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Summary
This work is part of a study dealing with city-dwellers’ quality of life. Noise is known to be an important fac-
tor influencing the quality of life. In order to diagnose it properly, we propose a noise monitoring system of
urban areas. It is based on the use of large microphone arrays in order to extract the radiated sound field from
each passing-by vehicle in typical urban scenes. A machine learning algorithm is trained so as to classify these
extracted signals in clusters combining both the vehicle type and the driving conditions. This system makes it
possible to monitor the evolution of the noise levels for each cluster. The proposed system was first tested on
passing-by isolated vehicles measurements and then implemented in a real street in Paris (France).

© 2019 The Author(s). Published by S. Hirzel Verlag · EAA. This is an open access article under the terms of the
Creative Commons Attribution (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Quality of life is a major challenge in urban places because
of the large number of environmental factors influencing
it. In projects such as Mouvie [1] systemic approaches are
needed to work on both air pollution and sound pollution
and their impact on the comfort of city-dwellers.

Notably, noise has stress-related impacts on human
health such as sleep disturbances or cardiovascular dis-
eases [2, 3, 4]. The World Heath Organisation (WHO) in-
dicates [5] that between 1 and 1.6 million years in good
health are lost (disability-adjusted life-years, or DALYs)
every year in occidental Europe because of transportation
noise. Sleep disturbance is the major effect with 903 000
years lost every years and long-term noise annoyance (due
to passive effects of noise) is the second effect (654 000
years lost).

In order to unify the national initiatives and provide an
efficient tool to diagnose the urban sonic environment, Eu-
ropean parliament voted the 2002/49/CE directive in 2002
[6]. It imposes for the large cities of the member coun-
tries of the European union to realise noise maps based
on the Lden index (stands for Day-Evening-Night level). It
aims to take into account the influence of time-periods of
the day in noise annoyance by increasing by 5 dB(A) the
evening levels and by 10 dB(A) the night levels. After this
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diagnosis step the large cities (over 100,000 inhabitants)
have to provide action plans showing their ambition to re-
duce the proportion of persons highly annoyed by noise
with practical actions.

These regulations, with regard to WHO’s threshold val-
ues [7, 8], provide an efficient way to inform the city
dwellers on their average exposure to noise. But these
maps have some limits. First, they are provided for each
type of source separately (road, aircraft, railway and in-
dustrial) whereas in urban areas city dwellers are usually
exposed to several sound sources at the same time – with
possible interactions and not just a summation. So that
the overall exposure is not estimated. Second, whereas the
variation of noise exposure over the day may be of inter-
est for city-dwellers and urban planners, it is averaged be-
cause of the use of the Lden. Third, the noise maps are
obtained by simulations and rarely confronted to measure-
ments and consequently validated experimentally. There-
fore, it is interesting to see the emergence of monophonic
acoustic sensor networks (such as CENSE or DYNAMAP
[9]) to provide additional real-time information about the
sonic environment.

In this work, we focus on the noise induced by the
road traffic. In this specific context, noise maps have addi-
tional weaknesses. Thus, though they are often cited as the
most annoying sources [10, 11], the powered two-wheelers
where considered as light vehicles [11]. Indeed, in many
cities the traffic flow estimation is based on counting the
number of axles of the passing-by vehicle, therefore it can-
not distinguish a powered two-wheeler from a car.

© 2019 The Author(s). Published by S. Hirzel Verlag · EAA.
This is an open access article under the terms of the CC BY 4.0 license. 1067
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Note that the European Union voted in 2015 a directive
[12] redefining the categories to be used for noise map-
ping, including the powered two-wheelers. The applica-
tion of this directive had to be applied before 31/12/2018.

In addition, Marquis-Favre et al. [13] reported that the
perceived noise annoyance induced by road traffic (here
the short-term annoyance, estimated with active listening)
is related to the mode of transportation (road, rail or air
traffic) but also to the vehicle type. The driving conditions
are also pointed out as a decisive factor to this annoyance.
Thus it appears that the road traffic estimation should be
improved to detect all type of vehicles and their driving
conditions as well.

In this aim, we propose to capture the audio signal of
each road vehicle, extract from it the vehicle type and
its driving condition in order to provide a more detailed
description of the road traffic noise and pave the way of
short-term noise annoyance estimation in urban areas.

If the audio signal is known, it can be used to identify
the vehicle. Indeed, sound source classification has been
investigated with machine learning based on monophonic
signals in the past decade (see e.g. [14, 15, 16, 17]). But in
major streets the spatial and temporal masking effects of
the different sound sources prevent from classifying each
vehicle properly.

