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Abstract: Our ability to observe biochemical events with high spatial and temporal resolution is
essential for understanding the functioning of living systems. Intrinsically fluorescent proteins such as
the green fluorescent protein (GFP) have revolutionized the way biologists study cells and organisms.
The fluorescence toolbox has been recently extended with new fluorescent reporters composed
of a genetically encoded tag that binds endogenously present or exogenously applied fluorogenic
chromophores (so-called fluorogens) and activates their fluorescence. This review presents the toolbox
of fluorogen-based reporters and biosensors available to biologists. Various applications are detailed
to illustrate the possible uses and opportunities offered by this new generation of fluorescent probes
and sensors for advanced bioimaging.
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1. Introduction

Our understanding of the inner workings of cells and organisms is inherently linked to our
ability to visualize biochemical events with high spatial and temporal resolution. The introduction
of fluorescent proteins (FP) as genetically encoded fluorophores has been essential in our quest of
visualizing proteins and various biochemical activities in living cells. The reasons why biologists
rapidly adopted fluorescent proteins such as the green fluorescent protein (GFP) resides in their
straightforward use that allowed, with minimal expertise in molecular biology and fluorescence
microscopy, to obtain scientifically meaningful images and information. Since the first use of GFP as
genetically encoded fluorophore in 1994, FPs with various spectral properties have been discovered
and developed for various applications [1–4]. GFP-like FPs have been used for the visualization of
(fusion) proteins in various hosts and for the design of fluorescent biosensors that enable us to see
various biomolecules and biochemical activities.

Although GFP-like FPs have revolutionized our way to image biomolecules and biochemical
activities, intrinsic shortcomings, such as their size and tendency to oligomerize, their need for molecular
oxygen, their slow fluorophore maturation, and their restriction to a genetically encoded fluorophore,
have motivated the development of alternative fluorescent reporters [1,5,6]. Among them, one can cite
alternative FPs that incorporate endogenous chromophores naturally present in cells, and chemical–genetic
reporters, which are semisynthetic hybrid systems composed of a genetically encoded tag and a synthetic
chromophore (Figure 1). Engineered mostly from natural photoreceptors, natural chromophore-based
FPs rely on the property of chromophores such as flavin, biliverdin, and bilirubin to strongly fluoresce
when appropriately bound, and to be almost nonfluorescent when free, ensuring high contrast. The fact
that such fluorogenic chromophores (hereafter called fluorogens) are naturally present in cells is a clear
advantage of these reporters as additional fluorogen supply is a priori not necessary. Chemical–genetic
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reporters, on the other hand, are composed of a genetically encoded tag that specifically recognizes
a synthetic chromophore exogenously applied. The use of synthetic fluorogens that light up upon
reaction/interaction with the genetic tag allows high-contrast imaging, since free, unbound chromophores
remain invisible. In terms of design, chemical-genetic reporters are conceptually similar to natural
chromophore-based fluorescent proteins, as they both rely on a genetically encoded part (that allows
absolute labeling selectivity) that recognizes, in a specific fashion, a fluorogen (natural or synthetic)
that is bright only when bound, but is otherwise dark when free. One advantage of chemical–genetic
reporters over natural chromophore-based FP is that natural chromophores are not hijacked from their
physiological function, reducing the risk of perturbing cellular processes and inducing cellular stress.
Moreover, the spectral and physicochemical properties of synthetic fluorogens can be tuned by using the
power of modern chemistry; the additional labeling step provides opportunities to design innovative
protocols for on-demand labeling, and the labeling of biomolecules other than proteins such as RNA can
be envisioned. In this review, we present the design and applications of various fluorescent reporters
based either on natural or synthetic fluorogens, highlighting in particular how they complement the FP
toolbox and offer new opportunities for advanced imaging.

Figure 1. Examples of fluorogens found in fluorogen-based reporters and biosensors. Proteins and
RNA of interest can be fluorescently labeled in a selective fashion through fusion to tags that (covalently
or non-covalently) bind (natural or synthetic) fluorogens and activate their fluorescence.
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2. Fluorescent Reporters and Biosensors Based on Natural Fluorogenic Chromophores

Many chromophore-binding proteins, such as photoreceptors, are naturally found in various
plant, algae, and bacteria species. Thanks to the progress in molecular biology, modifying the
properties of proteins has become easier and easier, enabling photoreceptors to evolve into fluorescent
proteins and optimize their photophysical and spectral features. The three main classes of fluorescent
reporters engineered from natural photoreceptors bind the endogenous fluorogenic chromophores
flavin, biliverdin, and bilirubin.

