
HAL Id: hal-02462764
https://hal.sorbonne-universite.fr/hal-02462764

Preprint submitted on 31 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unranking Combinations Lexicographically: an efficient
new strategy compared with others
Cyann Donnot, Antoine Genitrini, Yassine Herida

To cite this version:
Cyann Donnot, Antoine Genitrini, Yassine Herida. Unranking Combinations Lexicographically: an
efficient new strategy compared with others. 2020. �hal-02462764�

https://hal.sorbonne-universite.fr/hal-02462764
https://hal.archives-ouvertes.fr

Unranking Combinations Lexicographically:
an efficient new strategy compared with others

Cyann Donnot1, Antoine Genitrini2, and Yassine Herida1

1 Full-time master student at Sorbonne University
2 Sorbonne University, LIP6. Antoine.Genitrini@lip6.fr

Abstract. We propose a comparative study of four algorithms dedi-
cated to the lexicographic unranking of combinations. The three first
ones are algorithms from the literature. We give some key ideas how to
analyze them in average and describe their strengths and weaknesses.
We then introduce a new algorithm based on a new strategy inside the
classical factorial numeral system (or factoradics). We conclude the pa-
per with an experimental study, in particular when n = 10000; k = 5000,
our algorithm is 36 (resp. 53) times as fast as our C++ implementation
of Matlab’s (resp. Sagemath’s) algorithm.

keywords. Unranking Algorithm; Combination; Lexicographic Order;
Complexity Analysis.

One of the most fundamental combinatorial object is called combination. It
consists of a selection of items from a collection. In many enumerating problems
it appears either as the main combinatorial structure, or as a core fundamental
block because of its simplicity and counting characteristics.

In the 60s while resolving some optimization problem about scheduling Lehmer
rediscover an important property linking natural numbers and a mixed radius
numeral system based on combinations. This relationship gives him the possi-
bility to exhibit some greedy approach for a ranking algorithm that transforms
(bijectively) a combination into an integer. This numeral system is now com-
monly called combinatorial numbers system or combinadics. It is often used for
the reverse of Lehmer’s problem: generating the u-th combination (for a given
order about the combinations). This approach is substituted to the exhaustive
generation once the latter is not possible anymore due to the combinatorial ex-
plosion of the number of objects when their sizes increase. In the context of
combination, the explosion appears really quickly. This generation strategy of a
single element is classically called an unranking method. It is today often used
as a basic brick in scheduling problems [18] but also e.g. in software testing [14].

In order to unrank elements one must first define an order over the elements.
The one that is usually used is the lexicographic one that can been seen as
a generalization of the alphabetical order. The lexicographic order is humanly
easy to handle with, and thus has been extensively studied. But, as Ruskey [17,
p. 59] mentions, the lexicographic generation is usually not the most efficient,
thus a particular care must be taken while unranking in this order.

The classical approach for the construction of combinatorial structures pre-
senting a recursive decomposition schema consists in taking advantage of this

2 Cyann Donnot, Antoine Genitrini, and Yassine Herida

decomposition in order to build a bigger object from a smaller one. The method
has been extensively detailed in the famous book of Nijenhuis and Wilf [15].
They did not directly study the example of combinations, but the case of integer
compositions is proposed and is not so far from our problem. The method has
been then applied generically on decomposable objects in the sense of analytic
combinatorics, first in the context of recursive generation [10], and then in the
context of unranking approaches [12].

Fig. 1: Time (inms) for unranking a com-
bination, with n = 10000 and k = 0..n

Aside such generic approaches
there are several ad hoc algorithms
but to the best of our knowledge no
practical experiments does exist to
determine which one should be used.
We thus will start with te recall of
three classical algorithms, supported
by a revisited average complexity
analysis. Then we will describe our
new strategy and finally we will com-
pare them in some experiments. In
Fig. 1 we represent the time effi-
ciency of some improved versions of
3 of these algorithms, our being de-
picted in green. The figure will be described later. But as a foretaste, when
n = 10000; k = n/2, our algorithm is experimentally 36 (resp. 53) times as fast
as our C++ implementation of Matlab’s (resp. Sagemath’s) actual algorithm.
Along the paper, we represent combinations as follows.

Definition 1. Let n and k be two integers with 0 ≤ k ≤ n. We represent a com-
bination of k elements among n denoted by {0, 1, . . . , n−1} as a tuple containing
k distinct elements increasingly sorted from left to right.

For example, let n and k be respectively 5 and 3. The tuples (0, 1, 2) and (0, 2, 4)
are combinations of k among n, but (0, 2, 1) and (0, 1, 2, 3) are not. There is
another representation by using a 2-letters alphabet, but we do not deal with it
through this paper. However we could rewrite the paper in this context also.

There are several orders for comparing combinations. In the following we
restrict our attention to orders comparing combinations of the same length, i.e.
the same number of elements.

Definition 2. Let A = (a0, a1, . . . , ak−1) and B = (b0, b1, . . . , bk−1) be two dis-
tinct combinations.
– In the lexicographic order, we say that A is smaller than B if and only if both

combination have the same prefix (eventually empty) such that (a0, . . . , ap−1) =
(b0, . . . , bp−1) and ap < bp.

– In the co-lexicographic order, we say that A is smaller than B if and only
if the tuple (ak−1, . . . , a0) is smaller than (bk−1, . . . , b0) for the lexicographic
order.

