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Abstract—Transforming a clone-and-own (i.e. new product
variants are created by copying and modifying existing artifacts)
code structure and development process to a Software Product
Line Engineering (PLE) approach is a tedious and error-prone
task. Holistic tool support for such a process is highly desirable,
especially to lower efforts and to speed up the transformation.
Unfortunately, such a holistic toolchain for reverse engineering
of variability, supporting variant-centric and platform-centric
extraction approaches is not available. In this paper, we present
a toolchain covering the first steps for moving a clone-and-own
product development to a PLE approach. We validate the first
prototype of the toolchain on a case study consisting of industrial
firmware for smart motor controllers and we show that even
this early prototype reduces time and effort for moving to a
configurable platform approach in the sense of PLE.

Index Terms—PLE, Feature Mining, Holistic Toolchain, Indus-
trial Case Study

I. INTRODUCTION

In the last three decades, Software Product Line Engineering
(PLE) has become famous as an approach for reducing time-
to-market of new products as well as development and main-
tenance costs of highly variable products. Additionally, the
quality of the software increases by adopting PLE techniques
as Fogdal et al. in [1] highlighted for a motor controller
platform. In the academic field, there is plenty of knowledge
regarding PLE and practices around it, such as the Product
Line Hall of Fame [2], case studies, books or experiences
presented at various PLE conferences. Nevertheless, adopting
a specific PLE approach or pattern in industrial practice is not
a trivial task and it requires a long adoption time.

One of the big drawbacks, when establishing a new product
line approach in the context of existing software, is the need
for holistic tool support covering all tasks needed to step-wise
progress from a clone-and-own (i.e. new product variants are
created by copying and modifying existing artifacts) develop-
ment scheme to a PLE approach (e.g. as proposed in [?]). Such
an integrated toolchain would lower the hurdle for starting the

transformation process and give a company a starting point
and the confidence for the migration. For sure, an integrated
approach addresses a number of challenges like the step from
clone-and-own to a product line strategy for new products, the
discovery of hidden or not explicitly documented mechanisms
to configure customer-driven variability, and the integration
of an approach for selecting dedicated customer features per
product variant. Facing and coping with these challenges, the
aforementioned tool support rises confidence for moving to
PLE approach on management level because the time for the
transformation process may significantly be reduced. Likewise,
the return-of-invest for adopting the PLE approach will be
materialized earlier than before.

In this paper, we present the prototype of a holistic toolchain
which supports a company in taking the first steps in the
sketched migration process. The toolchain focuses on reverse
engineering of variability by combining tools for analyzing
an existing configurable software platform (platform-centric
approach) with tools for analyzing currently available product
variants (variant-centric approach). In order to get tangible and
expressive results, the toolchain includes several visualizations
of the results, coming from a management-oriented overview
to dedicated technical feature-driven results. We performed a
first validation of the toolchain based on an industrial firmware
of smart motor controllers. The first results show the ability
to reduce the time and effort for migrating a legacy code base
into a PLE-ready code base.

The remainder of this paper is structured as follows: Section
II discusses the state of the art and related work. Section III
describes the used definition of software features, the industrial
case study and the derived usage scenarios for the toolchain.
Section IV introduces the toolchain and a typical workflow.
Section V details the toolchain building blocks. In Section VI
we present our initial evaluation results and close the paper
with a summary and future work in Section VII.XXXX ©2019 XX



II. RELATED WORK

In this paper, we present a holistic toolchain for reverse
engineering of variability to support the migration process of
legacy software systems to a PLE approach. The technologies
used for the presented analysis are not completely novel.
However, the possibility of combination of different variability
extraction approaches and tools is unique as no comparable
toolchain for transformation and migration tasks exists today.

Various tools have been developed to analyze different
aspects of variability information, like [3]–[7] for mining vari-
ability information from the Linux build system. Other tools
extract the variability information from C/C++-based code
files [8], [9]. Moreover, there are tools that detect variability-
introduced dead code [10], family-based type checking and
variable control-flow graphs [11], analysis of feature scattering
across code files [12], or continuous on-the-fly identification
of feature locations in committed code blocks [13]. While
we reuse some of the extraction capabilities, we apply a
completely different analysis as we reverse engineer variability
information to introduce variability management.

In general, there exist two conceptually different strategies
for reverse engineering of variability information of legacy
systems: On the one hand, variant-centric approaches are used
for mining variants to introduce a configurable platform. Thus,
it is necessary to detect common and variable code parts and
to introduce variability to make these code parts configurable.
Examples are BUT4Reuse [14]. On the other hand, platform-
centric approaches for analyzing undocumented variability in
SPLs which was not available before. Examples here are, from
Nadi et al. [15] which reverse engineer a variability model
from code artifacts. This approach was extended for numerical
features/conditions with fixed ranges in [16]. KernelHaven
[17] used the extended approach to reverse engineer variability
dependencies. In this work, the bottom-up and top-down
approaches are combined to analyze a product line that uses
cloning and configuration techniques to realize variants.