2.1. Flavin-Binding Cyan–Green Fluorescent Proteins

Flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) have been designed from
photoactive light-oxygen and voltage-sensing domains (LOV) found in blue light photoreceptors of
various plant, algae, and bacteria species [7–9]. In native LOV domains, blue light induces a reversible
covalent bond between FMN and a conserved cysteine residue in the binding pocket, which leads to
a change of conformation and thus a biological response. Cysteine replacement by alanine and directed
evolution enabled to kill this natural photocycle and to generate FbFPs fluorescing cyan–green light,
thanks to the noncovalently bound FMN (ubiquitously present in cells) [10]. This engineering strategy
also allowed the development of miniSOG from the LOV2 domain of Arabidopsis thaliana phototropin-2,
a system that not only fluoresces but also generates singlet oxygen upon blue light illumination [11].

The unique properties of FbFPs enabled it to overcome some limitations of GFP-like FPs [12].
FbFPs are, unlike GFP-like FPs, O2-independent, allowing experiments in anaerobic conditions [10,13].
These systems have proved to be suitable for monitoring intracellular processes and studying
host–pathogen interactions in hypoxic conditions in various organisms (bacteria or fungi) and cultured
mammalian cells [10,14–19]. As an example, FbFPs have been used as a reporter to study the human
pathogen anaerobic bacteria Clostridium difficile, Bacteroides fragilis, and Porphyromonas gingivalis, as well
as the extracellular secretion of proteins in Clostridium difficile [14,15,17]. A ratiometric Förster resonance
energy transfer (FRET) oxygen sensor was developed by fusing FbFP to the yellow fluorescent protein
(YFP). Since oxygen is essential for the fluorescence maturation of YFP (the FRET acceptor), but not for
that of FbFP (the FRET donor), the FRET efficiency directly correlates with the oxygen concentration [20].
FbFPs were recently utilized for the design of other types of biosensors, such as pH FRET-based
biosensor [21]. Another advantage of FbFPs resides in their small size, in average 12 to 16 kDa.
A smaller tag means lower risks of generating dysfunctional protein fusions, and reduced genetic
footprint, which was shown to be advantageous for virus labeling [12].

The FbFP MiniSOG also presents the ability to generate reactive oxygen species (ROS) upon
excitation, which opened new opportunities for correlative light and electron microscopy (as it
is fluorescent and allows local polymerization of diaminobenzidine into an osmiophilic product
detectable by electron microscopy) and for applications such as local photooxidation, cell ablation,
or chromophore-assisted light inactivation (CALI) [11]. Recent studies have shown that miniSOG
and variants (such as SOPP2, SOPP3, and MiniSOG2) allowed effective optogenetic inactivation
of antimicrobial agents and cell ablation of specific cell types (neuron, muscle, or epidermis) in
Caenorhabditis elegans and Drosophila larva [22–25]. Very recently, a split version of miniSOG was
designed to study protein–protein interactions by light microscopy and electron microscopy [26].
This split system allowed for the visualization of AP-1 transcriptional complex in nucleoli of
mammalian cells.

2.2. Bilirubin-Binding Green Fluorescent Protein

A bilirubin-binding fluorescent protein, displaying similar excitation and emission wavelengths to
GFP and FbFPs, was isolated from Japanese unagi eels and characterized by the group of Miyawaki [27].
The fluorescence properties of this monomeric protein, called UnaG, results from a bilirubin (BR)
molecule tightly encased noncovalently within the protein cavity. Being an endogenous catabolic
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product of hemes, bilirubin is present in high concentrations in mammalian cells, allowing the
direct formation of fluorescent complex. To use UnaG in species that do not synthetize bilirubin
(e.g., bacteria), bilirubin can be added exogenously in culture media [27]. UnaG shares many
similarities with FbFPs, such as a small size (15 kDa), an oxygen-independent fluorescence, and almost
instantaneous fluorescence maturation upon bilirubin binding. The oxygen-independence feature has
been exploited to visualize hypoxia in tumors at the cellular level [28]. UnaG has been reported to be
brighter than FbFPs, making it one of the brightest alternatives to GFP [27].

UnaG has been further employed for the development of fluorescence bimolecular complementation
assays and biosensors [29,30]. A split version of UnaG called uPPI (UnaG-based protein–protein
interaction (PPI) reporter) was developed through a structure-guided approach. This split version has
been validated with the FRB/FKBP system in mammalian cells. The addition of rapamycin, which induces
the association of FRB and FKBP, allowed UnaG complementation in the presence of bilirubin [29].
Further engineering allowed the design of a UnaG-based calcium sensor by coupling UnaG with the
calcium-binding protein calmodulin. This dual-ligand modulable fluorescent protein is able to bind both
bilirubin (via UnaG) and calcium (via calmodulin). The binding of bilirubin is negatively regulated by the
binding of calcium through conformational change, generating a fluorescence signal that depends on
calcium concentrations [30].

