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We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on
density-functional theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies
on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the
definition of an effective non-divergent interaction corresponding to the electron-electron Coulomb interaction projected
in the finite basis set. This enables the use of RSDFT-type complementary density functionals to recover the dominant
part of the short-range correlation effects missing in this finite basis set. To study both weak and strong correlation
regimes we consider the potential energy curves of the H10, N2, O2, and F2 molecules up to the dissociation limit, and we
explore various approximations of complementary functionals fulfilling two key properties: spin-multiplet degeneracy
(i.e., independence of the energy with respect to the spin projection S z) and size consistency. Specifically, we investigate
the dependence of the functional on different types of on-top pair densities and spin polarizations. The key result of this
study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any
form of spin polarization without any significant loss of accuracy. Quantitatively, we show that the basis-set correction
reaches chemical accuracy on atomization energies with triple-ζ quality basis sets for most of the systems studied here.
Also, the present basis-set incompleteness correction provides smooth potential energy curves along the whole range of
internuclear distances.

I. INTRODUCTION

The general goal of quantum chemistry is to provide reliable
theoretical tools to explore the rich area of chemistry. More
specifically, developments in quantum chemistry primarily aim
at accurately computing the electronic structure of molecular
systems. Despite intense developments, no definitive solution
to this problem has been found. The theoretical challenge to
tackle belongs to the quantum many-body problem, due to
the intrinsic quantum nature of the electrons and the Coulomb
repulsion between them. This so-called electronic correlation
problem corresponds to finding a solution to the Schrödinger
equation for a N-electron system, and two main roads have
emerged to approximate this solution: wave-function theory
(WFT)1 and density-functional theory (DFT).2 Although both
WFT and DFT spring from the same Schrödinger equation,
they rely on very different formalisms, as the former deals
with the complicated N-electron wave function whereas the
latter focuses on the much simpler one-electron density. In
its Kohn-Sham (KS) formulation,3 the computational cost of
DFT is very appealing since it is a simple mean-field proce-
dure. Therefore, although continued efforts have been made to
reduce the computational cost of WFT, DFT still remains the
workhorse of quantum computational chemistry.

The difficulty of obtaining a reliable theoretical description
of a given chemical system can be roughly categorized by the
strength of the electronic correlation. The so-called weakly
correlated systems, such as closed-shell organic molecules
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near their equilibrium geometry, are typically dominated by
correlation effects which do not affect the qualitative mean-
field picture of the system. These weak-correlation effects can
be either short range (near the electron-electron coalescence
points)4 or long range (London dispersion interactions).5 The
theoretical description of weakly correlated systems is one of
the most concrete achievement of quantum chemistry, and the
main remaining challenge for these systems is to push the limit
of the chemical system size that can be treated. The case of
the so-called strongly correlated systems, which are ubiqui-
tous in chemistry, is more problematic as they exhibit a much
more complex electronic structure. For example, transition
metal complexes, low-spin open-shell systems, covalent bond
breaking situations have all in common that they cannot be
even qualitatively described by a single electronic configura-
tion. It is now clear that the usual semilocal density-functional
approximations of KS DFT fail to accurately describe these
situations6,7 and WFT is king for the treatment of strongly
correlated systems.

In practice, WFT uses a finite one-electron basis set. The
exact solution of the Schrödinger equation within this basis set
is then provided by full configuration interaction (FCI) which
consists in a linear-algebra eigenvalue problem with a dimen-
sion scaling exponentially with the system size. Due to this
exponential growth of the FCI computational cost, introducing
approximations is necessary, with at least two difficulties for
strongly correlated systems: i) the qualitative description of the
wave function is determined by a primary set of electronic con-
figurations (whose size can scale exponentially in many cases)
among which near degeneracies and/or strong interactions ap-
pear in the Hamiltonian matrix; ii) the quantitative description
of the system requires also to account for weak correlation ef-
fects which involve many other electronic configurations with
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typically much smaller weights in the wave function. Address-
ing simultaneously these two issues is a rather complicated
task for a given approximate WFT method, especially if one
adds the requirement of satisfying formal properties, such as
spin-multiplet degeneracy (i.e., independence of the energy
with respect to the spin projection S z) and size consistency.

Beside the difficulties of accurately describing the molec-
ular electronic structure within a given basis set, a crucial
limitation of WFT methods is the slow convergence of the
energy (and related properties) with respect to the size of
the one-electron basis set. As initially shown by the semi-
nal work of Hylleraas8 and further developed by Kutzelnigg
and coworkers,9–11 the main convergence problem originates
from the divergence of the electron-electron Coulomb interac-
tion at the coalescence point, which induces a discontinuity
in the first derivative of the exact wave function (the so-called
electron-electron cusp). Describing such a discontinuity with
an incomplete one-electron basis set is impossible and, as a
consequence, the convergence of the computed energies and
properties are strongly affected. To alleviate this problem, ex-
trapolation techniques have been developed, either based on
a partial-wave expansion analysis,12,13 or more recently based
on perturbative arguments.14,15 A more rigorous approach to
tackle the basis-set convergence problem is provided by the so-
called explicitly correlated F12 (or R12) methods4,16–20 which
introduce a geminal function depending explicitly on the in-
terelectronic distance. This ensures a correct representation
of the Coulomb correlation hole around the electron-electron
coalescence point, and leads to a much faster convergence of
the energy than usual WFT methods. For instance, using the
explicitly correlated version of coupled cluster with singles,
doubles, and perturbative triples [CCSD(T)] in a triple-ζ ba-
sis set is equivalent to using a quintuple-ζ basis set with the
usual CCSD(T) method,21 although a computational overhead
is introduced by the auxiliary basis set needed to compute the
three-electron integrals involved in F12 theory.22 In addition to
the computational cost, a possible drawback of F12 theory is its
rather complex formalism which requires non-trivial develop-
ments for adapting it to a new method. For strongly correlated
systems, several multi-reference methods have been extended
to explicit correlation (see, for example, Refs. 23–27), includ-
ing approaches based on the so-called universal F12 theory
which are potentially applicable to any electronic-structure
computational methods.28–31

An alternative way to improve the convergence towards
the complete-basis-set (CBS) limit is to treat the short-range
correlation effects within DFT and to use WFT methods to
deal only with the long-range and/or strong correlation ef-
fects. A rigorous approach achieving this mixing of DFT
and WFT is range-separated DFT (RSDFT) (see Ref. 32 and
references therein) which relies on a decomposition of the
electron-electron Coulomb interaction in terms of the inter-
electronic distance thanks to a range-separation parameter
µ. The advantage of this approach is at least two-fold: i)
the DFT part deals primarily with the short-range part of the
Coulomb interaction, and consequently the usual semilocal
density-functional approximations are more accurate than for
standard KS DFT; ii) the WFT part deals only with a smooth

non-divergent interaction, and consequently the wave function
has no electron-electron cusp33 and the basis-set convergence
is much faster.34 A number of approximate RSDFT schemes
have been developed involving single-reference35–42 and multi-
reference43–48 WFT methods. Nevertheless, there are still some
open issues in RSDFT, such as remaining fractional-charge and
fractional-spin errors in the short-range density functionals49

or the dependence of the quality of the results on the value of
the range-separation parameter µ.