Most of the above-mentioned tools focus on one specific
approach or aspect of the analysis and have limited possibil-
ities to interface other tools enhancing their results. Here we
present a holistic toolchain based on various multi-purpose
tools to address the problem of product line migration in an
integrated fashion.

III. INDUSTRIAL CASE STUDY

A. Feature Definition and Kinds of Feature Tracing

The definition of a “software feature” depends on the
considered use case of the software product line [19]. After
discussions with domain experts, we identified two types of
features within the software system under consideration:

• Front-end features. This customer-facing type of features
defines the functionality that is directly visible to an end-
user and can, for example, be accessed via configuration
tools of the product. These features provide direct cus-
tomer value, therefore, their emergence and maintenance
are in the focus of product management.

• Back-end features. This developer-facing type of features
is usually not directly visible to the customer and they de-
pend on (1) the selection of the front-end features and (2)
the product-internal software and hardware architecture,
e.g., the currently selected hardware platform, operational
system, used compiler, etc. Typically, these features are
maintained by the software development team.

Both feature types can be traced by using different tech-
niques depending on the intended variability model, e.g.,
compile-time variability, link-time variability, or runtime vari-
ability. In our case, we differentiate between in-file-level (i.e.,
a subset of lines within a source code file) and file-level (i.e.,
a complete source file) feature annotations and we accordingly
consider the following possibilities for their tracing:

• File-level and in-file-level embedded annotations. Storing
the localization information along with the source code
is the usage of embedded annotations. One possible
format that we follow in the work was proposed in [20].
Combining feature annotations and source code allows
storing and evolving both using the same tools and data
sources, e.g., Integrated Development Environment (IDE)
and Version Control System (VCS). The embedded anno-
tations have no semantics in used programming language.

• File-level tracing. In case link-time variability mecha-
nisms are used, the build chain may conditionally include
specific source files/libraries that are linked into the
compiled executable. The feature selection information
is therefore stored in the build toolchain and its specific
artifacts, e.g., Makefiles or configuration scripts.

• In-file-level preprocessor-based tracing. In case of uti-
lization of some programming languages, e.g. C/C++,
preprocessor directives can be used to mark source code
blocks belonging to a specific software feature. This
tracing type is a hybrid of the previous two types. In
analogy to the annotation-based localization, it allows
building a so-called 150% model containing all variant-
specific implementation artifacts in one source file (e.g.
a C/C++ source file with preprocessor directives). In
contrast to embedded annotations, the precompiler flags
have semantics within the programming language and
can be configured by the build toolchain, i.e., the feature
selection information is contained in build artifacts, while
variability information is stored directly within the source
files. Therefore, precompiler directives are usually mixed
with file-level localization, s.t., a feature typically consists
of files either fully included/excluded and source code
blocks either activated/deactivated in the built variant.

In our case study and the feature analysis toolchain, we
focus on locating and analyzing front-end features as well as
finding dependencies between front-end and back-end features.
Depending on the specific product family, a subset of those
features has already been localized using file-level or even
block-level precompiler based localization, other features are
however not yet localized at all.



B. Case Study Description

For the case study, we use the firmware source code of a
specific industrial motor controller (also called drive) product
family consisting of about 1.2 MLoC of embedded C/C++
code. The code is compiled by a proprietary build chain
to generate and compile the source code. Out of the one
repository used for the case study, around twelve variants for
different applications and hardware platforms of the motor
controller can be compiled.

Therefore, the main non-functional requirements for the
involved tools are the ability to parse C/C++ code, to process
large code bases with >1 MLoC in a reasonable time and
resource consumption, and to use/evaluate variability infor-
mation that is contained in build toolchain artifacts.

In our previous work [18], we defined the process of feature
extraction to consist of feature identification (i.e., defining
the feature name and its functionality), feature localization
(i.e., mapping the feature to software engineering artifacts like
source code blocks or files), and feature tracing (i.e., storing
and documenting the localization information).

C. Usage Scenarios for the Feature Toolchain

Based on the feature tracing techniques that we introduced
in Section III-A, we define the following application scenarios
for the proposed toolchain:

S1: Feature extraction without considering existing vari-
ant information. This scenario addresses the extraction of
features out of unannotated source code without considering
existing product variants. The advantage of such a scenario is
its simplicity. That is, available pattern matching and Informa-
tion Retrieval (IR) based tools might work on pure source code
without build-specific information. However, it will probably
be needed for precise extraction of information from a specific
build toolchain (e.g., a compilation database in [18]).