Multiple studies have been conducted to separate sound
source on monophonic signals (see for example Gloaguen
et al.[18] for recent development in Non-Negative Matrix
Factorisation applied to urban sound scenes) but we as-
sume that a spatial filtering technique will provide better
results and extract each vehicle audio signal with more ac-
curacy.

Weinstein et al. [19] showed that microphone arrays can
be used for sound sources separation using inverse tech-
niques. The application to low-speed moving source sig-
nal extraction has been done by Hafizovic et al.[20] on a
basketball court with a 300 microphones array.

In this article, we propose a road traffic monitoring sys-
tem. It aims at detecting each vehicle type, identifying its
driving conditions and extracting its specific sound signal.
This permits to compute indices that could be used to bet-
ter assess noise annoyance such as loudness. By identi-
fying the vehicles and isolating their audio features, the
proposed system provides more detailed information than
those provided by standard urban noise observatories.

Part 2 presents the tools implemented in the study. First
a video tracking method provides the trajectory of each ve-
hicle (see sec. 2.1). From this trajectory, the system uses
large microphone arrays (sec. 2.2) together with a dedi-
cated beamforming technique to extract the signal of each
vehicle embedded in the traffic (sec. 2.3). The last step of
the process consists in classifying these signals into clus-
ters mixing both vehicle type and driving condition (sec.
2.4). Note that this study only focuses on internal combus-
tion vehicles.

Part 3 presents the applications of the method. In a first
step, it is used in a controlled set up to characterise iso-
lated vehicles on a test track (Section 3.1) and constitute

a learning database. In a second step, the system is im-
plemented in a real urban context to evaluate its perfor-
mances in terms of classification according to objective
features (Section 3.2). Finally, the system is modified to
perform classification according to perceptual indices in
Section 3.3.

Finally, Part 4 exposes the global outcome of this work
by presenting the evolution of the sound level all over a
day with respect to the estimated perceptual clusters.

2. Materials and Methods

The method for an acoustical classification of the urban
road traffic starts from a tracking step of each vehicle in
the traffic flow (Section 2.1). This provides the trajectory
of the sound sources to be measured and classified. The
individual signal extraction relies on the implementation
of large microphone arrays presented in Section 2.2. The
method uses beamforming technique dedicated to moving
sources and presented in Section 2.3. The last step aims at
classifying the extracted signals. The method based on a
supervised machine learning process is presented in Sec-
tion 2.4.

2.1. Moving vehicle tracking method

In order to obtain the trajectory of each vehicle embedded
in the traffic, we developed an in-house tracking method.

We first perform a contour detection on the video file
recorded by a camera located at the centre of the micro-
phone array. It is based on background subtraction for each
video frame using the OpenCV library1. The background is
created by averaging the 500 preceding frames. Each mov-
ing object is reduced to a rectangle including it. The rect-
angles connection between two consecutive frames is sim-
ply computed by finding the minimum distance between
two rectangle centroids. Finally, the vehicle trajectory is
obtained by gathering the connected centroids.

Figure 1a shows an example of vehicle tracking for a
pass-by measurement. But the trajectory detection also has
to be robust to the presence of obstacles (such as trees) be-
tween the camera and the vehicle, like in the configuration
presented in Figure 1b: camera over a multi-lane street.
To do so, the current frame – to whom the background is
subtracted – is blurred in the direction of the vehicles.

2.2. Microphone arrays

2.2.1. The Megamicros acquisition system

The Megamicros project, introduced by Vanwynsberghe et
al.[21] with a 128 microphones array, aims at providing
digital acquisition systems able to capture up to 1024 syn-
chronised acoustic signals. These systems are dedicated to
applications such as acoustic imaging, room acoustics or
source directivity measurements. Based on digital MEMS
microphones these systems are very versatile and easy

1 Available at opencv.org
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Table I. Characteristics of the vehicles for the track tests. hv
stands for heavy vehicle, lv for light vehicle and twv for twho-
wheeler vehicle.

Label Energy Engine Range

lv1 diesel 4 cyl. sedan
lv2 gasoline 3 cyl. urban
lv3 diesel 4 cyl. minivan
lv4 diesel 4 cyl. sedan
hv diesel 4 cyl. 25 m3 utility

twv1 gasoline 50 cm3, 2 stroke 2-wheeler
twv2 gasoline 400 cm3, 4 stroke 2-wheeler

to set-up. The MEMS microphones (ADMP441 - Ana-
log Device) are omnidirectional and have a rather flat fre-
quency response between 60 and 15,000 Hz. These sys-
tems allow to build arrays of arbitrary geometries, possi-
bly with extensions of a few tens of meters. Two of such
arrays were implemented in this study. They are presented
in Sections 2.2.2 and 2.2.3. In two following experiments,
the signals are sampled at 50 kHz.