Building on the development of RSDFT, a possible solu-
tion to the basis-set convergence problem has been recently
proposed by some of the present authors50 in which RSDFT
functionals are used to recover only the correlation effects
outside a given basis set. The key point here is to realize
that a wave function developed in an incomplete basis set is
cuspless and could also originate from a Hamiltonian with a
non-divergent long-range electron-electron interaction. There-
fore, a mapping with RSDFT can be performed through the
introduction of an effective non-divergent interaction represent-
ing the usual electron-electron Coulomb interaction projected
in an incomplete basis set. First applications to weakly corre-
lated molecular systems have been successfully carried out,51

together with extensions of this approach to the calculations
of excitation energies52 and ionization potentials.53 The goal
of the present work is to further develop this approach for the
description of strongly correlated systems.

The paper is organized as follows. In Sec. II, we recall the
mathematical framework of the basis-set correction and we
present its extension for strongly correlated systems. In par-
ticular, our focus is primarily set on imposing two key formal
properties which are highly desirable in the context of strong
correlation: spin-multiplet degeneracy and size consistency.
To do this, we introduce i) new functionals using different fla-
vors of spin polarizations and on-top pair densities, and ii) an
effective electron-electron interaction based on a multiconfig-
urational wave function. This generalizes the method used in
previous works on weakly correlated systems50,51 for which it
was sufficient to use an effective interaction based on a single-
determinant wave function and a functional depending only on
the usual density and spin polarization. Then, in Sec. III, we ap-
ply the method to the calculation of the potential energy curves
of the H10, N2, O2, and F2 molecules up to the dissociation
limit. Finally, we conclude in Sec. IV.

II. THEORY

As the theory behind the present basis-set correction has
been exposed in details in Ref. 50, we only briefly recall the
main equations and concepts needed for this study in Secs. II A,
II B, and II C. More specifically, in Sec. II A, we recall the basic
mathematical framework of the present theory by introducing
the complementary functional to a basis set. Section II B intro-
duces the effective non-divergent interaction in the basis set,
which leads us to the definition of the effective local range-
separation function in Sec. II C. Then, Sec. II D exposes the
new approximate RSDFT-based complementary correlation
functionals. The generic form of such functionals is exposed
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in Sec. II D 1, their properties in the context of the basis-set
correction are discussed in Sec. II D 2, and the specific re-
quirements for strong correlation are discussed in Sec. II E.
Finally, the actual functionals used in this work are introduced
in Sec. II F.

A. Basic theory

The exact ground-state energy E0 of a N-electron system
can, in principle, be obtained in DFT by a minimization over
N-representable one-electron densities n(r)

E0 = min
n

{
F[n] +

∫
drvne(r)n(r)

}
, (1)

where vne(r) is the nuclei-electron potential, and F[n] is the
universal Levy-Lieb density functional written with the con-
strained search formalism as54,55

F[n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉 , (2)

where T̂ and Ŵee are the kinetic and electron-electron Coulomb
operators, and the notation Ψ→ n means that the wave func-
tion Ψ yields the density n. The minimizing density n0 in
Eq. (1) is the exact ground-state density. Nevertheless, in
practical calculations, the accessible densities are necessarily
restricted to the set of densities “representable in a basis set B”,
i.e., densities coming from wave functions expandable in the N-
electron Hilbert space generated by the one-electron basis setB.
In the following, we always consider only such representable-
in-B densities. With this restriction, Eq. (1) then gives an upper
bound EB0 of the exact ground-state energy. Since the density
has a faster convergence with the size of the basis set than the
wave function, this restriction is a rather weak one and we can
consider that EB0 is an acceptable approximation to the exact
ground-state energy, i.e., EB0 ≈ E0.

In the present context, it is important to notice that the wave
functions Ψ defined in Eq. (2) are not restricted to a finite basis
set, i.e., they should be expanded in a complete basis set. In
Ref. 50, it was then proposed to decompose F[n] as, for a
representable-in-B density n,

F[n] = min
ΨB→n

〈ΨB|T̂ + Ŵee|Ψ
B〉 + ĒB[n], (3)

where ΨB are wave functions expandable in the N-electron
Hilbert space generated by B, and

ĒB[n] = min
Ψ→n
〈Ψ|T̂ + Ŵee|Ψ〉 − min

ΨB→n
〈ΨB|T̂ + Ŵee|Ψ

B〉 (4)

is the complementary density functional to the basis set B.
Introducing the decomposition in Eq. (3) back into Eq. (1)
yields

EB0 = min
ΨB

{
〈ΨB|T̂ + Ŵee|Ψ

B〉 + ĒB[nΨB ]

+

∫
drvne(r)nΨB (r)

}
, (5)

where the minimization is only over wave functions ΨB re-
stricted to the basis set B and nΨB(r) refers to the density
generated from ΨB. Therefore, thanks to Eq. (5), one can
properly combine a WFT calculation in a finite basis set with
a density functional (hereafter referred to as complementary
functional) accounting for the correlation effects that are not
included in the basis set.

As a simple non-self-consistent version of this approach, we
can approximate the minimizing wave function ΨB0 in Eq. (5)
by the ground-state FCI wave function ΨBFCI within B, and we
then obtain the following approximation for the exact ground-
state energy [see Eqs. (12)–(15) of Ref. 50]

E0 ≈ EB0 ≈ EBFCI + ĒB[nBFCI], (6)

where EBFCI and nBFCI are the ground-state FCI energy and den-
sity, respectively. As it was originally shown in Ref. 50 and fur-
ther emphasized in Refs. 51 and 52, the main role of ĒB[nBFCI]
is to correct for the basis-set incompleteness error, a large part
of which originating from the lack of electron-electron cusp in
the wave function expanded in an incomplete basis set. The
whole purpose of this work is to determine approximations
for ĒB[nBFCI] which are suitable for strongly correlated molec-
ular systems. Two key requirements for this purpose are i)
spin-multiplet degeneracy, and ii) size consistency.

B. Effective interaction in a finite basis

As originally shown by Kato,56 the electron-electron cusp
of the exact wave function originates from the divergence of
the Coulomb interaction at the coalescence point. Therefore,
a cuspless wave function ΨB could also be obtained from a
Hamiltonian with a non-divergent electron-electron interaction.
In other words, the impact of the basis set incompleteness can
be understood as the removal of the divergence of the usual
electron-electron Coulomb interaction.