2.3. Biliverdin-Binding Far-Red and Infrared Fluorescent Proteins

Fluorescent proteins emitting in the far-red and the infrared (IR) were engineered from bacterial
phytochrome binding the fluorogenic biliverdin (BV). The first example of IR fluorescent proteins,
IFP1.4, was developed by using the N-terminal of PAS and GAF domains from Deinococcus radiodurans
phytochrome [31]. In the natural photoreceptor, BV is covalently attached via a thioether bound and
undergoes a reversible cis–trans photoisomerization at its C15=C16 double bond under far-red light
illumination. Mutations were introduced to prevent photoisomerization and conformationally lock BV,
resulting in a drastic increasing of the fluorescence. A brighter version, namely IFP2.0, was further
developed by protein engineering [32]. Although BV is ubiquitously present in all aerobic organisms,
as it is an initial intermediate in heme catabolism by heme oxygenase (HO), external supply was needed
to obtain optimal imaging. Alternatively, co-expression of HO was shown to boost intracellular BV
levels, but with the disadvantage of risking the dysregulation of cellular homeostasis [32]. A truncating
version of the bacteriophytochrome RpBphP2 from Rhodopseudomonas palustris has proved to be
an improved near-infrared fluorescent protein version (iRFP) [33]. Due to its higher affinity for BV,
iRFP does not require an additional exogenous supply of BV or co-expression of HO; iRFP variants
were engineered to expand the color range available from 670 to 720 nm [34].

The iRFPs are dimeric proteins, and IFP2.0 tends to form dimers at high concentrations [35].
As these dimeric forms represent an issue in bioimaging, as they may disrupt the function of the tagged
protein and can lead to mislocalization and protein aggregation, a fully monomeric version called
mIFP was engineered from a monomeric truncated bacteriophytochrome from Bradyrhizobium [35].
As mIFP displays weak brightness due to a low affinity with BV, brighter monomeric iRFPs (miRFPs)
were next engineered from bacteriophytochrome RpBphP1 with BV specificity and affinity similar
to those of the dimeric forms [36]. These monomeric versions are called miRFP670, miRFP703,
miRFP709, and miRFP720, and they are the most red-shifted monomeric near-infrared (NIR)
fluorescent proteins [37].

Recently, a near-infrared fluorescent protein was engineered from the cyanobacteriochrome
allophycocyanin (APC) of Cyanobacterium trichodesmium [38]. Naturally, APC binds phycocyanobilin
(PCB). Random mutagenesis and directed evolution have been necessary to generate the small ultra-red
fluorescent protein smURFP, a NIR FP which covalently binds BV instead of PCB [38]. This homodimeric
protein (composed of two 15 kDa subunits) is one of the brightest far-red/near-infrared fluorescent
proteins reported, but it requires the supply of exogenous BV or the more cell-permeant biliverdin
methyl ester, for optimal fluorescence in cells [39]. To address issues due to dimer formation or low BV
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binding constant, a small monomeric protein (15 kDa) called miRFP670nano was recently evolved
from a cyanobacteriophytochrome, to efficiently bind BV and brightly fluoresce in mammalian cells
without the need for exogenous BV supply [40].

As the most red-shifted GFP-like FPs emit below 650 nm, near infrared (NIR) FPs have opened
new opportunities for in vivo imaging, especially for deep-tissue and whole-body imaging, benefiting
from the higher transparency, lower light scattering, and lower autofluorescence of mammalian tissues
in the far-red and infrared region [41]. As an example, smURFP allowed imaging of HT1080 tumor
xenografts in mice, without the addition of exogenous BV [38].

NIR FPs were also useful for the design of biosensors for the detection of protein–protein
interactions or protease activity [42]. A split version of iRFP was obtained by separating the two distinct
PAS and GAF domains [43]. Spatial proximity induces complementation of the two domains and
thus iRFP recovers fluorescence upon BV binding. Split iRFP allowed for the study of protein–protein
interactions in mammalian cells and in tumor xenograft in living mice. A reversible split version
of IFP1.4 and monomeric split reporters of miRFPs were also designed to study protein–protein
interactions in mammalian cells or in vivo models [36,43]. Infrared fluorescent proteins were also used
to design protease biosensors. Proteases activity, especially caspases, induces proteolytic cleavage,
leading to programmed cell death. The study of proteases activity can be useful to monitor apoptosis
phenomena. The re-engineering of IFP allowed for the development of an infrared fluorogenic protease
reporter, named iProtease, which becomes fluorescent upon protease activation. This biosensor uses
a circular permutated version in which the native N and C termini are linked by a protease cleavage
sequence. In this version, a cysteine essential for chromophore incorporation is physically displaced
from the binding pocket, thus avoiding BV attachment and consequently fluorescence. Proteolytic
cleavage induces IFP reformation, and the displaced cysteine return to the binding cavity, allowing for
fluorescence in the presence of BV [44]. In addition, iCasper reporters activated by caspases 3 and 7
were also generated for the visualization of apoptosis during morphogenesis in Drosophila larvae and
during tumorigenesis in the brain of Drosophila.