2.2.2. Isolated vehicle pass-by measurements

The microphone array used for the test-track experiment
has been designed to provide the best possible acoustic
image of the noise sources of passing-by vehicles [22].
Therefore, the microphone array is large enough to offer a
sufficient resolution at low frequencies and dense enough
to avoid grating lobes at high frequencies. The array was
built according to the geometry presented in Figure 2.
256 microphones were distributed over a 20 m long and
2.25 m high area, thanks to 32 vertical uprights supporting
8 microphones each. The microphone array was located
7.5 m away from the vehicle path, following the ISO 362
recommendations for pass-by noise measurements. In de-
tail, horizontally the inter-microphone distances are from
10 cm to 1.53 m and from 17 cm to 39.9 cm vertically.

We aimed at being representative of the urban road traf-
fic in terms of vehicle types and driving conditions. Table I
lists the characteristics of the vehicles involved in the track
tests. Note that the vehicle named hv is the one considered
as heavy vehicle despite it is a large utility vehicle, not
a proper bus or truck. The study only focuses on internal
combustion vehicles.

To simulate all possible urban driving configurations,
each vehicle under test has passed the following scenarios
in both back and forth ways:
• 25 km/h constant speed in second gear;
• 50 km/h constant speed in third gear;
• traffic light vicinity:

– deceleration from 30 to 0 km/h;
– 2 s stop, engine idling;
– acceleration from 0 to 30 km/h with gear change;

• full throttle acceleration over 20 m.

2.2.3. Urban experiment

Our goal is to monitor the road traffic in urban environ-
ments. Therefore, in situ measurements have been carried

(a)

(b)

Figure 1. (Colour online) Detected moving vehicles (green rect-
angles) and trajectory extraction (red lines) for isolated vehicles
or real urban situation. (a) Isolated vehicle on test track (test-
track experiment), (b) Vehicles in a parisian street (in situ exper-
iment).
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Figure 2. (Colour online) Microphone array positions (red dots).

out on a multi-lane urban street (St Bernard Quay in Paris -
France) with a specific microphone array. It is 21.6 m long
and is located 9.5 meters overhanging a 3×1 lane street at
a 13.5 m distance from its centre (see Figure 3). It is com-
posed of 128 MEMS microphones regularly spaced with a
pitch of 17 cm. This configuration allows segregating the
vehicles in the same lane in a wide frequency range, even
at low frequencies thanks to the array length. The over-
hanging position of the array allows to have a phase differ-
ence between the lanes, which makes it possible to sepa-
rate the sources located in different lanes. Due to its light-
ness and simplicity, the installation of the antenna only re-
quires 30 minutes.

As illustrated in Figure 3, this experiment takes place in
a street with an “L” shape, meaning that there is no build-
ing in the opposite side of the street. It is an important
street and the microphone array is set-up close to a traffic
light so that we can expect to have all the driving condi-
tions described in the previous section.

This experiment took place during a day in winter which
prevented the video tracking process to be disrupted by the
leaves on the trees. Six sequences of ten minutes each have
been recorded during day time.
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2.3. Moving source signal extraction

Knowing the source position at all time, the microphone
array recordings can undergo a beamforming (BF) process
to extract audio signal of each passing-by vehicle from a
multi-source sound scene.

In acoustics, BF is used as a reference method, since it
is robust for source localization over a discretised plane or
into a volume including static sound sources. The method
can also be considered as a way of spatial filtering (see e.g.
[19, 20]).

In this study, we propose to use this property on mov-
ing vehicles. Therefore, the standard free-field propagation
model used in classical delay and sum (DAS) applications
has been modified to take into account the cinematic of the
vehicles. Figure 4 presents a classical scenario with a lin-
ear microphone array recording the sound field propagated
by the ith monopolar sound source moving on a straight
line.

Morse and Ingard [23], considering an homogeneous
media and a free field, write the pressure at time tr at mi-
crophone m emitted by source i at time te as

pm(tr) =
si(te)

rmi,e 1 −Ma(te) sin θe
2

(1)

with tr = te + rmi,e/c0, rmi,e the distance between the mi-
crophone m and the source i at emission time te, si(t) =
q (t)/4π, q (t) is the derivative of the source mass flow
and Ma(te) is the Mach number of the source at emission
time Ma(te) = V (te)/c0.

The reconstructed source signal si(te) is estimated by
Cousson et al. [24], for instance, with

si(te) =
1
Nm

Nm

m=1

rmi,e 1 −Ma(te) sin θe
2
pm(tr) (2)

with Nm the number of microphones. The central term
bears the only modification in the classical DAS expres-
sion.