S2: Feature extraction combined with existing variant in-
formation. This scenario aims to extract features by comparing
available variants, e.g., firmware variants. Such a comparison
requires the extraction of variability information that is stored
within the build toolchain, e.g., at least a list of compiled
source files. Extraction scenarios S1 and S2 can also be
combined, i.e., the features are first extracted without variant
information and are cross-validated using variant information
in a second step. Furthermore, considering built variants yields
a mapping of available features to a specific variant.

S3: Feature visualization and metrics. In order to assess,
to refine, and to monitor extracted features, there is a need
for tools providing a user-friendly interface for feature an-
notations. Typical use cases are the visualization of feature
locations across the build artifacts and the visualization of
dependencies between different features for continuous feature
tracing by software developers. Furthermore, a calculation of
metrics on the level of features, files and folders (cf. Table 1 in
[21]) is useful to monitor and accompany the feature evolution
along the software development process.
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Fig. 1. Toolchain Demonstrator Overview and Covered Usage Scenarios

S4: Feature analysis. The analysis part of the toolchain is
responsible for processing available feature localization infor-
mation within the source code to discover feature dependencies
and propose a feature hierarchy. One of the challenges is the
consideration of the interplay between embedded annotations
and preprocessor directives due to their different semantics.
Ultimately, the discovered dependencies and presence condi-
tions for features can be used as input to create a feature
model, e.g., a feature tree.

IV. TOOLCHAIN OVERVIEW

In this section, we present an overview of the toolchain
demonstrator for feature extraction, analysis, and visualization.
We briefly describe a typical interaction sequence within the
toolchain following the arrow numbers in Fig. 1 where arrows
depict data flow between the tools and dashed lines represent
planned, but not yet implemented functionality. The details for
the invoked tools are provided in Section V.

All feature extraction scenarios described in Section III-C
start with checking out the unannotated source code from
a repository within the VCS into a location accessible by
the build toolchain (arrow 1 ). This code contains some
precompiler-based defines, but no embedded annotations.

For the specific feature extraction without considering ex-
isting variant information scenario, a set of keywords is
manually extracted from the device product documentation
that describes the user-facing features (arrow 2 ). Furthermore,
the code is compiled (and especially preprocessed with C/C++
compiler) by the build toolchain for one variant in order to get
a consistent code base (arrow 3 ). The results of compilation
manifest in a build trace, a Clang compilation database, which
contains the list of compiler invocations, i.e., the list of
compiled source code files and active precompiler definitions.
The build trace and the source code base are used for static
code analysis by FINALIST2. It documents localized features
by embedded annotations within the source code.

For the specific feature extraction with considering existing
variant information scenario, the annotated code (arrow 4 )
is passed to the build toolchain that builds as many existing
product variants as possible. The traces of the build chain
are post-processed, s.t., only actually compiled files are sorted
into the variant-specific folders. At this point, embedded



annotations coming from the previous step are possibly repli-
cated if some product variants share common source files.
Folders containing relevant source files are now provided to
BUT4Reuse (arrow 5 ), which extracts the similarities and
differences between variants (details follow in the subsequent
section). The extracted information is embedded into source
code using annotations (arrow 6 , currently done manually).

Thus, the first two scenarios related to feature extraction that
were mentioned in Section III-C are finished, and the extracted
feature data can be saved back into the VCS (arrow 7 ).

The feature analysis scenario starts by importing the anno-
tated source code artifacts into the respective tools: VEXA
(arrow 8 ) and KernelHaven (arrow 9 ). The extracted fea-
ture dependency information is supposed to be used for the
construction of a feature model (arrows 10 and arrow 11 ).
Furthermore, feature dependency information extracted by
BUT4Reuse can be included (arrow 12 ). We aim to combine
feature dependency information in a feature model (arrow 13 ),
e.g., as a pure::variants model.

Tools that are relevant for scenario S3 can operate on plain
annotated source code as in case of FLOrIDA (arrow 14 ).
Another possibility is to reuse information that is extracted
by other tools as done by FeDeV. That is, it uses VEXA
output containing the representation of the annotated source
(arrow 15 ). Furthermore, it uses KernelHaven output that can
be processed in the format of SQLite databases (arrow 16 ).

We expect an iterative usage of the toolchain, i.e., the
represented sequence of tool invocations can be (partially)
repeated covering several usage scenarios from Section III-C.
One example is an iterative refinement of extracted software
features following arrows 1 to 7 as described in [18].

V. TOOL OVERVIEW

Here, we provide an overview of the individual building
blocks of the demonstrator toolchain. We describe their func-
tionality based on their respective input and output artifacts.

Many tools aim to provide an integrated solution covering
multiple scenarios listed in Section III-C. Below, we list only
the subset of tool functionalities that are currently used within
the toolchain demonstrator (cf. solid lines in Fig. 1). Extending
usage of the tool to cover their full functionality is part of
future work (cf. dashed lines in Fig. 1).

