of Mgii only, more work is needed to
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Fig. 18. Squared Brunt-Väisälä frequency N2 of the final model, as a
function of the radius r and colatitude θ. The thermally unstable layers
(regions where N2 < 0), are colour-coded. These regions are bounded
by solid lines, with a dashed line showing the minimum of N2 in this
particular region.

properly determine the atmospheric abundances of Altair. It may
indeed be possible that Altair’s atmosphere is more metallic than
its interior, as a possible consequence of a recent accretion of
metals from a residual disc or planetoids. This idea is comforted
by the fact that Nuñez et al. (2017) found an extended, weak IR
excess (a few % in K band) for Altair, which suggests the pres-
ence of a tenuous circumstellar material (possibly from a debris
disc) within a few AU of the star.

8.2. Surface convection at the equator

We mentioned in Sect. 3 that ESTER models do not include
surface convective layers. This is not a problem for comput-
ing the structure of intermediate-mass and massive stars, since
the surface convective layers are very thin and convection car-
ries a small fraction of the flux. However, we can still have
an idea of the shapes of convective layers from the distribu-
tion of the squared Brunt-Väisälä frequency. In Fig. 18 we
show this distribution, which reveals two thermally unstable
layers, corresponding to the hydrogen ionisation peak (reach-
ing the surface) and helium first ionisation (below the surface).
Convective layers clearly thicken at the equator, as can also be
noticed in Espinosa Lara & Rieutord (2013)’s model of Vega.
This thickening may be related to the X-ray coronal emission
of Altair, which seems to be concentrated around the equator
(Robrade & Schmitt 2009). Most probably, this activity is also
related to Altair’s observed UV emission (Redfield & Linsky
2005). Finally, surface thermal convection likely alters the
broadening of the lines, through micro and macro-turbulence,
which in turn influences our fitting of Altair’s spectrum.

8.3. Resolution of the intensity maps

The resolution of the grid used to compute the intensity maps
turns out to be important. Indeed, we first decided to use only
Nθ = 25 sectors in latitude, from pole to pole, to speed up the

process. Even with such a low number of points on the visible
surface of the star (876), the largest surface element is about 0.02
squared milliarcsecond, whereas the resolution achieved with the
longest baseline of the GRAVITY configuration used, i.e. 130 m
at ∼2 µm, is about 3 mas. No difference could be seen on the
interferometric observables, and even though a spectrum done
with a “low resolution” grid (Nθ = 25) was more noisy than
the one done at “high resolution” (Nθ = 100), when smoothed
(e.g. with a moving average), both spectra were similar (between
0.1 and 0.3% difference). Despite all this, convergence was not
reached for Ω and i with Nθ = 25, even though preferred values
seemed to come out of the fitting process. On the other hand,
using Nθ = 100 allowed convergence towards a solution for all
four parameters (see Fig. 5). Unfortunately, for Ω and i, the solu-
tion seems to be multi-modal, as can be seen in the histograms
of Ω and i in Fig. 5. This effect is more important at low reso-
lution, which suggests that a higher resolution should solve the
problem. We thus run the MCMC code with Nθ = 60, 80, 100,
120, obtaining 2.1, 1.6, 1.3, and 1.0 degree modulations on the
inclination, respectively. This comforts us in the idea that the res-
olution in latitude is the main effect at play here, but as the most
probable values are identical for all resolutions, we settled on a
resolution of Nθ = 100. This gives a high precision on all param-
eters (inclination included, considering the small dispersion of
the peaks) while requiring reasonable numerical resources.