However, in the rest of this paper the energy compensa-
tion is discarded (by removing the rmi,e factor) so that the
output signal level is the one recorded by the microphones.
Thus, the extracted signal writes:

ŝi(te) =
1
Nm

Nm

m=1

1 −Ma(te) sin θe
2
pm (tr) . (3)

The signal ŝi(t) is an estimator of what would have been
recorded by one microphone if only the source si where
in the sound scene. By doing so, only a spatial filtering is
operated and the results are more comparable to the noise
maps (that providesLden in facade) and to the city dwellers
feeling.

The simulations and the experimental tests presented in
appendix A1 show that the BF method presented in equa-
tion (3) is accurate to extract each vehicle signal.

Note that in both experiments presented in this paper,
the free-field model can be considered valid as there are no
major reflectors except for the road, which is too close to
the sources to have a real influence in these configurations.

z

x y

9.5 m

13.5 m

Figure 3. (Colour online) Scheme of the experiment configura-
tion. The linear microphone array (red dot) is set-up over a 3×1
lane street in Paris.

i

h

V t( )e

e

Nm

rmi,e

m1

Figure 4. Configuration example with a Nm linear microphone
array and a ith sound source moving rectilinearly at a speed of V
at t = te.

2.4. Moving vehicle classification
In classification tasks, the challenge is not only in select-
ing the best algorithm but also in finding the best data
to use: here the audio descriptors. Valero et al. [15] pro-
vides a comparison of classification accuracy of environ-
mental noise obtained by 13 signal features and 4 differ-
ent methods. They point out that the MFCCs (Mel Fre-
quency Cepstral Coeficients) or the MPEG7 descriptors
give good accuracy in noise source classification, espe-
cially for Gaussian Mixture Model (GMM), K-Nearest
Neighbour (KNN) or Neural Network (NN).

MFCCs are widely used in noise source classification.
As pointed out by Giannoulis et al. [25], a major part
of the research teams uses MFCCs as audio descriptors
for classifying different sound scenes signals. MFCCs,
as presented by Davis and Mermelstein [26], result from
different calculations over each signal frame, typically
25 ms long. First, the energy summation of the filtered
spectrum over a triangle filter bank align along the mel
scale (mimicking the cochlea) is taken. Then, the dis-
crete cosine transform of the log of each energy is com-
puted. For our purposes, MFCCs are calculated using the
python_speech_features library2.

During the DCASE 2013 challenge [25] the best results
have been obtained by combining MFCCs with a Support
Vector Machine (SVM). Introduced by Cortes and Vapnik
[27], this method is widely used for supervised classifica-
tion tasks. It aims at finding so-called hyper-plans that sep-

2 Available at github.com/jameslyons/python_speech_features
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Table II. Classification clusters.

2-Wheeler Light V. Heavy V.

Const. Speed 1 4 7
Acceleration 2 5 8
Deceleration 3 6 9

arate the samples of different classes with the maximum
margin. The hyper-plans are defined by normal vector w
and the margin width is equal to 2/ w so that minimis-
ing w maximises the margin. The w vector has the same
number of components that the number of features used
for classification (here the MFCCs). In order to allow er-
rors and approximation in the case clusters could not be
linearly separable, slack variables ζi – counting the num-
ber of errors – are added to relax the constraints on the
learning vectors. Finding hyper-plans reduces at solving
the equation

ŵ = argmin
w,ζ

1
2
wTw + C

n

i=1

ζi , (4)

with C the parameter that determines the tradeoff between
increasing the margin-size and ensuring that the samples
lie on the correct side of the margin. C can be a vector or a
scalar, providing respectively a value for each class or the
same for all.

Note that convolutional neural network have also been
used in environmental sound classification for the past
years. This type of algorithm seems interesting, but so far,
it gives the same type of performance as SVM but with an
intensive computational cost (see eg. [28, 29]).

In our case, the task consists in classifying road vehi-
cles in terms of type (2-wheeler, light vehicle and heavy
vehicle) and driving conditions (constant speed, acceler-
ation and deceleration). Nine clusters are used. They are
detailed in Table II.

3. Implementation

The monitoring method proposed in the previous part is
first tested and validated with isolated vehicles on a test
track. Then, its application in a real urban scenario is pre-
sented.

3.1. Controlled set of vehicles
This extraction method has been applied to the pass-by
measurements listed in Table I for the various driving
conditions. Note that the “traffic light simulation” record-
ings are split into 3 driving conditions: deceleration, idle
(not classified) and acceleration. Finally, 70 pass-by sig-
nals constitute the classification database (called test-track
database in the rest of the article). They are distributed in
the different clusters as presented in Figure 5.