– An order being given such that A is smaller than B, then, for the reverse
order, B is smaller that A.

Unranking Combinations Lexicographically: an efficient new strategy 3

Definition 3. Let n, k define combinations and A be a combination. For a given
order, the rank u of A belongs to {0, 1, . . .

(
n
k

)
−1} and is such that A is the u-th

smallest element.

With these definitions, we can enter the core of the paper organized as follows.
Section 1 describes a recursive algorithms solving the lexicographic combination
unranking problem. Despite its simplicity due to the approach, the fact it is re-
cursive is problematic to handle very big combinations. Then Section 2 describes
two classical algorithms based on combinadics. It seems that it is the first time
both are compared and the reason why one is better is explained. In Section 3
we enter the context of factoradics, and then describe our new unranking algo-
rithm in this numeral system. Finally in Section 4 we compare all algorithms
experimentally and give some possibility for really improve the time complexity
of all approaches.

1 Unranking through recursion

We deal with a combinatorial structure: combinations, that is very well under-
stood from a combinatorial sense. Thus while trying to develop an unranking
algorithm the first idea consists in developing a recursive algorithm based on the
classical recursive generation presented in [15]. Let us directly introduce such an
algorithm.

Algorithm 1 Recursive Unranking

1: function Unranking_Rec(n, k, u)
2: L := Rec_Generation(n, k, u)
3: return (n− 1− L[k − 1− i] for i

from 0 to k − 1)

binomial(n, k) computes the value of
(n
k

)
;

append(A, a): appends element a in A;
For i ≥ 0, L[i] is the element of index i in L.
In line 3 and 5, the outputs are tuples built
by comprehension. The simple one in line 5 is
(0, 1, . . . , k − 1).

1: function Rec_Generation(n, k, u)
2: if k = 0 then
3: return ()

4: if n = k then
5: return (i for i from 0 to k−1)

6: b := binomial(n− 1, k − 1)
7: if u < b then
8: R := Rec_Generation

(n− 1, k − 1, u)
9: append(R,n− 1)
10: return R
11: else
12: return Rec_Generation

(n− 1, k, u− b)

Proposition 1. The function Rec_Generation(n, k, ·) computes the combi-
nations for n, k in the reverse co-lexicographic order.

Corollary 1. The function Unranking_Rec(n, k, ·) computes the combina-
tions for n, k in the lexicographic order.

The proposition is proved by induction and the corollary is a direct observation
given in [11, p. 47].

4 Cyann Donnot, Antoine Genitrini, and Yassine Herida

In order to analyze the algorithm in details, we are interested in the average
number of calls to the function binomial, when u describes the whole range of
integers from 0 to

(
n
k

)
−1. Ruskey justifies such a measure by supposing the table

of all binomial coefficients precomputed, thus each call is equivalent. Later, in
Section 4 we will discuss this measure.

Let us introduce the sequence un,k computing the cumulative number of calls
for the whole range for u.

Lemma 1. Let un,k be the cumulative number of calls to binomial while un-
ranking all possible u from 0 to

(
n
k

)
− 1. The sequence satisfies: un,0 = 0 and

un,n+i = 0 for all n and i ≥ 0 and otherwise

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

Proof. The algorithm relies on the recursion underlying the binomial coefficients,
with the additive cost 1 for each call to the function Rec_Generation(n, k, ·)
(in line 6). Furthermore, by calling the function once with the parameters n, k
and u and a second time with n, k and v (such that u 6= v) then the following
recursive calls will also be with distinct triplets. There is thus no multi-counting.

Theorem 1. Let U(z, y) be the ordinary generating function associated to (un,k),
such that U(z, y) =

∑
n≥0

∑n
k=0 un,k y

k zn. Then

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z
− zy

1− zy

)
, thus,

un,k =

(
n

k

)
k

(
n+ 1

k + 1
− 1

n− k + 1

)
.

0 0
0 2 0
0 5 5 0
0 9 16 9 0
0 14 35 35 14 0
0 20 64 90 64 20 0

Fig. 2: First values of un,k for
n = 1..6 and k = 0..n

The proof of Theorem 1 is given in Ap-
pendix A.1

This sequence is a shifted version of the
sequence stored under the reference OEIS
A0597973. We thus can complete the prop-
erties in OEIS using our results.

Due to the values of the extreme cases
when k = 0 and k = n and the symmetry in
the recurrence we obviously obtain the fact
that un,k = un,n−k, reflecting the symmetry
of the binomial coefficients.

Corollary 2. The function Unranking_Rec(n, k, ·) needs in average un,k/
(
n
k

)
calls to the function binomial. For n being large and k being of the form α · n
for α ∈]0, 1[, we get

un,k(
n
k

) =
n→∞
k=αn

n+ 2− 1

α(1− α)
+O

(
1

n

)
.

3 Throughout this paper, a reference OEIS A· · · points to Sloane’s Online Encyclopedia
of Integer Sequences www.oeis.org.

https://oeis.org/A059797
https://oeis.org/A059797
www.oeis.org

Unranking Combinations Lexicographically: an efficient new strategy 5

This average value is interesting to be noted, because it indicates that obtaining
an extreme case (for the recurrence) during the recursive calls is obtained in
average after (n+O(1)) recursive calls.