As originally derived in Ref. 50 (see Sec. II D and Ap-
pendices), one can obtain an effective non-divergent electron-
electron interaction, here referred to as WΨB(r1, r2), which
reproduces the expectation value of the electron-electron
Coulomb interaction operator over a given wave function ΨB.
As we are interested in the behavior at the coalescence point,
we focus on the opposite-spin part of the electron-electron
interaction. More specifically, the effective electron-electron
interaction associated to a given wave function ΨB is defined
as

WΨB (r1, r2) =

 fΨB (r1, r2)/n2,ΨB (r1, r2), if n2,ΨB (r1, r2) , 0,
∞, otherwise,

(7)
where

n2,ΨB (r1, r2) =
∑

pqrs∈B

φp(r1)φq(r2)Γrs
pqφr(r1)φs(r2), (8)

is the opposite-spin pair density associated with ΨB, and Γrs
pq =

2 〈ΨB|â†r↓ â
†
s↑ âq↑ âp↓ |Ψ

B〉 its associated tensor in a basis of spatial
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orthonormal orbitals {φp(r)},

fΨB (r1, r2) =
∑

pqrstu∈B

φp(r1)φq(r2)Vrs
pqΓtu

rsφt(r1)φu(r2), (9)

and Vrs
pq = 〈pq|rs〉 are the usual two-electron Coulomb inte-

grals. With such a definition, one can show that WΨB(r1, r2)
satisfies

1
2

"
dr1dr2WΨB (r1, r2)n2,ΨB (r1, r2) =

1
2

"
dr1dr2

n2,ΨB (r1, r2)

|r1 − r2|
. (10)

As shown in Ref. 50, the effective interaction WΨB(r1, r2) is
necessarily finite at coalescence for an incomplete basis set,
and tends to the usual Coulomb interaction in the CBS limit
for any choice of wave function ΨB, i.e.,

lim
B→CBS

WΨB (r1, r2) =
1

|r1 − r2|
, ∀ΨB. (11)

The condition in Eq. (11) is fundamental as it guarantees the
correct behavior of the theory in the CBS limit.

C. Local range-separation function

1. General definition

The effective interaction within a finite basis, WΨB(r1, r2),
is bounded and resembles the long-range interaction used in
RSDFT

wlr
ee(µ; r12) =

erf
(
µ r12

)
r12

, (12)

where µ is the range-separation parameter. As originally pro-
posed in Ref. 50, we make the correspondence between these
two interactions by using the local range-separation function

µΨB (r) =

√
π

2
WΨB (r, r), (13)

such that the two interactions coincide at the electron-electron
coalescence point for each r

wlr
ee(µΨB (r); 0) = WΨB (r, r), ∀ r. (14)

Because of the very definition of WΨB(r1, r2), one has the
following property in the CBS limit [see Eq. (11)]

lim
B→CBS

µΨB (r) = ∞, ∀ΨB, (15)

which is again fundamental to guarantee the correct behavior
of the theory in the CBS limit.

2. Frozen-core approximation

As all WFT calculations in this work are performed within
the frozen-core approximation, we use a “valence-only” (or
no-core) version of the various quantities needed for the com-
plementary functional introduced in Ref. 51. We partition the
basis set as B = C

⋃
V, where C and V are the sets of core

and “valence” (i.e., non-core) orbitals, respectively, and define
the valence-only local range-separation function as

µval
ΨB

(r) =

√
π

2
Wval

ΨB
(r, r), (16)

where

Wval
ΨB

(r1, r2) =

 f val
ΨB

(r1, r2)/nval
2,ΨB (r1, r2), if nval

2,ΨB (r1, r2) , 0,

∞, otherwise,
(17)

is the valence-only effective interaction and

f val
ΨB

(r1, r2) =
∑
pq∈B

∑
rstu∈V

φp(r1)φq(r2)Vrs
pqΓtu

rsφt(r1)φu(r2),

(18)

nval
2,ΨB (r1, r2) =

∑
pqrs∈V

φp(r1)φq(r2)Γrs
pqφr(r1)φs(r2). (19)

One would note the restrictions of the sums to the set V in
Eqs. (18) and (19). It is also noteworthy that, with the present
definition, Wval

ΨB
(r1, r2) still tends to the usual Coulomb interac-

tion as B → CBS.

D. General form of the complementary functional

1. Generic approximate form

As originally proposed and motivated in Ref. 50, we ap-
proximate the complementary functional ĒB[n] by using the
so-called correlation energy functional with multideterminant
reference (ECMD) introduced by Toulouse et al..57,58 Fol-
lowing the recent work in Ref. 51, we propose to consider
a Perdew-Burke-Ernzerhof (PBE)-like functional which uses
the one-electron density n(r), the spin polarization ζ(r) =

[n↑(r) − n↓(r)]/n(r) (where n↑(r) and n↓(r) are the spin-up
and spin-down densities), the reduced density gradient s(r) =

∇n(r)/n(r)4/3, and the on-top pair density n2(r) ≡ n2(r, r). In
the present work, all these quantities are computed with the
same wave function ΨB used to define µ(r) ≡ µΨB(r). There-
fore, ĒB[n] has the following generic form

ĒB[n, ζ, n2, µ] =∫
dr n(r)ε̄sr,PBE

c,md (n(r), ζ(r), s(r), n2(r), µ(r)), (20)

where

ε̄sr,PBE
c,md (n, ζ, s, n2, µ) =

εPBE
c (n, ζ, s)

1 + β(n, ζ, s, n2) µ3 (21)
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is the correlation energy per particle, with

β(n, ζ, s, n2) =
3

2
√
π(1 −

√
2)

εPBE
c (n, ζ, s)

n2/n
, (22)

where εPBE
c (n, ζ, s) is the usual PBE correlation energy per

particle.59 Before introducing the different flavors of approxi-
mate functionals that we will use here (see Sec. II F), we would
like to give some motivations for this choice of functional form.