Signal features selection is important for obtaining the
best classification results. MFCCs are computed every
100 ms with 52 filters (ranging from 0 to 25 kHz, half the
sample rate) and 26 MFCCs are obtained. A simplified

Cluster
1 2 3 4 5 6 7 8 9

8 9
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Figure 5. Number of pass-by measurements in each cluster.
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Figure 6. Confusion matrix in percentage of vehicle per category
- Global classification accuracy: 88 %.

bag-of-frames approach [30] is used for representing the
MFCCs evolution over the time: the time evolution is sim-
plified to its mean and standard deviation. So that for each
pass-by the extracted signal is represented by 52 audio fea-
tures.

The classification is trained by SVM over 88 % of the
signals and is tested on the remaining 12 % (8 signals).
The results are averaged over 35 different learning and
testing signal combinations.

Figure 6 presents the confusion matrix for this classifier.
It shows some small confusion, mostly within the classes
of a vehicle type. Some confusions outside a vehicle type
are also present. For example, the light vehicle in acceler-
ation (cat. 5) are classified 10 percent of the time as heavy
vehicle in constant speed (cat.7) and 3.5 percent as a 2-
wheeler in constant speed (cat.1)

Using the MFCCs as descriptors and a relaxation pa-
rameter C from 5 and above, the score is 88 % of cor-
rect classification which is good regarding the literature
[15, 29, 28].

This result can be improved by adding more informa-
tion to the dataset used by SVM: the driving conditions.
Indeed, in this controled experiment they are well known.
So that the learning and testing datasets are composed of
55 elements: 52 audio features and 3 binary values, one
for each driving condition. Note that each element of the
dataset is normalised by its maximum among the 70 pass-
by data.
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Table III. Number of pass-by measurements by category for
training and testing datasets. The training dataset is based on test-
track and in situ measurements.

Dataset 1 2 3 4 5 6 7 8 9 Sum

Tr
ai

n test-track 8 9 5 18 12 7 5 4 2
494

in situ 32 6 0 260 60 39 7 17 3

Te
st in situ 10 5 1 68 14 10 2 4 1 115

Figure 7 presents the confusion matrix for this classi-
fier, the global classification accuracy rises to 99 %. It rep-
resents the percentage of predicted vehicle category with
reference to the real (expected) one.

Only the heavy vehicle in deceleration (cluster 9) is
misclassified, being considered as a light vehicle in ac-
celeration 67 % of the time or in deceleration 33 % of the
time. This could be explained by the nature of the vehicle:
a large utility vehicle, powered by a car-like engine not a
proper truck one. Note that tuning of C parameter allows
some samples to be misclassified. The counterpart of hav-
ing a good fit of the SVM on the overall data is that the
heavy vehicle in deceleration is 67 % of the time misclas-
sified in acceleration.

3.2. Urban sound scene

From the in situ experiment presented in Section 2.2.3, six
available recordings are distributed from 11:50 to 15:15.
Three of them (11:50, 15:00 and 15:15) have been manu-
ally tagged in order to quantify the classification accuracy.
It provides respectively 210, 246 and 83 vehicle trajecto-
ries (only the 200 first seconds have been tagged for the
15:15 recording) and forms what will be called the in situ
database in the following.

The first classification tests have shown that we have
to enhance the training dataset by adding data from the
in situ database to the test-track database. The distribu-
tion between training and testing dataset is presented in
Table III. Note that for some clusters the number of sam-
ples is very low. This is mainly due to the tracking method
which is not robust enough but also to the low number
of heavy vehicles passing during the measurements. For
the third category, the two-wheelers trajectories were usu-
ally lost when they were overtaking another vehicle at idle.
Note that the 52 audio features are normalised by the the
same values (maximum of test-track database) and that the
driving condition is deduced from the vehicle trajectory.

As discussed in Section 2.4, the C parameter can be a
scalar (same value for all clusters) or a vector (one value
per clusters). After a parametric study, the best classifica-
tion results give 82 % of accurate classification. They are
obtained for

C = 6, 0.6, 0.6, 1.5, 1.5, 0.3, 6.6, 2.4, 3.3 .

For more details, the confusion matrix is given in Figure 8.
The good results are mainly due to the good classification
of the light vehicles: from 70 to 93 % of accuracy. The
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- Driving conditions added to the dataset - Global classification
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Figure 8. Confusion matrix in percentage of vehicle per cluster -
Global classification accuracy: 82 %.

other clusters are often confused with equivalent driving
condition clusters of light vehicles. We can also see that
the vehicles of clusters 2, 3 and 9 are always misclassified.
This can be explained by the lack of data for both learning
and testing in those clusters. We can finally state that heavy
vehicles in acceleration (cluster 8) are confused half of
the time with light vehicles in acceleration (cluster 5) and
25 % of the time in constant speed.