3. Fluorescent Reporters and Biosensors Based on Synthetic Fluorogenic Chromophores

3.1. Protein-Based Reporters

In 1998, Roger Tsien introduced the tetracysteine tag (CCXXCC) for the selective labeling of
recombinant proteins in living cells [45–48]. This so-called self-labeling tag, which has a minimal size
that limits perturbations of protein function, expression, and dynamics, selectively binds biarsenical
derivates of fluorescein and resorufin, respectively, called FlAsH and ReAsH [45]. Upon covalent
binding, FlAsH and ReAsH undergo some fluorescence activation. Because of this fluorogenic response,
the tetracysteine tag/FlAsH system can be seen as one of the ancestors of more recent fluorogenic
hybrid reporters.

The first genetically encoded protein tags activating the fluorescence of synthetic fluorogens upon
recognition were human single-chain antibodies evolved to noncovalently recognize thiazole orange
(TO) and malachite green (MG) derivatives [49]. Molecular recognition reduces the conformational
flexibility of these molecular rotors, unquenching their fluorescence. Molecular engineering allowed
for the expansion of the spectral properties of these fluorogen-activating proteins (FAP) from the blue
to the far-red edge of the visible spectrum [50,51]. In their original version, FAPs required nonreducing
environments (e.g., cell surface and secretory pathway) for the formation of disulfide bonds essential
for proper functioning. The labeling of cytosolic proteins was rendered possible by the engineering of
disulfide-free FAPs recognizing cell permeant MG-ester [52,53]. On the other hand, selective labeling
of cell-surface proteins thanks to membrane-impermeant charged fluorogenic dyes opened the door to
new ways to study membrane protein trafficking [54–57]. In this context, FAP has been used to study
GABA receptor trafficking in neurons [58].
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FAPs were used in various other fields of application. FAPs were shown to display a great
potential for live-cell super resolution microscopy (e.g., stimulated emission depletion (STED)) because
of the reduced photobleaching provided by the continuous fluorogen refreshment, and also for single
molecule tracking in living cells, as only a subpopulation of proteins can be labeled using low fluorogen
concentrations [59–61]. The FAP technology has also allowed for the design of photosensitizer molecules
able to produce ROS upon illumination. In that case, FAPs bind heavy atom-substituted fluorogenic
MG, which produce singlet oxygen upon near-infrared activation. This system, called FAP-Targeted
and Activated Photosensitizer (TAPs), enabled cell ablation and subcellular protein inactivation [62].
This approach relies on the on-demand addition of fluorogens to the targeted cells. The near-infrared
excitation and emission of FAP-based photosensitizers allows protein inactivation and cellular ablation
in whole organisms. FAP-based photosensitizers allowed the CALI of proteins, targeted cell killing
in cultured cells, and targeted lineage ablation in zebrafish (larva or adult) [62]. Apart from these
developments, FAPs have been applied to in vivo studies for the detection of EGFR-enriched tumors
in mice. A tumor-targeting system was developed by fusing a FAP to an affibody that specifically
binds EGFR receptor. The resulting system, called affiFAP enabled tumor detection and can be
useful for diagnosis, tumor margin definition, and surgery [63]. Finally, FAPs have been conjugated
with immunoglobulin (IgGs) in order to label cell-surface proteins. This FAP-antibody tool was
used to label cell-surface antigen, induce cell ablation of the antigen-expressing cells, and observe
cell–cell contacts [64].