The form of ε̄sr,PBE
c,md (n, ζ, s, n2, µ) in Eq. (21) has been orig-

inally proposed in Ref. 48 in the context of RSDFT. In the
µ→ 0 limit, it reduces to the usual PBE correlation functional,
i.e.,

lim
µ→0

ε̄sr,PBE
c,md (n, ζ, s, n2, µ) = εPBE

c (n, ζ, s), (23)

which is relevant in the weak-correlation (or high-density) limit.
In the large-µ limit, it behaves as

ε̄sr,PBE
c,md (n, ζ, s, n2, µ) ∼

µ→∞

2
√
π(1 −

√
2)

3µ3

n2

n
, (24)

which is the exact large-µ behavior of the exact ECMD corre-
lation energy.48,60 Of course, for a specific system, the large-µ
behavior will be exact only if one uses for n2 the exact on-top
pair density of this system. This large-µ limit in Eq. (24) is
relevant in the strong-correlation (or low-density) limit. In
the context of RSDFT, some of the present authors have il-
lustrated in Ref. 48 that the on-top pair density involved in
Eq. (21) plays indeed a crucial role when reaching the strong-
correlation regime. The importance of the on-top pair den-
sity in the strong-correlation regime have been also recently
acknowledged by Gagliardi and coworkers61 and Pernal and
coworkers.62

Note also that ε̄sr,PBE
c,md (n, ζ, s, n2, µ) vanishes when n2 van-

ishes, i.e.,

lim
n2→0

ε̄sr,PBE
c,md (n, ζ, s, n2, µ) = 0, (25)

which is expected for systems with a vanishing on-top pair den-
sity. Finally, the function ε̄sr,PBE

c,md (n, ζ, s, n2, µ) vanishes when
µ→ ∞ like all RSDFT short-range functionals, i.e.,

lim
µ→∞

ε̄sr,PBE
c,md (n, ζ, s, n2, µ) = 0. (26)

2. Two limits where the complementary functional vanishes

Within the definitions of Eqs. (13) and (20), any approx-
imate complementary functional ĒB[n, ζ, n2, µ] satisfies two
important properties.

First, thanks to the properties in Eqs. (15) and (26),
ĒB[n, ζ, n2, µ] vanishes in the CBS limit, independently of
the type of wave function ΨB used to define the local range-
separation function µ(r) in a given basis set B,

lim
B→CBS

ĒB[n, ζ, n2, µ] = 0, ∀ΨB. (27)

Second, ĒB[n, ζ, n2, µ] correctly vanishes for systems with
uniformly vanishing on-top pair density, such as one-electron
systems and for the stretched H2 molecule,

lim
n2→0

ĒB[n, ζ, n2, µ] = 0. (28)

This property is doubly guaranteed by i) the choice of set-
ting WΨB(r1, r2) = ∞ for a vanishing pair density [see
Eq. (7)], which leads to µ(r) → ∞ and thus a vanish-
ing ε̄sr,PBE

c,md (n, ζ, s, n2, µ) [see Eq. (26)], and ii) the fact that
ε̄sr,PBE

c,md (n, ζ, s, n2, µ) vanishes anyway when the on-top pair den-
sity vanishes [see Eq. (25)].

E. Requirements on the complementary functional for
strong correlation

An important requirement for any electronic-structure
method is size consistency, i.e., the additivity of the energies
of non-interacting fragments, which is mandatory to avoid
any ambiguity in computing interaction energies. When two
subsystems A and B dissociate in closed-shell systems, as in
the case of weak intermolecular interactions for instance, spin-
restricted Hartree-Fock (RHF) is size-consistent. When the
two subsystems dissociate in open-shell systems, such as in co-
valent bond breaking, it is well known that the RHF approach
fails and an alternative is to use a complete-active-space self-
consistent-field (CASSCF) wave function which, provided that
the active space has been properly chosen, leads to additive
energies.

Another important requirement is spin-multiplet degeneracy,
i.e., the independence of the energy with respect to the S z
component of a given spin state, which is also a property of
any exact wave function. Such a property is also important in
the context of covalent bond breaking where the ground state
of the supersystem A + B is generally of lower spin than the
corresponding ground states of the fragments (A and B) which
can have multiple S z components.

1. Spin-multiplet degeneracy

A sufficient condition to achieve spin-multiplet degeneracy
is to eliminate all dependencies on S z. In the case of the func-
tion ε̄sr,PBE

c,md (n, ζ, s, n2, µ), this means removing the dependence
on the spin polarization ζ(r) originating from the PBE correla-
tion functional εPBE

c (n, ζ, s) [see Eq. (21)].
To do so, it has been proposed to replace the dependence

on the spin polarization by the dependence on the on-top pair
density. Most often, it is done by introducing an effective spin
polarization7,63–75 (see, also, Refs. 76 and 77)

ζ̃(n, n2) =
√

1 − 2 n2/n2 (29)

expressed as a function of the density n and the on-top pair
density n2 calculated from a given wave function. The advan-
tage of this approach is that this effective spin polarization
ζ̃ is independent from S z since the on-top pair density is S z-
independent. Nevertheless, the use of ζ̃ in Eq. (29) presents
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some disadvantages since this expression was derived for a
single-determinant wave function. Hence, it does not appear
justified to use it for a multideterminant wave function. More
particularly, it may happen, in the multideterminant case, that
1 − 2 n2/n2 < 0 which results in a complex-valued effective
spin polarization.64 Therefore, following other authors,67,72,73

we use the following definition

ζ̃(n, n2) =


√

1 − 2 n2/n2, if n2 ≥ 2n2,

0, otherwise.
(30)

An alternative way to eliminate the S z dependence is to sim-
ply set ζ = 0, i.e., to resort to the spin-unpolarized functional.
This lowers the accuracy for open-shell systems at µ = 0, i.e.,
for the usual PBE correlation functional εPBE

c (n, ζ, s). Nev-
ertheless, we argue that, for sufficiently large µ, it is a vi-
able option. Indeed, the purpose of introducing the spin po-
larization in semilocal density-functional approximations is
to mimic the exact on-top pair density,76 but our functional
ε̄sr,PBE

c,md (n, ζ, s, n2, µ) already explicitly depends on the on-top
pair density [see Eqs. (21) and (22)]. The dependencies on
ζ and n2 can thus be expected to be largely redundant. Con-
sequently, we propose here to test the use of ε̄sr,PBE

c,md with a
zero spin polarization. This ensures its S z independence and,
as will be numerically demonstrated, very weakly affects the
complementary functional accuracy.

2. Size consistency

Since ĒB[n, ζ, n2, µ] is computed via a single integral over
R3 [see Eq. (20)] which involves only local quantities [n(r),
ζ(r), s(r), n2(r), and µ(r)], in the case of non-overlapping
fragments A + B, it can be written as the sum of two local
contributions: one coming from the integration over the region
of subsystem A and the other one from the region of subsystem
B. Therefore, a sufficient condition for size consistency is that
these quantities locally coincide in the isolated fragments and
in the supersystem A + B. Since these local quantities are
calculated from the wave function ΨB, a sufficient condition is
that the wave function is multiplicatively separable in the limit
of non-interacting fragments, i.e., |ΨBA+B〉 = |ΨBA〉 ⊗ |Ψ

B
B〉. We

refer the interested reader to Appendix A for a detailed proof
and discussion of the latter statement. In the case where the
two subsystems A and B dissociate in closed-shell systems,
a simple RHF wave function ensures this property, but when
one or several covalent bonds are broken, a properly chosen
CASSCF wave function can be used to recover this property.
The underlying active space must however be chosen in such
a way that it leads to size-consistent energies in the limit of
dissociated fragments.