In the latter strategy, the recursive approach is a drawback for some program-
ming languages that do not handle recursion efficiently (due to the depth of the
stack). In fact, today the computer are able to handle combinations for very big
values of n and k thus the recursive approach should be avoided. Naturally other
strategies have been suggested in the literature.

2 Unranking through combinadics

In 1887, E. Pascal [16] and later D. H. Lehmer (detailed in the book [1, p. 27])
presented an interesting way to decompose a natural number, in what we call
today a mixed radix numeral system, in their case it is the combinatorial number
system, or combinadics. The decomposition relies on combinations.

Fact 2 Let n ≥ k be two positive numbers. For all integers u, with 0 ≤ u <
(
n
k

)
,

there exist a unique sequence 0 ≤ c1 < c2 < · · · < ck < n such that4

u =

(
c1
1

)
+

(
c2
2

)
+ · · ·+

(
ck−1
k − 1

)
+

(
ck
k

)
.

The writing (c1, . . . , ck) is called the combinatoric of u.

For example when n = 5 and k = 3, the number 8 is represented as
(
1
1

)
+
(
3
2

)
+
(
4
3

)
,

thus the combinadic of 8 is (1, 3, 4).
In 2004, using this representation, McCaffrey exhibited in the MSDN arti-

cle [13], an algorithm to build the u-th element (in lexicographic order) of the
combinations of k elements among n. But in fact, this algorithm was already
published in [11, p. 47] and can also be seen as an extension of the work of
Lehmer. This algorithm is interesting in the sense it corresponds to the imple-
mentation used in the mathematics software Sagemath [19]5. In Fig. 3, on the
left handside we present the algorithm used in Sagemath and on the right hand-
side we exhibit the combinadics of some ranks of combinations of 2 elements
among 6. More precisely we have chosen the reverse of the ranks to be able to
compare them with their combinadics and the corresponding combination (due
to line 3 in the algorithm). The following algorithm is also close to Er’s algo-
rithm [8] whose representation for combinations is distinct but the computations
are analogous; furthermore in his paper, Theorem 2 corresponds exactly to the
combinadic decomposition.

The function Unranking_Combinadic(n, k, ·) computes the combinations
for n, k in the lexicographic order but the core of the algorithm is reverse co-
lexicographic (in fact, the tuple L represents the reverse of the combinadic for
efficiency reasons). The correction of the algorithm is presented in [11].
4 We extend the definition of binomial coefficients with

(
r−1
r

)
= 0.

5 Unranking algorithm from Sagemath is stored in the Sofware Heritage Archive
swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;lines=473-537

http://archive.softwareheritage.org/swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lines=473-537

6 Cyann Donnot, Antoine Genitrini, and Yassine Herida

Algorithm 2 Unranking a combination
1: function Unranking_Combinadic(n, k, u)
2: L := ()
3: u′ := binomial(n, k)− 1− u
4: v := n
5: for i from 0 to k − 1 do
6: v := v − 1
7: b := binomial(v, k − length(L))
8: while u′ < b do
9: v := v − 1
10: b := binomial(v, k − length(L))
11: u′ := u′ − b
12: append(L, v)
13: return (n− 1− ` for ` in L)

We take n = 6 and k = 2.

rev. rank combinadic combination
14 (4, 5) (0, 1)
13 (3, 5) (0, 2)
12 (2, 5) (0, 3)
11 (1, 5) (0, 4)
10 (0, 5) (0, 5)
9 (3, 4) (1, 2)
.
4 (1, 3) (2, 4)
3 (0, 3) (2, 5)
2 (1, 2) (3, 4)
1 (0, 2) (3, 5)
0 (0, 1) (4, 5)

Fig. 3: Algorithm in Sagemath; Examples of combinadics and their combination

A first step in the complexity analysis of this algorithm consists in calculating
the number of calls to the function binomial in Algorithm 2. The values n and
k being given, the worst cases are obtained when v is as small as possible at
then end of the loop, thus for all u whose combinadic satisfy c1 = 0. To obtained
a detailed analysis, we are also interested in the average number of calls to
binomial, when u describes the whole range from 0 to

(
n
k

)
− 1. To reach this

goal, let us introduce the function un,k
6 computing the cumulative number of

calls for the whole range for u.

Lemma 2. Let un,k be the cumulative numbers of calls to binomial while un-
ranking all possible u from 0 to

(
n
k

)
− 1. The sequence satisfies: un,0 = 1 and

un,n+i = 0 for all n and i > 0 and otherwise

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

1 2
1 5 3
1 9 11 4
1 14 26 19 5
1 20 50 55 29 6
1 27 85 125 99 41 7

0 0
0 0 1
0 0 4 2
0 0 10 10 3
0 0 20 30 18 4
0 0 35 70 63 28 5

Fig. 4: First values of un,k for n = 1..6 and k =
0..n (left: Algorithm 2; right: Algorithm 3)

The single difference with
Lemma 1 relies on the ex-
treme cases. The key-ideas
for the proof are given in Ap-
pendix A.2.