This in-situ classification test is promising and the per-
formances seem coherent with the literature [15, 16, 28,
29]. This work confirms that the audio signal include the
clues to identifies the vehicle types and driving conditions,
such as humans can do.

3.3. Urban sound scene - Perceptual categories

A study carried out by Morel et al. [31] proposes a multi-
criterion typology of road traffic pass-by noises. During
a free clustering task, they found that the subjects were
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Table IV. Morel et al. perceptual clusters.

2-Wheeler Light V. Heavy V.

Const. Speed 1 3 3
Acceleration 2 6 7
Deceleration 4 5 5

grouping pass-by noises into clusters that can mainly be
explained using two criteria: the vehicle type and the ve-
hicle driving condition. They were also interested in the
influence of a third criterion, the road morphology, but it
revealed not to be significant in the clustering process.

During the free clustering task, the subjects were gather-
ing the light and heavy vehicles in both constant speed and
deceleration. As a result, their proposed perceptual clus-
tering of the road traffic is explained by seven clusters de-
tailed in Table IV.

We propose here to modify the previous classification
method to use Morel et al. perceptual clusters on the same
training and testing sets than those used in Section 3.2.
After a parametric study, the best success rate is found to
be 84 % with the relaxation parameters

C = [2.38, 1.68, 0.42, 0.9, 0.14, 0.14, 0.53].

The confusion matrix is detailed in Figure 9. It shows some
good results, especially for clusters 1, 3 and 6: the classi-
fication rate for these clusters are equivalent to those ob-
tained in Section 3.2 (previously labelled category 1, 4 and
5 respectively). We can see that the two-wheelers in decel-
eration (category 4) are still classified as a light (or heavy)
vehicles in constant speed (category 3). We can also notice
improvements: two-wheelers in acceleration are now well-
classified 40 % of the time versus 0 % previously and the
classification accuracy of heavy vehicles in acceleration
(cluster 7) rises from 25 to 50 %. Nevertheless, classifica-
tion rate decreased from 70 to 64 % for cluster 5 because
it include the heavy vehicle decelerating that is still classi-
fied as passing-by in constant speed.

It is interesting to notice that the classification accuracy
rises when we use those perceptual categories. This is not
only because of the category merging (that can decrease
the error), but also by improving the classification of some
categories, such as the powered two-wheelers.

4. Monitoring over daytime

The classification method is applied to all the ten minute
recordings acquired in one day at the Saint-Bernard Quay.
Figure 10 shows the number of detected vehicles during
the six measurements available with the cluster estimated
by the method. The data presented in this Section are
labelled by their starting acquisition time. The tracking
method allowed to detect 539 vehicles during the acqui-
sition time.

First, we can see that the number of detected vehicles
decreases from midday to 15:00 then rises at 15:15. We
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Figure 10. Number of vehicles over the different ten minute ac-
quisitions by perceptual clusters. Total number of detected vehi-
cles: 539.

can suppose that it continues rising later in the afternoon.
Also, such as in Section 3.3, we can see that the 2-wheelers
in deceleration (cluster 4) are never detected because of
the camera position. We can also see that there is no ma-
jor evolution of the distribution over the clusters, except at
15:00 when clusters 5 and 7 (light and heavy vehicles in
deceleration) are less detected. We can finally notice that
the road traffic is highly dominated by clusters 3 (light and
heavy vehicles at constant speed) and 6 (light vehicles in
acceleration) but not much vehicles in deceleration (cate-
gories 4 and 5). This can be explained by the street con-
figuration (see Figure 3): three lanes located after a traffic
light and only one before.

Figure 11 shows the evolution of the distribution of the
equivalent sound level by perceptual cluster with boxplots.
The sound level is calculated over the pass-by duration:
one second (for the fastest vehicle) and five seconds for
the accelerations and decelerations. Note that cluster 4 is
never detected and not represented. We can notice a ten-
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dency: the lower noise level values are emitted by the
light and heavy vehicles decelerating (category 5). This
is not the case for the 15:00 ten minute recordings. When
analysing precisely the distribution it seems to be bi-modal
with two sets of values centred on 61 dB and 78 dB. This
bi-modality seems to be only due to the integration time
and so the type of deceleration: short and stopping quickly
(high equivalent level) or long and idling in front of the
array (low equivalent level).

It seems also that the higher noise levels can be at-
tributed to the 2-wheelers passing-by at constant speed
(cluster 1) and heavy vehicles accelerating (cluster 7). For
this last cluster, at 15:15, we have a large variation range
due to two sets of values centred on 64 dB and 87 dB. It
is interesting to note that this cluster has quite a constant
number of vehicle during the day (between 6 and 7, except
for the 15:00 experiment) but with a important variation of
noise levels.