F. Actual approximations used for the complementary
functional

As the present work focuses on the strong-correlation
regime, we propose here to investigate only approximate func-
tionals which are S z independent and size-consistent in the

case of covalent bond breaking. Therefore, the wave functions
ΨB used throughout this paper are CASSCF wave functions
in order to ensure size consistency of all local quantities. The
difference between the different flavors of functionals are only
due to the types of spin polarization and on-top pair density
used.

Regarding the spin polarization that enters into the function
εPBE

c (n, ζ, s), two different types of S z-independent formula-
tions are considered: i) the effective spin polarization ζ̃ defined
in Eq. (30) and calculated from the CASSCF wave function,
and ii) a zero spin polarization. In the latter case, the functional
is referred as to “SU” which stands for “spin unpolarized”.

Regarding the on-top pair density entering in Eq. (22), we
use two different approximations. The first one is based on the
uniform electron gas (UEG) and reads

nUEG
2 (n, ζ) ≈ n2(1 − ζ2)g0(n), (31)

where the pair-distribution function g0(n) is taken from Eq. (46)
of Ref. 33. As the spin polarization appears in Eq. (31), we use
the effective spin polarization ζ̃ of Eq. (30) in order to ensure
S z independence. Thus, nUEG

2 will depend indirectly on the
on-top pair density of the CASSCF wave function through ζ̃.
When using nUEG

2 (r) ≡ nUEG
2 (n(r), ζ̃(r)) in a functional, we

will refer to it as “UEG”.
The second approach to approximate the exact on-top pair

density consists in using directly the on-top pair density of the
CASSCF wave function. Following the work of some of the
present authors,48,52 we introduce the extrapolated on-top pair
density

n̊2(n2, µ) =

(
1 +

2
√
πµ

)−1

n2, (32)

which directly follows from the large-µ extrapolation of the
exact on-top pair density derived by Gori-Giorgi and Savin33

in the context of RSDFT. Thus, the extrapolated on-top pair
density n̊2 depends on the local range-separation function µ.
When using n̊2(r) ≡ n̊2(n2(r), µ(r)) in a functional, we will
simply refer it as “OT”, which stands for "on-top".

We then define three complementary functionals:

i) PBE-UEG which combines the effective spin polariza-
tion of Eq. (30) and the UEG on-top pair density defined
in Eq. (31):

ĒBPBE-UEG

=

∫
dr n(r)ε̄sr,PBE

c,md (n(r), ζ̃(r), s(r), nUEG
2 (r), µ(r)), (33)

ii) PBE-OT which combines the effective spin polarization
of Eq. (30) and the on-top pair density of Eq. (32):

ĒBPBE-OT =

∫
dr n(r)ε̄sr,PBE

c,md (n(r), ζ̃(r), s(r), n̊2(r), µ(r)),

(34)

iii) SU-PBE-OT which combines a zero spin polarization
and the on-top pair density of Eq. (32):

ĒBSU-PBE-OT =

∫
dr n(r)ε̄sr,PBE

c,md (n(r), 0, s(r), n̊2(r), µ(r)).

(35)
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The performance of each of these functionals is tested in the
following. Note that we did not define a spin-unpolarized
version of the PBE-UEG functional because it would have
been significantly inferior (in terms of performance) compared
to the three other functionals. Indeed, because to the lack of
knowledge on the spin polarization or on the accurate on-top
pair density, such a functional would be inaccurate in particular
for open-shell systems. This assumption has been numerically
confirmed by calculations.

III. RESULTS

A. Computational details

We present potential energy curves of small molecules up
to the dissociation limit to investigate the performance of the
basis-set correction in regimes of both weak and strong corre-
lation. The considered systems are the H10 linear chain with
equally-spaced atoms, and the N2, O2, and F2 diatomics.

The computation of the ground-state energy in Eq. (6) in
a given basis set requires approximations to the FCI energy
EBFCI and to the basis-set correction ĒB[nBFCI]. For diatomics
with the aug-cc-pVDZ and aug-cc-pVTZ basis sets,81 energies
are obtained using frozen-core selected-CI calculations (using
the CIPSI algorithm) followed by the extrapolation scheme
proposed by Holmes et al. (see Refs. 82–87 for more detail).
All these calculations are performed with the latest version
of Quantum Package,87 and will be labelled as exFCI in the
following. In the case of F2, we also use the correlation energy
extrapolated by intrinsic scaling (CEEIS)80 as an estimate of
the FCI correlation energy with the cc-pVXZ (X = D, T, and Q)
basis sets.88 The estimated exact potential energy curves are ob-
tained from experimental data89 for the N2 and O2 molecules,
and from CEEIS calculations in the case of F2. For all ge-
ometries and basis sets, the error with respect to the exact FCI
energies are estimated to be of the order of 0.5 mHa. For the
three diatomics, we performed an additional exFCI calculation
with the aug-cc-pVQZ basis set at the equilibrium geometry to
obtain reliable estimates of the FCI/CBS dissociation energy.
In the case of the H10 chain, the approximation to the FCI ener-
gies together with the estimated exact potential energy curves
are obtained from the data of Ref. 78 where the authors per-
formed MRCI+Q calculations with a minimal valence active
space as reference (see below for the description of the active
space).

Regarding the complementary functional, we first perform
full-valence CASSCF calculations with the GAMESS-US soft-
ware90 to obtain the wave function ΨB. Then, all density-
related quantities involved in the functional [density n(r), ef-
fective spin polarization ζ̃(r), reduced density gradient s(r),
and on-top pair density n2(r)] together with the local range-
separation function µ(r) are calculated with this full-valence
CASSCF wave function. The CASSCF calculations are per-
formed with the following active spaces: (10e,10o) for H10,
(10e,8o) for N2, (12e,8o) for O2, and (14e,8o) for F2. We note
that, instead of using CASSCF wave functions for ΨB, one
could of course use the same selected-CI wave functions used

for calculating the energy but the calculations of n2(r) and µ(r)
would then be more costly.

Also, as the frozen-core approximation is used in all our
selected-CI calculations, we use the corresponding valence-
only complementary functionals (see Subsec. II C 2). There-
fore, all density-related quantities exclude any contribution
from the 1s core orbitals, and the range-separation function
follows the definition given in Eq. (16).

It should be stressed that the computational cost of the basis-
set correction (see Appendix B) is negligible compared to the
cost the selected-CI calculations.