The leftmost part in
Fig. 4 corresponds to the se-
quence given in Lemma 2.
Our sequence is a shifted
version of the sequence OEIS A264751. Both combinatorial objects can be put
in bijection, and thus some conjectures stated there, are solved in the following.
6 We use several times the same writings un,k and U(z, y) for distinct algorithms, but
they rely on the same definition.

https://oeis.org/A264751

Unranking Combinations Lexicographically: an efficient new strategy 7

Note, in this case the cumulative numbers are not symmetrical un,k 6= un,n−k.
In fact the computation of the combinadics is not symmetrical.

Theorem 3. Let U(z, y) be the generating function associated to (un,k). Then

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− z

1− z

)
; un,k =

(
n

k

)(
n+ 1− n− k

k + 1

)
.

Corollary 3. The average number of calls to binomial in Algorithm 2 for n
being large and k being of the form αn for α ∈]0, 1[is

un,k(
n
k

) =
n→∞
k=αn

n+ 2− 1

α
+O

(
1

n

)
.

Algorithm 3 Unranking a combination faster
1: function Unranking_Combinadic2(n, k, u)
2: L := (0)
3: r := 0
4: for i from 0 to k − 2 do
5: while u >= r do
6: L[i] := L[i] + 1
7: b := binomial(n− L[i], k − i− 1)
8: r := r + b

9: append(L,L[i])
10: L[i] := L[i]− 1
11: r := r − b

12: append(L,L[i] + u+ 1− r)
13: return L

In the literature there is an-
other algorithm based on the
combinadics. But there, in the
computation of the combinadic
for a given rank, the coefficients
are computed from the small-
est one, c1, to the second largest
one, ck−1, and finally the value
for ck is directly deduced with
no need of further trials. In this
algorithm, the variable L con-
tains the combinadic (not its re-
verse). First the computations
that are needed are based on
some smaller values for the binomial coefficients: in fact, the trials start with
small parameters for the binomials and further they are increasing until we reach
the solution, thus the biggest (non necessary) trials are saved. And second the
last coefficient is directly deduced. This algorithm should be faster in practice.
Such a modification in the order of computations can be put in parallel in the
context of recursive generation or unranking, with the Boustrophedon traversal
presented in [10] whose improvement relies also in the order of the computations.

Unranking_Combinadic2(n, k, ·) is a lexicographic unranking for combi-
nations. This algorithm is presented by Buckles and Lybanon[5]. The correction
of the algorithm is presented in [11]. Just as a comment, for the calculation of
the next value L[i + 1], we start with the preceding value L[i] + 1 (cf. line 9).
Finally note it is approximately the implementation in Matlab [6] (the latter is
a little bit less efficient: line 12 is omitted and some more trials are done in the
loop).

Lemma 3. Let un,k be the cumulative numbers of calls to binomial while un-
ranking all possible u from 0 to

(
n
k

)
− 1. The sequence satisfies: un,k = 0 for all

n, k = 1, 2 or k > n and otherwise

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

8 Cyann Donnot, Antoine Genitrini, and Yassine Herida

The result is proved in an analogous way as the one in Lemma 2, summing over
ck−1 instead of c1. In Fig. 4 (right) we computed the first values of (un,k). We
note the first values are smaller than the previous ones, but what about their
asymptotic behavior?

Theorem 4. Let U(z, y) be the generating functions associated to (un,k). Then

U(z, y) =
z2 y2

(1− z)2 (1− z − zy)2
; un,0 = 0;∀k > 0, un,k =

(
n

k

)
k − 1

k + 1
(n+1).

Corollary 4. The average number of calls to binomial in Algorithm 3 for n
being large and k being of the form αn for α ∈]0, 1[is

un,k(
n
k

) =
n→∞
k=αn

n+ 1− 2

α
+O

(
1

n

)
.

The improvement for the efficiency of the algorithm cannot be deduced directly
from the latter result in comparison to the one of Corollary 3.

In [17, p. 65] Ruskey presents an alternative implementation based on combi-
nadics, in co-lexicographical order. But the first coefficients are computed start-
ing by the largest ones, like in Algorithm 2.

3 Unranking through factoradics: a new strategy

Aside the combinatorial number system, there is another classical mixed radix
numeral system: the factorial number system or factoradics. This decomposition
relies on factorial numbers.

Fact 5 For all positive integers u, we define n such that (n−1)! < u ≤ n!, there
exists a unique sequence (f`)`∈{0,...,n−1}, with 0 ≤ f` ≤ ` for all ` such that

u = f0 · 0! + f1 · 1! + · · ·+ fn−2 · (n− 2)! + fn−1 · (n− 1)!.

The writing (f0, f1, . . . , fn−1) is called the factoradic decomposition of u.

First remark that f0 = 0 for all u. Take the number u = 2020 as an example, we
obtain its decomposition: 0 · 0! + 0 · 1! + 2 · 2! + 0 · 3! + 4 · 4! + 4 · 5! + 2 · 6!, thus
its factoradic is (0, 0, 2, 0, 4, 4, 2).

Definition 4. Let n be a positive integer. A n-permutation is an ordering of the
elements from {0, 1, . . . , n− 1}.

We represent a n-permutation as a tuple of n components. For example the tuple
(2, 4, 0, 3, 1) is a 5-permutation.

The factorial number system is used to define a one-to-one correspondence
between integers and permutations: it is thus an unranking method for permuta-
tion. The algorithm implemented in the function Unranking_Permutation
is an obvious adaptation of Fisher-Yates random sampler for permutations [9].