Moreover, we can notice that the variation range for
each cluster is small until 13:25, reflecting an homoge-
neous traffic, but then, we have noticed large variations in
the noise levels and an important number of outliers. This
can reflect the increasing diversity of the road traffic for
those periods (different types of heavy vehicles or differ-
ent cylinders number for the 2-wheelers).

With these results, we can see that the analysis by per-
ceptual category doesn’t directly imply a reduced variabil-
ity of noise level. Thus, we can see that both the traffic
segmentation thanks to the classification task and the as-
sociated noise level are complementary in a urban noise
monitoring system.

5. Conclusion

In this study, we have been interested in proving the feasi-
bility of monitoring the urban road traffic from the vehicle
radiated sound field (thermal vehicles only). In order to do
so, large arrays of microphones have been implemented to
spatially filter a sound scene. This was achieved thanks to
a dedicated beamforming algorithm coupled with a video
tracking method, able to extract the audio signal of each
passing-by vehicle. Appendix A1 presents the method val-
idation with simulations and an isolated vehicle experi-
ment. The in situ spatial filtering gain in also investigated.

Once the signal extracted, a classification step has been
designed with Support Vector Machines using MFCCs as
audio features. As learning samples, MFCCs where com-
pleted by the driving condition information based on the
video tracking algorithm. It led to 99% of accurate classi-
fication on isolated vehicles.

Then, the application to a real urban sound scene has
been presented with 539 detected vehicles. A maximum of
82% of accurate classification has been pointed out. This
was mainly due to the lack of data for the 2- wheelers
in acceleration and deceleration and for the heavy vehi-
cles in deceleration. To reach this performance, the learn-
ing database is based on the isolated vehicle database but
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Figure 11. Boxplots of noise levels over the different ten minute
acquisitions (labelled by their starting acquisition time) by per-
ceptual clusters. Note that cluster 4 is never detected and not rep-
resented. The limits of the rectangles represent the first and third
quartiles so that 50% of the data is included in this range. The
red triangle symbolises the mean value, the black vertical bar the
median value and the black circles the outliers.

also on manually tagged pass-by in the urban in situ mea-
surements. An adaptation is finally proposed to classify
over perceptual clusters. It allowed to increase the accu-
rate classification rate to 84%.

Finally, an application to six available ten minutes
recordings has been presented. It allows to analyse the
noise level for each perceptual category over the day. It
has mainly pointed out that the most noisy vehicles – for
this measurement place (St-Bernard Quay in Paris city
centre) – where the 2-wheelers in constant speed and the
heavy-vehicles in acceleration. The least noisy category
was found to be almost always the light and heavy vehi-
cles in deceleration.

This method appears to give a good knowledge of the
road traffic composition. Nevertheless, it could be im-
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proved by adding samples in the training and testing
datasets, especially with two-wheelers and heavy vehicles
decelerating signals but also with two-wheelers in acceler-
ation. Note that the microphone array is easy to use and
can be adapt in all urban situations (eg. on attaching it
to the balconies). Even though the current one – in St-
Bernard Quay – is very challenging, the results are already
satisfying.

Subsequently, some improvements could be investi-
gated. The video tracking step could be improved to rise
the number of detected vehicles. It could be done using
a remote camera with a better field of view or by cou-
pling the video tracking with a tracking system on an
acoustic image. In addition, in the presence of leaves, this
method could be modified by doing the tracking step over
an acoustic image rather than on the video. The perfor-
mance should not be really degraded as the effect of the
leaves should be at very high frequency.

The array geometry of the in situ experiment could also
be improved in order to allow a better source separation
between the traffic lanes. Furthermore, as we have ex-
tracted the audio signal of each vehicle, different kind of
metric could be computed to better assess short-term noise
annoyance in urban environments such as loudness or an-
noyance itself thanks to different models [32, 33]. There
is no clear consensus in the literature on the link between
audio signal and long-term annoyance (as used by WHO
in the estimation of DALYs) but we assume that the short-
term annoyance would probably explain a larger part of
the variance of the long-term annoyance than any metric
derived from the instantaneous or equivalent sound level.

Appendix
A1. Beamforming validations

We propose here some validation cases for the beamform-
ing formalism on moving source. The propagation and
beamforming model is first tested on simulated data. An
adaptation is then proposed to extract audio signal without
the energy compensation so that the output signal sound
level is the one recorded by the microphones. This beam-
forming model is then validated on a similar experiment.
Finally, extraction performance is investigated.