B. H10 chain

The H10 chain with equally-spaced atoms is a prototype of
strongly correlated systems as it consists in the simultaneous
breaking of 10 interacting covalentσ bonds. As it is a relatively
small system, benchmark calculations at near-CBS values are
available (see Ref. 78 for a detailed study of this system).

We report in Fig. 1 the potential energy curves computed
using the cc-pVXZ (X = D, T, and Q) basis sets for different
levels of approximation, and the corresponding atomization
energies are reported in Table I. As a general trend, the addi-
tion of the basis-set correction globally improves the quality
of the potential energy curves, independently of the approxi-
mation level of ĒB[n]. Also, no erratic behavior is found when
stretching the bonds, which shows that the present procedure
(i.e., the determination of the range-separation function and the
definition of the functionals) is robust when reaching the strong-
correlation regime. In other words, smooth potential energy
curves are obtained with the present basis-set correction. More
quantitatively, the values of the atomization energies are within
chemical accuracy (i.e., an error below 1.4 mHa) with the
cc-pVTZ basis set when using the PBE-OT and SU-PBE-OT
functionals, whereas such an accuracy is not yet reached at the
standard MRCI+Q/cc-pVQZ level of theory.

Analyzing more carefully the performance of the differ-
ent types of approximate functionals, the results show that
PBE-OT and SU-PBE-OT are very similar (the maximal dif-
ference on the atomization energy being 0.3 mHa), and that
they give slightly more accurate results than PBE-UEG. These
findings provide two important clues on the role of the dif-
ferent physical ingredients included in these functionals: i)
the explicit use of the on-top pair density originating from the
CASSCF wave function [see Eq. (32)] is preferable over the
use of the UEG on-top pair density [see Eq. (31)] which is
somewhat understandable, and ii) removing the dependence on
any kind of spin polarization does not lead to a significant loss
of accuracy providing that one employs a qualitatively correct
on-top pair density. The latter point is crucial as it confirms
that the spin polarization in density-functional approximations
essentially plays the same role as the on-top pair density. This
could have significant implications for the construction of more
robust families of density-functional approximations within
DFT.
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(a) cc-pVDZ
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(c) cc-pVQZ

FIG. 1. Potential energy curves of the H10 chain with equally-spaced atoms calculated with MRCI+Q and basis-set corrected MRCI+Q using
the cc-pVDZ (top), cc-pVTZ (center), and cc-pVQZ (bottom) basis sets. The MRCI+Q energies and the estimated exact energies have been
extracted from Ref. 78.
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TABLE I. Atomization energies (in mHa) and associated errors (in square brackets) with respect to the estimated exact values computed at
different levels of theory with various basis sets.

System Basis set MRCI+Qa (MRCI+Q)+PBE-UEG (MRCI+Q)+PBE-OT (MRCI+Q)+SU-PBE-OT
H10 cc-pVDZ 622.1[43.3] 642.6[22.8] 649.2[16.2] 649.5[15.9]

cc-pVTZ 655.2[10.2] 661.9[3.5] 666.0[−0.6] 666.0[−0.6]
cc-pVQZ 661.2[4.2] 664.1[1.3] 666.4[−1.0] 666.5[−1.1]

Estimated exact:a 665.4

exFCI exFCI+PBE-UEG exFCI+PBE-OT exFCI+SU-PBE-OT
N2 aug-cc-pVDZ 321.9[40.8] 356.2[6.5] 355.5[7.2] 354.6[8.1]

aug-cc-pVTZ 348.5[14.2] 361.5[1.2] 363.5[−0.5] 363.2[−0.3]
aug-cc-pVQZ 356.6[6.1] 362.8[−0.1] 364.2[−1.5] 364.3[−1.6]

Estimated exact:b 362.7

exFCI exFCI+PBE-UEG exFCI+PBE-OT exFCI+SU-PBE-OT
O2 aug-cc-pVDZ 171.4[20.5] 187.6[4.3] 187.6[4.3] 187.1[4.8]

aug-cc-pVTZ 184.5[7.4] 190.3[1.6] 191.2[0.7] 191.0[0.9]
aug-cc-pVQZ 188.3[3.6] 190.3[1.6] 191.0[0.9] 190.9[1.0]

Estimated exact:b 191.9

exFCI exFCI+PBE-UEG exFCI+PBE-OT exFCI+SU-PBE-OT
F2 aug-cc-pVDZ 49.6[12.6] 54.8[7.4] 54.9[7.3] 54.8[7.4]

aug-cc-pVTZ 59.3[2.9] 61.2[1.0] 61.5[0.7] 61.5[0.7]
aug-cc-pVQZ 60.1[2.1] 61.0[1.2] 61.3[0.9] 61.3[0.9]

CEEISc CEEISc+PBE-UEG CEEISc+PBE-OT CEEISc+SU-PBE-OT
cc-pVDZ 43.7[18.5] 51.0[11.2] 51.0[11.2] 50.7[11.5]
cc-pVTZ 56.3[5.9] 59.2[3.0] 59.6[2.6] 59.5[2.7]
cc-pVQZ 59.9[2.3] 61.3[0.9] 61.6[0.6] 61.6[0.6]

Estimated exact:b 62.2

a From Ref. 78.
b From the CEEIS valence-only non-relativistic calculations of Ref. 79.
c From the CEEIS valence-only non-relativistic calculations of Ref. 80.

C. Dissociation of diatomics

The N2, O2 and F2 molecules are complementary to the H10
system for the present study. The level of strong correlation
in these diatomics also increases while stretching the bonds,
similarly to the case of H10, but in addition these molecules
exhibit more important and versatile types of weak correlations
due to the larger number of electrons. Indeed, the short-range
correlation effects are known to play a strong differential effect
on the computation of the atomization energy at equilibrium,
while the shape of the curve far from the equilibrium geometry
is governed by dispersion interactions which are medium to
long-range weak-correlation effects.5 The dispersion interac-
tions in H10 play a minor role on the potential energy curve
due to the much smaller number of near-neighbor electron
pairs compared to N2, O2 or F2. Also, O2 has a triplet ground
state and is therefore a good candidate for checking the spin-
polarization dependence of the various functionals proposed
here.

We report in Figs. 2, 3, and 4 the potential energy curves
of N2, O2, and F2 computed at various approximation levels
using the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The
atomization energies for each level of theory with different
basis sets are reported in Table I.