Unranking Combinations Lexicographically: an efficient new strategy 9

Algorithm 4 Unranking a per-
mutation
1: function Unranking_Per-

mutation(u, n)
2: F := factoradic(u)
3: while length(F) < n do
4: append(F, 0)
5: return Extract(F, n, n)

1: function Extract(F, n, k)
2: P := (0, 1, . . . , n− 1)
3: L := ()
4: for i from 0 to k − 1 do
5: append(L,P [F [n−1− i]])
6: remove(P, F [n− 1− i])

7: return L

length(F): computes the number of com-
ponents in F ;
remove(F, i): removes from F the element
at index i;
composition(F): computes the integer
whose factoradic is the reverse of F .

Algorithm 5 Unranking a combination
1: function Unranking_Factoradic(n, k, u)
2: u′ := Rank_Conversion(n, k, u)
3: F := Unranking_Permutation(u′, n)
4: return Extract(F, n, k)

1: function Rank_Conversion(n, k, u)
2: D := (0, . . . , 0) . n components in D
3: m := 0; i := 0
4: while i < k do
5: b := binomial(n− 1−m, k − 1− i)
6: if b > u then
7: D[i] = m
8: i := i+ 1
9: n := n− 1
10: else
11: u := u− b
12: m := m+ 1

13: return composition(D)
. D contains the reverse factoradic tuple

Fig. 5: Algorithms for the unranking of combination through factoradics

Fact 6 Unranking_Permutation(·, `) returns permutations of ` elements in
the lexicographic order.

Since the factoradic (with 8 components) of 2020 is (0, 0, 2, 0, 4, 4, 2, 0), the
8-permutation of rank 2020 is (0, 3, 6, 7, 1, 5, 2, 4).

Note, in the function Extract, the way the data structure P is handled in
memory is very important for efficiency reasons. The best way is probably to
build a dynamic balanced tree as presented in [3], or a multiset (whose elements
have weight 1 or 0) as presented in the appendix of [2]. It seems there does not
exist any algorithm based on some swap operation giving an in-place shuffle to
unrank permutation in the lexicographic order: in fact Durstenfeld’s algorithm [7]
cannot be easily adapted for the lexicographic order.

Let us now turn to the unranking of a combination through factoradics. The
basic ideas driving our algorithm are the following:

1. we define a bijection among the combinations of k elements among n and a
subset of the permutations of n elements;

2. we transform the combination rank u into the rank u′ of the appropriate
permutation;

3. we build the k-prefix of the permutation of rank u′ by using the Algorithm 4.

Definition 5. Let n and k be two integers with 0 ≤ k ≤ n. We define the
application P such that to the combination (`0, `1, . . . , `k−1) it associates the
n-permutation (`0, `1, . . . , `k−1, dk, . . . dn−1) such that dk < dk+1 < · · · < dn−1.

10 Cyann Donnot, Antoine Genitrini, and Yassine Herida

Thus, by definition, for n = 5 and k = 3, the permutations associated to the
combinations (0, 1, 2) and (0, 2, 4) are respectively (0, 1, 2, 3, 4) and (0, 2, 4, 1, 3).

Proposition 2. The integers n and k being given, the application P transform-
ing a combination into a permutation is one-to-one.

Remark that the 5-permutation (0, 1, 2, 3, 4) is the permutation associated to
both combinations (0, 1) and (0, 1, 2) but in these examples the values of k
are distinct. In fact, there are exactly 6 combinations associated to the latter
permutation: P depends in n and k, it is a bijection when n and k are given.
The proof is obvious.

The algorithm implemented in the function Rank_Conversion (see Al-
gorithm 5) transforms the rank of a combination for n, k into the rank of its
associated permutation through the computation of its factoradic. The main
idea of the rank conversion is similar to the one for determining the combinadic
through trials. It consists in building the (reverse of the) factoradic by detailing
each component by subtracting the permutation ranks that must be omitted,
when the component is still too small.

Proposition 3. The function Unranking_Factoradic(n, k, ·) computes the
combinations for n, k in the lexicographic order.

0 1
0 3 2
0 6 8 3
0 10 20 15 4
0 15 40 45 24 5
0 21 70 105 84 35 6

Fig. 6: First values of un,k for
n = 1..6 and k = 0..n

During the conversion from the rank of the
combination to the one of the associated permu-
tation, the coefficients are obtained via trials for
fn−1 to fn−k, remarking that through our bi-
jection P the latter sequence is weakly increas-
ing. Thus the worst cases are obtained when the
value fn−k is as large as possible, that is n− k.
Thus for such elements, the number of calls to
binomial is n. For the average number of calls
to the function binomial, unranking all combi-
nations u when it describes the whole range from 0 to

(
n
k

)
− 1 introduces again

the following cumulative sequence.

Lemma 4. Let un,k be the cumulative numbers of calls to binomial while un-
ranking all possible u from 0 to

(
n
k

)
− 1. The sequence satisfies: un,k = 0 and

un,n+i = 0 for all n and i > 0 and otherwise

un,k =

(
n

k

)
+ un−1,k−1 + un−1,k.

Aside from the extreme cases, the recursive formula is identical to the previous
ones. Here again the proof is obtained through the same kind of proof than the
ones of Section 2. See the Appendix A.3 for key ideas for the proof.