Another way to developed fluorogenic systems is to take advantage of the existing site-specific
self-labeling systems, SNAP-tag, CLIP-tag, and Halo-tag [65–67], which allow the covalent labeling
of proteins with chemical probes. SNAP-tag and CLIP-tag were evolved from the human DNA
repair O6-alkylguanine-DNA alkyltransferase (AGT) [65], while Halo-tag was evolved from a bacterial
dehalogenase [67]. SNAP-tag is a 20 kDa AGT variant that is capable of transferring the functionalized
benzyl group of O6-benzylguanine (BG) derivatives to its active-site cysteine, leading to irreversible
covalent labeling [65]. In CLIP-tag, a SNAP tag variant, the substrate is O2-benzylcytosine (BC)
instead of BG [66]. Halo tag is a 33 kDa protein that is able to react with chloroalkane ligands [67].
As SNAP-tag, CLIP-tag, and Halo-tag substrates can bear various chemical probes, fluorogenic
chromophores were used instead of regular fluorophores, so that the washing steps required to remove
the remaining background signal from unreacted fluorophores was no longer necessary, resulting
in higher contrast and higher temporal resolution imaging. Membrane-permeant near-infrared
silicon-rhodamine (SiR) fluorophores have been used for the labeling of SNAP-tag, CLIP-tag,
and Halo-tag [68]. Their fluorogenic properties rely on the zwitterion–spirolactone equilibrium
of SiRs. The spirolactone (predominant in aqueous solution) is nonfluorescent, while the open
zwitterion (favored in the less-polar protein proximity) displays excitation and emission maxima in
the far-red and near-infrared. SiR fluorophores have been shown to be well suited for protein labeling
in cells and tissues, multicolor imaging, and super-resolution imaging, including Stochastic optical
reconstruction microscopy (STORM) and STED [68].

SiR analogues (Janelia fluorogens) with increased photostability and brightness were developed
by replacing the N,N-dimethylamino group with a four-membered azetidine ring [69]. Fluorogens with
various spectral properties were developed by additional molecular engineering [70]. The high cell
permeability and fluorogenicity associated with these fluorogens allowed multicolor imaging in cells,
tissues, and whole animals. As an example, Janelia probes have been used to image brain tissue from
Drosophila larvae and mice [70]. In 2019, Lavis et al. showed that the equilibrium constant between the
nonfluorescent spirolactone form and the zwitterionic fluorescent form can be exploited to predict
fluorogenicity and could be useful for rational design [71]. In the same study, JF526 imaging with
SNAP and Halo-tag proved to be well suited for multicolor super resolution microscopy (e.g., STED).
In addition, JF526 can be easily modified into its hydroxymethyl derivative, which displays spontaneous
blinking that can be used for single-molecule localization microscopy (SMLM) [71].
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In order to study protein–protein interactions in living cells, a split SNAP protein complementation
assay was developed. SNAP-tag protein was separated into two fragments by cleavage between amino
acid residues 91 and 92 [72]. This split reporter was exploited to study the interaction between SpoIIQ
and SpoIIIAH in sporulation of Clostridium difficile and also to demonstrate that Src kinases function as
a dimer in living cells [73,74].

Very recently, a new chromophore series suitable for SNAP-tag derives from the linear merocyanine
dye with an additional phenyl substituent was developed. The resulting near-infrared fluorophore
named P-Mero4 displays a bathochromic shift (45 nm) due to unusual S-cis diene conformation [75].
Fluorescence increase in constrained environment results from limited phenyl rotation. Live-cell and
in vivo imaging, using P-Mero4, was successfully achieved.

As the relatively large size of the self-labeling tags remains a concern for studies in cell biology,
smaller protein tags have been developed. An example of a smaller tagging system is the photoactive
yellow protein PYP, a small size protein (14 kDa) that has been used as covalent self-labeling system [76].
This protein, naturally found in Halorhodospira halophila, is a monomeric blue-light photoreceptor whose
light-sensing ability comes from a hydroxycinnamoyl chromophore covalently attached to a cysteine
residue via a thioester bond. Moreover, apoPYP was shown to form covalent thioesters with various
coumarin derivatives. Fluorogenic labeling of PYP relies on either environmentally sensitive dyes
depending on polarity, or on unquenching mechanisms [76–79]. Additional engineering of PYP-tag to
control electrostatic interactions has provided an improved fluorogenic system for labeling intracellular
proteins [80]. Furthermore, the incorporation of a hydroxyl group into environment-sensitive
7-dimethylamino-6-hydroxycoumarin generated an improved coumarin ligand (also called CG2),
displaying higher reaction kinetics and optimal fluorescence activation. This improved ligand has been
used to investigate the localization of sirtuin 3 (SIRT3), a mitochondrial deacetylase [81]. PYP labeling
was recently used to develop probes for the quantitative and real-time imaging of methylated DNA [82].
The PYP-tagged methylated-DNA-binding domain was labeled with a DNA-binding fluorogen lighting
up upon DNA recognition, which enabled the visualization of DNA methylation in living cells.

Directed evolution of PYP recently allowed the development of fluorescence-activating and
absorption-shifting tag (FAST) [83]. FAST was evolved to bind highly permeant hydroxybenzylidene
rhodanine (HBR) analogues in a noncovalent manner. HBR analogues display a push–pull structure
composed of an electron-donating phenol ring conjugated with an electron-withdrawing rhodanine
heterocycle. These fluorogens dissipate light energy non-radiatively in solution, but strongly fluoresce
when locked in a planar conformation within FAST. In addition, HBR analogs undergo an absorption
red shift upon binding, which further increases their fluorogenicity as unbound fluorogens do not
absorb at the wavelength used for exciting the emissive complex. Molecular engineering of the
fluorogen structure has permitted the extension of the fluorescence emission color from green–yellow
to the orange and red regions, allowing multicolor imaging [84,85]. Moreover, HBR analogs which
are not able to cross the plasma membrane were developed for the selective labeling of membrane
proteins at the cell surface and the study of their trafficking [86].