Just as in H10, the accuracy of the atomization energies is
globally improved by adding the basis-set correction and it
is remarkable that PBE-OT and SU-PBE-OT provide again
very similar results. The latter observation confirms that the
dependence on the on-top pair density allows one to remove the
dependence of any kind of spin polarization for a quite wide
range of covalent bonds and also for an open-shell system like
O2. More quantitatively, an error below 1.0 mHa compared to
the estimated exact valence-only atomization energy is found
for N2, O2, and F2 with the aug-cc-pVTZ basis set using the
SU-PBE-OT functional, whereas such a feat is far from being
reached within the same basis set at the near-FCI level. In
the case of F2 it is clear that the addition of diffuse functions
in the double- and triple-ζ basis sets strongly improves the
accuracy of the results, which could have be anticipated due to
the strong breathing-orbital effect induced by the ionic valence-
bond forms in this molecule.91 It should be also noticed that
when reaching the aug-cc-pVQZ basis set for N2, the accuracy
of the atomization energy slightly deteriorates for the PBE-OT
and SU-PBE-OT functionals, but it remains nevertheless more
accurate than the estimated FCI atomization energy and very
close to chemical accuracy.

Regarding now the performance of the basis-set correction
along the whole potential energy curve, it is interesting to
notice that it fails to provide a noticeable improvement far
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(a) aug-cc-pVDZ
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FIG. 2. Potential energy curves of the N2 molecule calculated with exFCI and basis-set corrected exFCI using the aug-cc-pVDZ (top) and
aug-cc-pVTZ (bottom) basis sets. The estimated exact energies are based on a fit of experimental data and obtained from Ref. 89.

from the equilibrium geometry. Acknowledging that the weak-
correlation effects in these regions are dominated by dispersion
interactions which are long-range effects, the failure of the
present approximations for the complementary functional can
be understood easily. Indeed, the whole scheme designed
here is based on the physics of correlation near the electron-
electron coalescence point: the local range-separation function
µ(r) is based on the value of the effective electron-electron
interaction at coalescence and the ECMD functionals are suited
for short-range correlation effects. Therefore, the failure of the
present basis-set correction to describe dispersion interactions
is theoretically expected. We hope to report further on this in
the near future.

IV. CONCLUSION

In the present paper we have extended the recently pro-
posed DFT-based basis-set correction to strongly correlated
systems. We have applied the method to the H10, N2, O2, and

F2 molecules up to the dissociation limit at near-FCI level in
increasingly large basis sets, and investigated how the basis-set
correction affects the convergence toward the CBS limit of the
potential energy curves of these molecular systems.

The density-based basis-set correction relies on three as-
pects: i) the definition of an effective non-divergent electron-
electron interaction obtained from the expectation value over
a wave function ΨB of the Coulomb electron-electron inter-
action projected into an incomplete basis set B; ii) the fit of
this effective interaction with the long-range interaction used
in RSDFT; and iii) the use of a short-range, complementary
functional borrowed from RSDFT. In the present paper, we
investigated i) and iii) in the context of strong correlation and
focused on potential energy curves and atomization energies.
More precisely, we proposed a new scheme to design function-
als fulfilling spin-multiplet degeneracy and size consistency.
To fulfill such requirements we proposed to use CASSCF wave
functions leading to size-consistent energies, and we developed
functionals using only S z-independent density-like quantities.

The development of new S z-independent and size-consistent
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(a) aug-cc-pVDZ
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FIG. 3. Potential energy curves of the O2 molecule calculated with exFCI and basis-set corrected exFCI using the aug-cc-pVDZ (top) and
aug-cc-pVTZ (bottom) basis sets. The estimated exact energies are based on a fit of experimental data and obtained from Ref. 89.

functionals has lead us to investigate the role of two related
quantities: the spin polarization and the on-top pair density.
One important result of the present study is that by using func-
tionals explicitly depending on the on-top pair density, one can
eschew its spin-polarization dependence without loss of accu-
racy. This avoids the commonly used effective spin polarization
originally proposed in Ref. 64 which has the disadvantage of
possibly becoming complex-valued in the multideterminant
case. From a more fundamental aspect, this confirms that, in
a DFT framework, the spin polarization mimics the role of
the on-top pair density. Consequently, we believe that one
could potentially develop new families of density-functional
approximations where the spin polarization is abandoned and
replaced by the on-top pair density.

Regarding the results of the present approach, the basis-set
correction systematically improves the near-FCI calculations
in a given basis set. More quantitatively, it is shown that with
only triple-ζ quality basis sets chemically accurate atomization
energies are obtained for all systems whereas the uncorrected
near-FCI results are far from this accuracy within the same

basis set.

Also, it is shown that the basis-set correction gives substan-
tial differential contribution to potential energy curves close to
the equilibrium geometries, but at long internuclear distances
it cannot recover the dispersion interaction energy missing
because of the basis-set incompleteness. This behavior is ac-
tually expected as dispersion interactions are of long-range
nature and the present approach is designed to recover only
short-range correlation effects.
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FIG. 4. Potential energy curves of the F2 molecule calculated with exFCI and basis-set corrected exFCI using the aug-cc-pVDZ (top) and
aug-cc-pVTZ (bottom) basis sets. The estimated exact energies are based on a fit of experimental data and obtained from Ref. 89. The estimated
exact energies are based on a fit of the non-relativistic valence-only CEEIS data extracted from Ref. 80.

Appendix A: Size consistency of the basis-set correction

1. Sufficient condition for size consistency

The basis-set correction is expressed as an integral in real
space

ĒB[n, ζ, n2, µ] =∫
dr n(r)ε̄sr,PBE

c,md (n(r), ζ(r), s(r), n2(r), µ(r)), (A1)

where all the local quantities n(r), ζ(r), s(r), n2(r), µ(r) are
obtained from the same wave function Ψ. In the limit of two
non-overlapping and non-interacting dissociated fragments
A + B, this integral can be rewritten as the sum of the integral

over the region ΩA and the integral over the region ΩB

ĒBA+B[n, ζ, n2, µ] =∫
ΩA

dr n(r)ε̄sr,PBE
c,md (n(r), ζ(r), s(r), n2(r), µ(r))

+

∫
ΩB

dr n(r)ε̄sr,PBE
c,md (n(r), ζ(r), s(r), n2(r), µ(r)). (A2)

Therefore, a sufficient condition to obtain size consistency
is that all the local quantities n(r), ζ(r), s(r), n2(r), µ(r) are
intensive, i.e., they locally coincide in the supersystem A + B
and in each isolated fragment X = A or B. Hence, we must
have, for r ∈ ΩX,

nA+B(r) = nX(r), (A3a)
ζA+B(r) = ζX(r), (A3b)
sA+B(r) = sX(r), (A3c)

n2,A+B(r) = n2,X(r), (A3d)
µA+B(r) = µX(r), (A3e)
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where the left-hand-side quantities are for the supersystem
and the right-hand-side quantities for an isolated fragment.
Such conditions can be difficult to fulfill in the presence of
degeneracies since the system X can be in a different mixed
state (i.e., ensemble) in the supersystem A + B and in the
isolated fragment.92 Here, we will consider the simple case
where the wave function of the supersystem is multiplicatively
separable, i.e.,

|ΨA+B〉 = |ΨA〉 ⊗ |ΨB〉 , (A4)

where ⊗ is the antisymmetric tensor product. In this case, it is
easy to shown that Eqs. (A3a)-(A3c) are valid, as well known,
and it remains to show that Eqs. (A3d) and (A3e) are also
valid. Before showing this, we note that even though we do not
explicitly consider the case of degeneracies, the lack of size
consistency which could arise from spin-multiplet degeneracies
can be avoided by the same strategy used for imposing the
energy independence on S z, i.e., by using the effective spin
polarization ζ̃(n(r), n2(r)) or a zero spin polarization ζ(r) = 0.
Moreover, the lack of size consistency which could arise from
spatial degeneracies (e.g., coming from atomic p states) can
also be avoided by selecting the same member of the ensemble
in the supersystem and in the isolated fragment. This applies
to the systems treated in this work.