In Fig. 6 we exhibit the first values for un,k. Here again we obtain a sequence
stored under the reference OEIS A127717. The bijection between both structures
is direct, and thus we have new information about this sequence in the following.

https://oeis.org/A127717

Unranking Combinations Lexicographically: an efficient new strategy 11

Theorem 7. Let U(z, y) be the generating functions associated to (un,k). Then

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z

)
; un,k =

(
n

k

)(
n− n− k

k + 1

)
.

The proof is similar to the one of Theorem 1.

Corollary 5. The average number of calls to binomial in Algorithm 5 for n
being large and k being of the form αn for α ∈]0, 1[is

un,k(
n
k

) =
n→∞
k=αn

n+ 1− 1

α
+O

(
1

n

)
.

Comparing the latter result with the asymptotic behavior for the second algo-
rithm based on combinadics, even if the dominant parts are equal, our approach
seems not as efficient. But again, our complexity measure assumes the binomial
coefficients being pre-computed.

4 Experimental comparison and algorithm improvements

For all algorithms, n and k being given, we proved that the average number of
calls to the function binomial is of the same order, equivalent to n.

Fig. 7: Time (in ms) for unranking a combi-
nation, with n = 10000 and k = 0..n

In Fig.7 we have represented
the following statistics7. We
take n = 10000 and in the
abscissa-axis we let the value
k ranges from 25 to 9975 with
an iteration step of 50. In the
ordinate-axis we have repre-
sented the average time in ms
to unrank one combination (for
each step we sampled, uniformly
at random, 100 distinct combi-
nations and we computed the
average time for one). We have
implemented all algorithms in
C++ using the classical GMP li-
brary for big integers. The time
needed by the algorithms presented in the previous sections are depicted in
dashed lines: the red color is for the recursive Algorithm 1, blue corresponds to
Algorithm 2, brown corresponds to its improvement, Algorithm 3, and finally
green is for our factoradic Algorithm 5. We first remark that Algorithm 2 is worse
than the 3 others whose computation times are very close. Further, asymptoti-
cally, the average number of calls to binomial is linear in n, whatever the value
of k, this characteristics is not reflected in the experiments.
7 The experiments have been driven through a standard laptop PC with an I7-8665U
CPU, 32Gb RAM running Ubuntu Linux.

12 Cyann Donnot, Antoine Genitrini, and Yassine Herida

Usually the way for evaluating
(
n
k

)
is the following left to right computation:

n ·(n−1)/2 ·(n−2)/3 · · · (n−k+1)/k. Thus it needs Θ(k) arithmetic operations.
It is done this way in GMP. There is a classical improvement used for iterated
binomial evaluations. We compute the first coefficient we need, and then we
correct this value to obtain the second one that is then modified to obtain the
third one and so on. By studying all the previous algorithms we remark that the
successive binomial coefficients are such that their parameters are only shifted
by ±1. Thus obtaining the next binomial coefficient is directly obtained with a
multiplication and a division. For example, in Algorithm 5, we insert between
line 3 and 4 the instruction b := binomial(n, k), then between line 9 and 10 we
put b := b · (k − i)/(n−m) if n 6= m else 1, and finally, between line 12 and 13
we put b := b · (n−m+ 1− k + i)/(n−m) if n 6= m else 1.

Doing these improvements for all algorithms, we finally obtained the solid
curves in Fig.7. Obviously all algorithms are faster than their first version, but
Algorithm 2 is the less improved (in particular when k > n/2). The order of the
computations is really penalizing in this approach. By focusing only on the new
versions of Algorithms 1, 3 and 5, we obtain Fig. 1. We thus exhibit that our
Algorithm 5, in green, is the most efficient while k ranges the interval.

Fig. 8: Merge of Algorithm 5 and the-
oretical complexity

As a final remark, we recall that
we deal with very big numbers. For
n and k = αn being large integers
the unranking approaches deal with
numbers that could need around L =
log2

(
n
k

)
bits to be written. Using Stir-

ling approximation we have, by sup-
posing 0 < α < 1/2 (and a symmetri-
cal equation otherwise)

L ∼
n→∞
k=αn

n

(
α log2

(
1− α
α

)
− log2 (1− α)

)
.

Theorem 8. The bit complexity of the Algorithm 5 is

O
n→∞
k=αn

(
n2L(n) min

(
α log2

(
1− α

α

)
− log2 (1− α) ; (1− α) log2

(
α

1− α

)
− log2 (α)

))
,

where L(n) is a function in log2 n depending on the algorithmic used for the
integer multiplication.

The theorem is a by product of Lemma 5 saying that the average number of calls
to binomial is equivalent to n that is amended to obtain the average number
of multiplications or divisions being equivalent to Θ(n) through the previous
improvements and the result about the bit complexity for the computation of n!
(cf. [4, p. 270]). In Fig.8 we merge the time complexity of our algorithm (in
green) with a normalized curve (in black) from Theorem 8.