Using highly permeant HBR analogues, this fluorogenic system allowed the labeling of proteins in
various localizations in living cells, such as bacteria, yeast, and mammalian cells, and in multicellular
organisms such as zebrafish embryos, making FAST very promising for various in vivo applications [83].
In addition, as the fluorescence of FAST is completely oxygen-independent, it can be used in anaerobic
conditions. Recently, this feature enabled the efficient labeling of proteins in strict anaerobes, such as
Clostridium organisms, and the study of bacterial biofilm dynamics in low-oxygen environments [87,88].

Interestingly, this system is fluorescent instantaneously after folding, due to fast binding kinetics,
allowing near-real-time experiments. Furthermore, the rapid exchange dynamics lead to an efficient
fluorogen renewal, which reduces the apparent photobleaching rate [89]. The high dissociation rate
constant makes FAST a highly dynamic and fully reversible noncovalent labeling system. FAST can be
used as an ON/OFF switch: While the addition of fluorogen leads to an almost instantaneous labeling,
the removal of the fluorogen by washing switches off the fluorescence and reverses labeling within
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a few seconds. By using fluorogens with different colors, this property allows for the swapping of
color dynamically by fluorogen exchange. The unique kinetic signature of this color exchange was
exploited to selectively detect FAST-tagged proteins in cells already tagged with both green and red
reporters through two-color cross-correlation analysis [84]. Finally, FAST was shown to be suitable for
SMLM and for Super-Resolution Radial Fluctuations (SRRF) microscopy for imaging sub-diffraction
limited structures [90,91].

Split and circularly permutated versions of FAST were designed recently and used to study
protein–protein interactions in real time and to develop biosensors [92,93]. Circularly permuted
(cp)FAST was developed to design a calcium biosensor. This calcium intensiometric biosensor is based
on the Ca2+-dependent interaction of calmodulin and the M13 peptide. The N-terminus and C-terminus
of cpFAST were fused to the M13 peptide and to calmodulin, respectively. Calcium binding induces
an increase of the fluorogen-binding affinity, leading to fluorescence activation. The biosensor color
could be easily switched from green–yellow to orange–red by choosing the appropriate fluorogen [93].
A split fluorescent reporter with rapid and reversible complementation was recently designed by
splitting FAST into two complementary fragments. This so-called splitFAST was shown to be suitable
to study the dynamics of PPIs and to design biosensors (e.g., calcium and apoptosis) [92]. These studies
show that cpFAST and splitFAST are promising modules for the design of various biosensors.

Other protein scaffolds were used for generating small protein tags. The 15 kDa cellular retinoic
acid binding protein II (CRABPII) was engineered to form a covalent adduct with a nonfluorescent
merocyanine dye precursor [94]. The generated protonated iminium forms a far-red fluorophore.
Improved live-cell imaging was obtained by using human cellular retinol-binding protein II
(hCRBPII)/merocyanine complex. This latter system displays a high quantum yield, making it
brighter than most common red fluorescent proteins, and has been proven to be well suited for live-cell
imaging in both cancer cell lines and yeast cells [95]. Recently, mutants of hCRBPII able to bind
fluorogenic julolidine retinal analogue as an iminium were also engineered for the design of a ratiometric
pH biosensor [96]. In this case, pH sensitivity relies on the presence of titratable amino acids side
chain in the binding pocket. Through pH variation, electrostatic potential changes in the binding
pocket, inducing a shift in the absorption/emission spectra of the julolidine retinal analogue. The pH
is read, exciting the acid and basic forms at two distinct wavelengths. Apart from these examples,
small fluorogen–protein systems have been developed from lipocalins [97,98]. These transport proteins
are able to bind reversibly to various small-molecule ligands. To identify new fluorogen–protein
pairs, in silico mutagenesis of amino acids within the ligand-binding pocket has been achieved.
Lipocalin-based systems display high photostability and have been shown to be well suited for SMLM,
using the fluorogenic chromophores named DiB1, DiB2, and DiB3. Very recently, a fluorogenic protein
was designed de novo by using computational approaches, opening up new possibilities for the design
of reporters and biosensors [99].