8.4. Influence of the geometry of atmosphere models

As observations became more and more accurate, limb-
darkening laws derived from plane-parallel model atmospheres
provided a less satisfactory fit to the observed data (Fields et al.
2003; Barros et al. 2012). Sphericity has thus been used exten-
sively, in recent years, in atmosphere codes, to better take into
account the actual shape of a (non-rotating) star (spectra made
from MARCS atmosphere models are available in both plane-
parallel and spherical geometries, as is the case for PHOENIX
models). Yet, when rotation comes into play, the question of
the curvature radius of the model atmospheres arises. Indeed,
as the rotation velocity of the star increases, so does its flatten-
ing. This gives a number of different curvature radii of the sur-
face, as a function of latitude (the star is considered, at least in
ESTER, axisymmetric). This effect is further complicated by the
fact that the curvature radius is not limited to a single value at
each latitude on the star, but depends on the direction one con-
siders. Expressions of the limits on the values of the curvature
radius at any point on the surface can be obtained from Harris
(2006). Their Eq. (18) shows that the minimal and maximal val-
ues for such a radius correspond to those computed along the
latitudinal and azimuthal directions. Adapting their Eq. (15) to
suit ESTER’s spheroidal coordinates, we find that the curvature
radius in the θ direction is:

Rθ
c = −

1
κ(dφ = 0)

=
(r2 + r2

θ )3/2

r(r − rθθ) + 2r2
θ

· (17)

where rθθ is the second derivative of r with respect to θ. Likewise,
the radius of curvature in the φ direction is:

Rφ
c = −

1
κ(dθ = 0)

=
r sin θ

√
r2 + r2

θ

r sin θ − rθ cos θ
· (18)

This allows us to compute the extrema of the curvature radius
from pole to pole, and compare it to the actual radius of the star
(Fig. 19). The figure confirms that (i) the curvature radii along
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Fig. 19. Curvature radii along the latitudinal (Rθ
c) and azimuthal (Rφ

c )
directions, and the actual radius of the model star r(θ). The vertical line
marks the equator.

the θ and φ directions are equal at the pole (as expected, since
the polar axis is the axis of symmetry of the star), and (ii) the
curvature radius along the azimuth is equal to the actual radius
at the equator (also expected, as the equatorial plane is a plane
of symmetry of the star).

If we take our ESTER model that best describes Altair, we
find a curvature radius at the pole of Rc = 2.08 R�, and radii of
Rθ

c = 0.90 R� and Rφ
c = 2.01 R� at the equator. As the tempera-

ture and gravity distributions at the surface of the star are not
uniform, the radii of the model atmospheres associated with the
different points on the grid vary, from Ratm

c (pole) ∼ 2.0 R�, to
Ratm

c (eq.) ∼ 3.0 R�. We see that, at the equator, the effective
radius chosen in the atmosphere models is off the upper limit
by about 1 R�. This and the fact itself that no point on the sur-
face of the star (except for the poles) can be associated with a
unique curvature radius make us wonder whether the need for
atmospheres computed with spheroidal coordinates arises when
dealing with rapid rotators.

It has been shown that the importance of the geometry of
the atmosphere depends primarily on the extension of the atmo-
sphere compared to the radius of the photosphere (see Plez
1990 for example). Baschek et al. (1991) formulated this exten-
sion ∆R/Rphotosphere as being proportional to the pressure scale
height, HP, thus inversely proportional to the effective grav-
ity g. Effectively, Heiter & Eriksson (2006) determined that for
log g > 3.0, the estimated abundances of a number of elements
are similar in both the plane-parallel and spherical geometries.
Neilson & Lester (2013) found discrepancies in limb-darkening
and apparent diameters, even for stars with compact atmo-
spheres (log g ≥ 4.0), concluding that even in the case of “main
sequence stars with large gravities and small atmospheric exten-
sions”, one should use spherical model atmospheres as they are
more physically representative when trying to measure precise
angular diameters and fundamental parameters of stars from
optical interferometry. Yet, this effect only amounts to 1% at
maximum in the K-band, way below our uncertainty on the
radius of the star. Furthermore, they also find that the difference

in gravity darkening between both geometries is negligible for
this kind of stars.

A star like Altair has an effective gravity at the surface
log g > 3.0, with our best model showing 3.8 . log g . 4.3
from equator to pole. We should then be safe from any sig-
nificant effect of the geometry of the atmospheres we used,
and a spheroidal code for computing model atmospheres would
not improve the accuracy of our results in a way that would
justify the time and effort put into it. If surface convection
and time evolution are one day successfully implemented into
ESTER, then modelling evolved stars with extended atmo-
spheres would become feasible, and this matter would have
to be resolved before a work such as this one should be
considered.