Unranking Combinations Lexicographically: an efficient new strategy 13

References

1. Beckenbach, E.F., Pólya, G.: Applied Combinatorial Mathematics. R.E. Krieger
Publishing Company (1981)

2. Bodini, O., Genitrini, A., Peschanski, F.: A Quantitative Study of Pure Parallel
Processes. Electronic Journal of Combinatorics 23(1), P1.11, 39 pages (2016)

3. Bonet, B.: Efficient algorithms to rank and unrank permutations in lexicographic
order. AAAI Workshop - Technical Report pp. 18–23 (2008)

4. Bostan, A., Chyzak, F., Giusti, M., Lebreton, R., Lecerf, G., Salvy, B., Schost, E.:
Algorithmes Efficaces en Calcul Formel (2017), https://hal.archives-ouvertes.
fr/AECF/, 686 pages. Édition 1.0

5. Buckles, B.P., Lybanon, M.: Algorithm 515: Generation of a Vector from the Lex-
icographical Index [G6]. ACM Trans. Math. Softw. 3(2), 180–182 (1977)

6. Butler, B.: Function kSubsetLexUnrank, MATLAB central file exchange (2020)
7. Durstenfeld, R.: Algorithm 235: Random permutation. ACM 7(7), 420– (1964)
8. Er, M.C.: Lexicographic ordering, ranking and unranking of combinations.

International Journal of Computer Mathematics 17(3-4), 277–283 (1985).
https://doi.org/10.1080/00207168508803468

9. Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical
research. Oliver & Boyd, London (1948)

10. Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random genera-
tion of labelled combinatorial structures. Theoretical Computer Science 132(1-2),
1–35 (1994)

11. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: generation, enumeration,
and search. CRC Press (1999)

12. Martínez, C., Molinero, X.: A generic approach for the unranking of labeled com-
binatorial classes. Random Structures & Algorithms 19(3-4), 472–497 (2001)

13. McCaffrey, J.: Generating the mth Lexicographical Element of a Mathemati-
cal Combination. MSDN (2004), http://visualstudiomagazine.com/articles/
2012/08/01/biginteger-data-type.aspx

14. Myers, A.F.: k-out-of-n:g system reliability with imperfect fault coverage. IEEE
Transactions on Reliability 56(3), 464–473 (2007)

15. Nijenhuis, A., Wilf, H.S.: Combinatorial algorithms. Computer science and applied
mathematics, Academic Press, New York, NY (1975)

16. Pascal, E.: Sopra una formula numerica. Giornale di Matematiche 25, 45–49 (1887)
17. Ruskey, F.: Combinatorial Generation (2003)
18. Tamada, Y., Imoto, S., Miyano, S.: Parallel algorithm for learning optimal bayesian

network structure. J. Mach. Learn. Res. 12, 2437–2459 (2011)
19. The Sage Developers: SageMath, the Sage Mathematics Software System (Version

8.9), http://www.sagemath.org

https://hal.archives-ouvertes.fr/AECF/
https://hal.archives-ouvertes.fr/AECF/
https://doi.org/10.1080/00207168508803468
http://visualstudiomagazine.com/articles/2012/08/01/biginteger-data-type.aspx
http://visualstudiomagazine.com/articles/2012/08/01/biginteger-data-type.aspx
http://www.sagemath.org

14 Cyann Donnot, Antoine Genitrini, and Yassine Herida

A Appendix

A.1 Appendix dedicated to Section 1

Proof (of Theorem1). The first step of the proof consists in exhibiting the or-
dinary generating function associated to U(z, y). In order to obtain the equa-
tion for U , we start from the result presented in Lemma 1. The extreme cases
areun,0 = 0 and un,n+i = 0 for all n and i ≥ 0. And the recursive equation is
un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

We remark the constant
(
n
k

)
in the equation. We thus need the bivariate

generating function for binomial coefficient. Le us denote it byB(z, y); it satisfies:

B(z, y) =
∑
n≥0

n∑
k=0

(
n

k

)
zn yk =

1

1− z − zy
.

In order to follow the extreme cases, we must remove the first column k = 0 and
the diagonal k = n:

B̃(z, y) =
1

1− z − zy
− 1

1− z
− zy

1− zy
.

By summing the recursive equation by taking care of the extreme cases we have:∑
n≥1

n∑
k=1

un,kz
n yk = B̃(z, y) +

∑
n≥1

n∑
k=1

un−1,k−1z
n yk +

∑
n≥1

n∑
k=1

un−1,kz
n yk

U(z, y) = B̃(z, y) + z y U(z, y) + z U(z, y).

We thus deduce

U(z, y) =
1

1− z − zy

(
1

1− z − zy
− 1

1− z
− zy

1− zy

)
.

The second step in the proof consists in extracting the coefficient un,k.

U(z, y) =
1

1− z(1 + y)

(
1

1− z(1 + y)
− 1

1− z
− zy

1− zy

)

=

∑
r≥0

zr(1 + y)r

 ·
∑
r≥0

zr(1 + y)r −
∑
r≥0

zr −
∑
r≥1

zryr


=

∑
r≥0

zr(1 + y)r

 ·
1− 1 +

∑
r≥1

zr ((1 + y)r − 1− yr)

 .

By extraction the coefficient in front of zn:

[zn]U(z, y) =

n−1∑
`=0

(1 + y)`
(
(1 + y)n−` − 1− yn−`

)
=

n−1∑
`=0

(1 + y)n − (1 + y)` − yn−`(1 + y)`.

Unranking Combinations Lexicographically: an efficient new strategy 15

The latter result correspond to the distribution when k ranges from 0 to n. But
we can further extract the coefficient of zn yk:

[zn yk]U(z, y) = n ·
(
n

k

)
−
n−1∑
`=k

(
`

k

)
−

n−1∑
`=n−k

(
`

n− k

)
.