3.2. RNA-Based Reporters

The concept of fluorogen-activating tags was extended to other biomolecules such as RNA. RNA
aptamers able to bind and activate the fluorescence of fluorogenic chromophores were generated
by using systematic evolution of ligands by exponential enrichment (SELEX). A landmark study
is the development of Spinach, an RNA aptamer that interacts noncovalently with 3,5-difluoro-4-
hydroxybenzylideneimidazolidinone (DFHBI), an analog of the GFP chromophore 4-hydroxybenzylidene
imidazolidinone (HBI) known to be fluorescent only within the beta-barrel of GFP [100,101]. Conformational
locking of DFHBI upon binding to Spinach aptamer leads similarly to a drastic increase of the fluorescence,
allowing for high-contrast imaging [102,103]. Further optimizations led to Spinach 2, designed to overcome
misfolding issues encountered with the initial version [104], and Broccoli, an RNA aptamer optimized for
cellular expression and intracellular imaging [105].

The color palette available for RNA labeling was further extended to the red edge of the
visible spectrum, with the RNA aptamer Mango, which binds thiazole orange (TO) derivatives
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with nanomolar affinity [106] and, more recently, with the RNA aptamers, Corn, Orange Broccoli,
and Red Broccoli, which bind 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime (DFHO),
a fluorogen similar to the chromophore of red fluorescent proteins (RFP) [107], and with the aptamer
Chili that binds 3,5-dimethoxy-substituted HBI (DMHBI) derivatives and exhibits a large Stokes
shift [108]. The high photostability of Corn-DFHO has been used for the quantitative fluorescence
imaging of mTOR-dependent Pol III transcription [107]. Recently, near-infrared RNA aptamers
binding fluorogenic silicon rhodamines (SiRs) were identified. These are highly photostable
and compatible with super-resolution microscopy techniques, such as live-cell STED imaging.
Fluorogenicity here depends on the intramolecular spirocyclization of SiRs: the emission of fluorescence
occurs only when SiRs are in the zwitterionic form within the RNA aptamer [109]. More recently,
a new series of fluorogen-RNA aptamers called Pepper was developed. The associated fluorogen
HBC (4-((2-hydroxyethyl)(methyl)amino)-benzylidene)-cyanophenylacetonitrile is nonfluorescent in
solution but highly fluorescent in constrain environment. Various versions of Pepper ligands have been
developed by modifying HBC structure, allowing to it to cover a large range of visible light spectrum,
from cyan to red: Pepper 485 to 620 (corresponding to the maxima of emission) [110]. The Pepper
system proved to be useful to study the spatiotemporal distributions of intracellular noncoding RNAs
and mRNAs and to label endogenous chromosomal loci. Furthermore, Pepper 620, displaying high
brightness and photostability, was shown to be well suited for live-cell imaging of RNA aptamers
beyond the diffraction limit.

A new concept of fluorogenic aptamer was recently proposed with the design of a new
bright and photostable fluorogen for RNA imaging relying on quenching mechanism. The resulting
cell-permeable fluorogenic dimer sulforhodamine B dyes (Gemini-561) and the corresponding dimerized
aptamer (o-Coral) allowed direct fluorescence imaging of RNA transcripts in live mammalian cells,
without tag multimerization [111].

Apart from the study of the localization, transcription, and translation of RNA in cells, RNA
aptamers can be used to study specific RNA. For example, miRNA expression sensors were recently
developed. Small noncoding RNA involved in post-transcriptional regulation in living cells has been
monitored by using Mango aptamer [112]. In addition, thanks to their small size, fluorogenic aptamers
might be efficient tools to investigate the dynamic of viral RNAs [113,114]. For example, Spinach and
Spinach2 aptamer have been successfully fused to HIV and to Sindbis virus genome, respectively.
These studies show that aptamers can be useful to quantify and study the expression, distribution,
and spread from cell to cell of viral RNA [113].

Biosensors able to sense various biomolecules, such as nitrogenous bases or cAMP, were developed
by coupling Spinach and its derivatives to aptameric sensing units [107,115–119]. Broccoli has also
been used to monitor the activity of RNA-modifying enzymes. Methylated Broccoli cannot bind its
cognate fluorophore, and so is nonfluorescent. Thus, the activity of RNA demethylase restores the
fluorescence of Broccoli, allowing the identification of the inhibitors of such enzymes [120].

4. Conclusions

The discovery and subsequent development of GFP-like proteins have constituted a major
achievement in bioimaging. However, despite all their advantages, their size and tendency to
oligomerize, their need for molecular oxygen, their slow fluorophore maturation, and their restriction
to a genetically encoded fluorophore have been shown to limit their use [1,5,6]. In this context,
the development in the last years of fluorogenic systems made of a genetically encoded domain (protein
or RNA) able to bind and activate the fluorescence of fluorogenic chromophores has opened new
exciting opportunities for the labeling of biomolecules in living systems.