9. Conclusions

We conducted a multi-technique analysis of the star Altair
(HD 187642) using interferometry, spectroscopy, and seismol-
ogy. For the first time, this kind of analysis was performed
by comparing observational data with intensity maps com-
puted from a full two-dimensional model of the stellar interior
(ESTER) and surface (atmosphere models).

PHOENIX atmosphere models were used when fitting inter-
ferometric observables, and were furthermore supplemented by
Claret’s 4-coefficients limb-darkening law when interpreting
high resolution visible spectra from the ELODIE instrument.
For the stellar structure, the ω-model (i.e. the GD model from
Espinosa Lara & Rieutord 2011 applied to a Roche model) first
allowed us to constrain Altair’s equatorial radius, position angle,
rotation velocity and inclination with interferometry, while the
spectrum provided a preliminary value for the metallicity of the
atmosphere. Full 2D rotating stellar models from the ESTER
code were subsequently used to determine the star’s mass, metal-
licity (treated as a separate parameter from the atmospheric
metallicity), and hydrogen content (both core and envelope).
The correlations between these four parameters prevented con-
vergence towards a unique solution, and the fitting of Altair’s
SED hardly helped. The analysis of Altair’s pulsations, how-
ever, provided a solution. The observed frequencies clearly point
to the upper end of the mass range and more specifically to
M = 1.86 M�. However, due to the correlations between M,
Z, X, and Xc, such a mass would lead to X < Xc if X =
0.700, thus pointing towards higher values of X, such as 0.739
(i.e. the solar hydrogen content based on Asplund et al. (2005),
as might be expected for stars in the solar neighbourhood). Even
for such a value of X, the value of Xc is only 4 % below that of
X, thus indicating that Altair is young. Even then, the solution
is not unique due to the correlations between M, Z, X and Xc
thus pointing to the need for a full spectroscopic study, based on
multiple absorption lines. Such a study may also help resolve the
difference found between the atmospheric metallicity (based on
a single line) and the bulk metallicity.

This work is the first to combine such a diverse set of con-
straints in modelling a rapidly rotating star. It highlights the
importance of using sophisticated 2D stellar models in interpret-
ing interferometric data and is one of the very few studies which
provides a plausible mode identification for acoustic pulsations
in a rapidly rotating star. Accordingly, it is also an important
step in validating ESTER models from an observational point
of view. As such, it paves the way for future studies of other
promising targets in a part of the HR diagram which up to now
has proven challenging.
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Appendix A: Radius of ESTER models

The pressure variation between the polar isobar and the photo-
sphere (defined as where optical depth is unity) at the equator is

∆P =

(g
κ

)
pole
−

(g
κ

)
eq
'

∆g
κ
, (A.1)

assuming that κpole ' κeq. As ∆g = Ω2R, we have

∆R
R
'

∆P
ρgR

'
Ω2

ρgκ
· (A.2)

For a Roche model, this means

Ω2R
g
'

2ε
1 − ε

, (A.3)

where ε is the flattening coefficient. Then,

∆R
R
'

2ε
1 − ε

`

R
· (A.4)

Here ` is the mean free path of photons. For a 2 M� model,
` = 1/(ρκ) ∼ 2.2×109 cm, and R ∼ 1.1×1011 cm. If the flattening
is maximal (ε = 1/3), ∆R/R ∼ 0.02, if ε = 0.2, ∆R/R ∼ 0.01
and if ε = 0.1, then ∆R/R ∼ 0.004.

Appendix B: Pulsation modes of best-fitting model

Figure B.1 shows the meridional cross-sections of six island
modes from the best-fitting model. A pseudo-logarithmic colour
scale8 is used to bring out faint details. As can be seen, all of
these modes are mixed with gravity modes, or even a rosette
mode for the first one.

8 Specifically, we normalise the amplitude such that its max-
imum absolute value is 10, then apply the function f (x) =
sgn(x) ln (1 + |x|) / ln(11) prior to visualisation.
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Fig. B.1. Meridional cross-sections of island (or mixed gravito-island) modes in best-fitting model (M = 1.863 M�, X = 0.739). The Lagrangian
pressure perturbation, normalised by the square root of equilibrium pressure, is shown. A pseudo-logarithmic colour scale is used to bring out faint
details.
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