A1.1. Model accuracy

Based on the propagation and beamforming models pre-
sented in section 2.3, a simulation with a source mov-
ing at 50 km/h is proposed. It is done with a monopo-
lar source emitting a 2 kHz pure tone with an amplitude
of 1 Pa (90.9 dB SPL). The simulation lasts 3 s allowing
the source to travel 41.6 m. Signals recorded by a linear
microphone array in the configuration presented in Fig-
ure 4 (with h = 16.5 m) is simulated. The array is the
same as the one used for Saint-Bernard Quay experiment
(presented in Section 2.2.3): it is 21.6 meters long with
128 microphones regularly spaced 17 cm. The simulation
is done at a sample rate of Fs = 50 kHz and computed in
time domain rounding the reception time tr to the closest
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Figure A1. Spectrogram of simulated and beamformed signal for
a source emitting a 2 kHz pure tone - V = 50 km/h - Dynamics =
10 dB. (a) Simulated signal, (b) Beamformed signal.
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Figure A2. Spectrogram of beamformed signal realised with
Equation (3), for a source emitting a 2 kHz pure tone - V =
50 km/h - Dynamics = 10 dB.

time sample of each microphone signal, no interpolation is
introduced.

Figure A1a shows the spectrogram of the central micro-
phone simulated signal where the Doppler effect is visible.
Moreover, the amplitude is varying from 62 to 66 dB while
the source approaches the microphone.

Figure A1b shows the spectrogram of the beamformed
signal. We can see that the beamforming allows to get the
initial emitted sound field, meaning that the amplitude re-
mains constant at 90.9 dB with a frequency shift compen-
sated.

This simulation shows a good accuracy of the beam-
forming to estimate the radiated sound field of a single
moving source. However, we will be interested in remov-
ing the energy compensation so that the output signal
sound level is the one recorded by the microphones. In-
deed, by doing so, our results are more comparable to
the noise maps (that provides Lden in facade) and to city
dwellers feeling. This can be done by removing the dis-
tance factor rmi,e in equation (2), so that the extracted sig-
nal is obtained in equation (3).

Figure A2 shows the spectrogram of the resulting beam-
formed signal for the simulation presented before. By
comparing with the spectrogram of the initial signal (Fig-
ure A1a), we can see that the evolution of the energy
is conserved (from 63 to 66 dB while the vehicle ap-
proaches).
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Figure A3. Spectrograms of recorded and beamformed signals
for a source emitting a 2 kHz pure tone - V = 20 km/h - Dynamics
= 50 dB. (a) Recorded signal, (b) Beamformed signal.

A1.2. Validation on experimental data

The set-up and the beamforming method are proposed to
be validated on a pass-by measure realised during the test-
track experiment presented in Section 2.2.2. To do so, a
loudspeaker emitting a 2 kHz pure tone has been set-up
on a car passing-by at 20 km/h. The Figure 1a has shown
the tracking step for this experiment. As we can see on
this figure, the size of the moving object is over-estimated
on the edge of the frame because it takes into account the
shadows.

Figure A3 shows the spectrograms of the recorded and
beamformed signals referenced to their maximum. On Fig-
ure A3a, we can notice both the frequency shift for the
loudspeaker signal but also the broadband noise produced
by the tire/road contact.

The beamformed signal spectrogram is presented in
Figure A3a. The de-Dopplerization seems not to be per-
fect in the first and last seconds of the signal. This is due to
the mis-positioning of the source when it enters and leaves
the camera frame. Indeed, the beamforming is done on the
centroid of the rectangle including the moving object so
that we focus on the shadows and the engine when the car
enters and on the exhaust pipe and the shadows when it
leaves the frame. This involves a wrong speed estimation
if the vehicle is not entirely in the camera frame. But when
it is, we can see that the signal is well de-Dopplerised and
the background noise is reduced proving the good estima-
tion of the vehicle position with respect to the microphone
array.

A1.3. Extraction performances

The performances of this technique in filtering a sound
scene is now investigated. For this purpose, during the in
situ experiment (with the 128 microphone array) a loud-
speaker was set-up at different places emitting a 1 kHz
pure tone.
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Figure A4. Power spectral density of central microphone (in
blue) and beamformed signal on the 1 kHz pure tone loudspeaker.
Distance between source and central microphone: 26.7 m, V =
0 km/h.

Figure A4 shows the power spectral density of the cen-
tral microphone and the one of the beamformed signal
while the source is placed at 26.7 m from the array cen-
tre. We can see that initially the loudspeaker is barely au-
dible because of the energy of the other sound sources
(road traffic). But thanks to the array dimension (21.6 m
long) and beamforming we can see (orange curve) that the
background noise is reduced by 20 dB around 1 kHz. But
this gain reduces when the frequency decreases, reflecting
the fact that the array resolution is frequency dependent.
Such that in very low frequency (under 50 Hz) the tech-
nique seems not to provide any filtering gain.
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