The advantages offered by fluorogenic systems have been exploited in various applications. First,
the oxygen-independency feature of some of these systems, such as FbFPs, UnaG, and FAST, was shown
to allow the investigation of anaerobic organisms. This property opens new opportunities for exploring
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medically important organisms and microbial communities and, more generally, anaerobic biological
phenomena in bacteria, yeast, mammalian, and plant systems [13].

Second, the development of NIR fluorescent probes has made possible deep-tissue and whole-body
imaging. NIR fluorescent proteins, NIR FAP, or Janelia fluorogens were successfully used for in vivo
labeling. In the future, such reporters should become essential tools for the in vivo monitoring of
pathologies or the testing of therapeutic agents in animal models [121].

Third, several fluorogenic systems, notably based on self-labeling tag, FAP, and FAST have
been demonstrated to be suitable for super-resolution imaging (such as STED, SMLM, or dSTORM)
and single protein tracking. There is no doubt that, in the near future, new microscopy methods
with improved spatial and temporal resolution will be developed, which will require engineering of
fluorogenic systems with new or optimal properties.

Fourth, two systems, namely miniSOG and FAP-based photo-sensitizer, are able to generate ROS
in addition to being fluorescent. This specific feature allows effective local photooxidation, cell ablation,
or chromophore-assisted light inactivation (CALI), which opens new opportunities for biological
studies. The development of the NIR FAP-based photosensitizer is a plus, as the blue light used for
photosensitizing MiniSOG does not propagate efficiently within deep tissues and thus complicates
in vivo experiments [122].

Fifth, fluorogen-based reporters allowed the creation of a vast collection of biosensors able to
sense pH, oxygen, calcium, apoptosis, or protein–protein interactions relying eventually on modified
(circularly permuted or split) reporters. Almost all the fluorogenic systems described above have been
employed for biosensor design (FbFPs, UnaG, infrared FP, SNAP tag, FAST, CRABPII, etc.). In the
future, biosensors that are engineered to be suitable for deep-tissue and whole-organism imaging
could be valuable additions to the current fluorescence toolbox [123].

Last, the concept of fluorogen-activating tag was shown to be extendable to biomolecules other
than proteins. In particular, the recent development of a collection of fluorogen-activating RNA
aptamers opens exciting prospects for the observation and study of various RNAs, such as messenger
RNA, micro RNA, viral RNA, or long noncoding RNA.

In this review, we distinguished reporters based on fluorogens from natural or synthetic origins.
Each class has its pros and cons. The clear advantage of fluorogens being endogenously present in cells
is that there is no delivery issue. However, the risk of hijacking natural fluorogen from its physiological
function is to perturbate cellular processes and induce stress in living systems. Regarding synthetic
fluorogens, the obvious advantage is that spectral and photophysical properties can be tailored by
molecular engineering. In addition, fluorogen concentration can be adjusted, allowing on-demand
applications (at a specific time or at a given intensity). Yet, as the chromophore is externally added,
the latter needs to fulfill certain requirements, such as being nontoxic and membrane-permeant and not
perturb cellular homeostasis. It is important to mention that there are no boundaries between natural
and synthetic fluorogens. Indeed, natural chromophore properties can be improved by chemical
synthesis. This is the case for biliverdin dimethyl esters, which display greater cell permeability than
natural biliverdin, thus optimizing their use in living cells [39]. Reciprocally, it could be interesting to
evolve tags (such as RNA aptamers) able to bind and activate the fluorescence of endogenous fluorogens.

The presented systems vary also by the way the fluorogen is bound to its cognate tag, whether it is
bound covalently or noncovalently. Each class displays benefits. Covalent binding allows pulse-chase
labeling to study protein synthesis, trafficking, and turnover. Moreover, high-contrast imaging can be
obtained by washing away the excess of fluorogenic probes to further increase contrast. On the other
hand, noncovalent systems enable more reliable real-time labeling, as the activation of fluorescence
is, in general, faster, since no covalent bond has to be created. Moreover, it is possible to reverse the
labeling by washing, opening new ways to control the fluorescence state of a reporter, and providing
new opportunities for multiplexing. In addition, noncovalent fluorogen binding constitutes a great
advantage for the design of reversible split systems and dynamic biosensors.
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In conclusion, fluorogen-based reporters are very attractive alternatives to traditional GFP-like
fluorescent proteins. They allow more and more sophisticated and challenging observations in living
cells and organisms, and they open exciting new possibilities for whole-body imaging, biosensor
design, multiplex imaging, and high-resolution imaging. The design and use of fluorogen-based
reporters and biosensors are still in their infancy, and it is a safe bet to say that the coming years will
see demonstrations of their full potentials and further exciting and unpredictable advances.
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