2. Intensivity of the on-top pair density and the local
range-separation function

The on-top pair density can be written in an orthonormal
spatial orbital basis set {φp(r)} as

n2(r) =
∑

pqrs∈B

φp(r)φq(r)Γrs
pqφr(r)φs(r), (A5)

with Γrs
pq = 2 〈Ψ|â†r↓ â

†
s↑ âq↑ âp↓ |Ψ〉. As the summations run over

all orbitals in the basis set B, n2(r) is invariant to orbital rota-
tions and can thus be expressed in terms of localized orbitals.
For two non-overlapping fragments A + B, the basis set can
then be partitioned into orbitals localized on the fragment A
and orbitals localized on B, i.e., B = BA ∪ BB. Therefore, we
see that the on-top pair density of the supersystem A + B is
additively separable

n2,A+B(r) = n2,A(r) + n2,B(r), (A6)

where n2,X(r) is the on-top pair density of the fragment X

n2,X(r) =
∑

pqrs∈BX

φp(r)φq(r)Γrs
pqφr(r)φs(r), (A7)

in which the elements Γrs
pq with orbital indices restricted to

the fragment X are Γrs
pq = 2 〈ΨA+B|â

†
r↓ â
†
s↑ âq↑ âp↓ |ΨA+B〉 =

2 〈ΨX|â
†
r↓ â
†
s↑ âq↑ âp↓ |ΨX〉, owing to the multiplicative structure

of the wave function [see Eq. (A4)]. This shows that the on-top
pair density is a local intensive quantity.

The local range-separation function is defined as, for n2(r) ,
0,

µ(r) =

√
π

2
f (r, r)
n2(r)

, (A8)

where

f (r, r) =
∑

pqrstu∈B

φp(r)φq(r)Vrs
pqΓtu

rsφt(r)φu(r). (A9)

Again, f (r, r) is invariant to orbital rotations and can be ex-
pressed in terms of orbitals localized on the fragments A and
B. In the limit of infinitely separated fragments, the Coulomb
interaction vanishes between A and B and therefore any two-
electron integral Vrs

pq involving orbitals on both A and B van-
ishes. We thus see that the quantity f (r, r) of the supersystem
A + B is additively separable

fA+B(r, r) = fA(r, r) + fB(r, r), (A10)

with

fX(r, r) =
∑

pqrstu∈BX

φp(r)φq(r)Vrs
pqΓtu

rsφt(r)φu(r). (A11)

So, f (r, r) is a local intensive quantity. As a consequence, the
local range-separation function of the supersystem A + B is

µA+B(r) =

√
π

2
fA(r, r) + fB(r, r)
n2,A(r) + n2,B(r)

, (A12)

which implies

µA+B(r) = µX(r) if r ∈ ΩX, (A13)

where µX(r) = (
√
π/2) fX(r, r)/n2,X(r). The local range-

separation function is thus a local intensive quantity.
We can therefore conclude that, if the wave function of the

supersystem A + B is multiplicative separable, all local quan-
tities used in the basis-set correction functional are intensive
and therefore the basis-set correction is size consistent.

Appendix B: Computational cost of the basis-set correction
for a CASSCF wave function

The computational cost of the basis-set correction is deter-
mined by the calculation of the on-top pair density n2(r) and
the local range-separation function µ(r) on the real-space grid.
For a general multideterminant wave function, the computa-
tional cost is of order O(NgridN4

B
) where Ngrid is the number of

grid points and NB is the number of basis functions.51 For a
CASSCF wave function, a significant reduction of the scaling
of the computational cost can be achieved.

1. Computation of the on-top pair density

For a CASSCF wave function Ψ, the occupied orbitals can
be partitioned into a set of active orbitalsA and a set of inactive
(doubly occupied) orbitals I. The CASSCF on-top pair density
can then be written as

n2(r) = n2,A(r) + nA(r)nI(r) +
nI(r)2

2
, (B1)
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where

n2,A(r) =
∑

pqrs∈A

φp(r)φq(r)Γrs
pqφr(r)φs(r), (B2a)

nA(r) =
∑
pq∈A

φp(r)φq(r) 〈Ψ|â†p↑ âq↑ + â†p↓ âq↓ |Ψ〉 , (B2b)

nI(r) = 2
∑
p∈I

φp(r)2 (B2c)

are the purely active part of the on-top pair density, the ac-
tive part of the density, and the inactive part of the density,
respectively. The leading computational cost is the evaluation
of n2,A(r) on the grid which, according to Eq. (B2a), scales as
O(NgridN4

A
) where NA is the number of active orbitals which

is much smaller than the number of basis functions NB.

2. Computation of the local range-separation function

In addition to the on-top pair density, the computation of
µ(r) needs the computation of f (r, r) [see Eq. (A9)] at each
grid point. It can be factorized as

f (r, r) =
∑
rs∈B

Vrs(r) Γrs(r), (B3)

where

Vrs(r) =
∑
pq∈B

Vrs
pqφp(r)φq(r), (B4a)

Γrs(r) =
∑
pq∈B

Γ
pq
rs φp(r)φq(r). (B4b)

For a general multideterminant wave function, the computa-
tional cost of f (r, r) thus scales as O(NgridN4

B
).

In the case of a CASSCF wave function, Γ
pq
rs vanishes if one

index p, q, r, s does not belong to the set of inactive or active
occupied orbitals I ∪A. Therefore, at a given grid point, the
number of non-zero elements Γrs(r) is only at most (NI+NA)2,
which is usually much smaller than N2

B
. As a consequence, one

can also restrict the sum in the calculation of

f (r, r) =
∑

rs∈I∪A

Vrs(r) Γrs(r). (B5)

The overall computational cost is dominated by that of Vrs(r),
which scales as O(Ngrid(NI + NA)2N2

B
), which is much smaller

than O(NgridN4
B

).
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