Using Hockey-Stick identity we obtain

n−1∑
`=k

(
`

k

)
=

(
n

k + 1

)
,

n−1∑
`=n−k

(
`

n− k

)
=

(
n

n− k + 1

)
=

(
n

k − 1

)
.

Thus we conclude

un,k =

(
n

k

)
k

(
n+ 1

k + 1
− 1

n− k + 1

)
.

The result is proved.

A.2 Appendix dedicated to Section 2

Proof (ideas of Lemma 2). Once c1 is given, all possible compositions of (n−c1)
in k parts are possible for the values for c2, . . . , ck, and for each composition,
we need (n− c1) calls to binomial. Furthermore, for each rank we computes its
reverse, with one call to binomial. Thus

un,k =

(
n

k

)
+

n−k∑
c1=0

(n− c1) ·
(
n− c1 − 1

k − 1

)
.

Using the latter equation, the recursive equation is directly proved by induction.

A.3 Appendix dedicated to Section 3

To prove the correction of our Algorithm 5 and also its average complexity, we
rely on the following lemma.

Lemma 5. The factoradics of the combinations k elements among n are all the
tuples (0, . . . , 0, fn−k, . . . fn−1) with n− k ≥ fn−k ≥ fn−k+1 ≥ · · · ≥ fn−1 ≤ 0.

From the later lemma we deduce the proof of Proposition 3 and Lemma 4. In
fact, the rank conversion consists in enumerating the factoradics corresponding to
combinations, thus avoiding permutations that do not represent combinations.
In fact we can directly omit them by using their numbers given by binomial
coefficients.

Proof (ideas for Lemma 4). Here the last coefficient to be determined is fn−k,
it is the greatest one. Once it is given, all other values fn−k+1, . . . , fn−1 are
just determined through a weak composition of the available integers between 0

16 Cyann Donnot, Antoine Genitrini, and Yassine Herida

and fn−k. In this case (in front of Lemma 2) we need weak compositions since
the sequence fn−k, fn−k+1, . . . , fn−1 is weakly decreasing. Furthermore for each
weak composition determining a combination, we need (fn−k + 1 + k) calls to
binomial to determine the combination. We thus obtain:

un,k =

n−k∑
fn−k=0

(fn−k + k) ·
(
fn−k + k − 1

k − 1

)
.

An induction completes the proof.

A.4 Optimized factoradics algorithm

In this following new version of Algorithm 5 we present 4 improvements:

– The algorithm is not symmetrical anymore. In fact, we observe that when
k > 2 then the previous version is faster than when k < 2. Thus when
unranking in the range 0..n/2, with some suitable substitutions we perform
the unranking in the other range. As a consequence we get a small stall in
this curve around k = n/2 in Fig. 1.
Let C be a combination for k < n/2, then its complement C̄ is somehow
computed, but we store C and not C̄ (lines 5-9 and 23-26 and 39-44).

– Only the first binomial coefficient is computed. Then it is adjusted to obtain
the right value (lines 20 and 36).

– The last component is computed without any trial, just as a consequence of
the other components (line 49).

– We avoid the call to Extract. In fact, when unranking the first part of a
combination, the sequence of values we extract is an increasing sequence, we
thus can completely avoid the expensive call to Extract just be saving how
many values have already been extracted (lines 28 and 46 when k > n/2 and
the more complicated cases lines 23-25 and lines 39-44).

Unranking Combinations Lexicographically: an efficient new strategy 17

1: function Unranking_Factoradic(n0, k, r)
2: n := n0
3: D := (0, . . . , 0) . the tuple containds k elements
4: inverse := False
5: if k < n/2 then
6: inverse := True
7: B := binomial(n, k)
8: k := n− k; r := B − 1− r
9: B := B · k/n
10: else
11: B := binomial(n− 1, k − 1)

12: i := 0; j := 0 d := 0
13: m := 0 m2 := 0
14: while d < k − 1 do
15: if B > r then
16: if i < k − 2 then
17: if n− 1−m = 0 then
18: B := 1
19: else
20: B := B · (k − 1− i)/(n− 1−m)

21: d := d+ 1
22: if inverse then
23: for e from m2 to m+ i do
24: D[j] := e
25: j := j + 1

26: m2 := m+ i+ 1
27: else
28: D[i] := m+ i

29: i := i+ 1
30: n := n− 1
31: else
32: r := r −B
33: if n− 1−m = 0 then
34: B := 1
35: else
36: B := B · (n−m− k + i)/(n− 1−m)

37: m := m+ 1

38: if inverse then
39: for e from m2 to n+ r + i− b do
40: D[j] := e
41: j := j + 1

42: for e from n+ r + i−B to n0 do
43: D[j] := e
44: j := j + 1

45: else
46: D[k − 1] := n+ r + k − 1−B

47: return D

	Unranking Combinations Lexicographically: an efficient new strategy compared with others
	Unranking through recursion
	Unranking through combinadics
	Unranking through factoradics: a new strategy
	Experimental comparison and algorithm improvements
	Appendix
	Appendix dedicated to Section 1
	Appendix dedicated to Section 2
	Appendix dedicated to Section 3
	Optimized factoradics algorithm