A. FINALIsT2

1) Input artifacts: Unannotated C/C++ code, list of key-
words used for IR to localize the feature.

2) Functionality and user interaction: Assisted iterative
feature extraction based on IR and static code analysis.

3) Output artifacts: Annotated C/C++ code.
4) Tool summary: The Feature Identification, Localization,

and Tracing Tool (FINALIsT2) [18] supports developers by
identifying, locating and documenting features within the
source code. It uses an iterative semi-automated approach
for feature mining by combining IR techniques and static
code analysis. Within the sketched demonstrator in Fig. 1,
FINALIsT2 is used to assist developer or domain experts

to identify and document features. Therefore, the tool uses
an IR approach to identify a first source or header file as
a starting point for the static code analysis. The IR search
engine, Apache Lucene, needs a query, which can be extracted
for example from a firmware manual or the user can define
the query by himself. Once the starting point is identified,
FINALIsT2 starts a static code analysis by exploring incoming
and outgoing dependencies of the current cluster (i.e., function
calls, variable access, and file inclusion dependencies). The
cluster can be then iteratively refined by the user.

B. BUT4Reuse

1) Input artifacts: Variant artifacts, e.g., annotated or unan-
notated C/C++ code for each variant.

2) Functionality and user interaction: Graphical overview
and summary of features contained in each variant (feature
list). Feature constraints (currently not used in the toolchain).

3) Output artifacts: Annotated C/C++ code containing an-
notations for discovered features (currently done manually).

4) Tool summary: Bottom-Up Technologies for Reuse
(BUT4Reuse) [14], [22] is a generic and extensible framework
implementing the different activities related to variability
engineering. This mainly includes feature identification and
naming, feature location, constraint discovering, and feature
model synthesis. BUT4Reuse takes as input a collection of
artifact variants and apply different algorithms for the men-
tioned activities. In this work, we used BUT4Reuse for the
following two activities: 1) feature identification and naming
where the objective is to analyze the input variants and identify
the implementation fragments that implement the existing
features. Naming aims to propose solutions for domain experts
to name the identified features. 2) Feature model synthesis that
extracts an organization of the identified features following the
feature model notations.

To support each artifact type, BUT4Reuse uses the concept
of adapter that processes the input artifact to be used by
the different algorithms. In this paper and while we are
considering the C/C++ source code of a collection of variants,
we used a BUT4Reuse specific adapter that allows comparing
the C/C++ source code of input variants. In addition to
the different algorithms, BUT4Reuse is based on a set of
visualization paradigms that guide the feature identification
process. As shown in the next section, this visualization is
useful for domain experts to name the identified feature and
understand the variability inside the analyzed variants.

Summarizing the description of extraction tools
(FINALIsT2 and BUT4Reuse), it is worth mentioning
that their performance was evaluated in terms of accuracy of
identifying feature locations in Section VI-A.

C. VEXA

1) Input artifacts: Annotated C/C++ code containing em-
bedded annotations and precompiler statements.

2) Functionality and user interaction: VEXA’s functional-
ity is invoked through Cypher queries, which can be executed
interactively one at a time or as a complete analysis batch



containing a multitude of queries. Interaction with the user is
realized through a web front-end with visualization capabilities
for presenting various aspects of the preprocessed source
code artifacts, e.g., feature metrics and dependencies between
preprocessor statements and embedded annotations.

3) Output artifacts: Graph database which stores the prop-
erty graph that contains all feature localization information;
discovered dependencies between preprocessor directives and
embedded annotations.

4) Tool summary: The Variability Extraction and Analysis
(VEXA) toolkit is a versatile collection of complementary
procedures to help with many different tasks of variability
extraction, feature analysis, visualization, and the calculation
of user-defined metrics. Implemented as a plug-in for the
“world’s leading Graph Database” Neo4j1, the VEXA toolkit
leverages the powerful graph storage and processing capa-
bilities of Neo4j to enable detailed dependency analyses of
source code artifacts (e.g., #ifdef variability in C/C++ code)
and reveal intricate feature connections across project artifacts
along with graph visualization possibilities.

Tool’s architecture rests upon two main pillars:

• The Property Graph Model. It is represented by a set of
nodes and relationships that can both hold any number
of attributes (key-value pairs) called properties. Nodes
are entities in the graph that can be tagged with labels.
Relationships always have a direction, a type, a start
node, and an end node. They provide directed, named and
semantically-relevant connections between two nodes.

• The Cypher Query Language2. Cypher is a declarative
query language that allows for expressive querying and
efficient manipulating of a property graph. The VEXA
toolkit extends Cypher using the concept of user-defined
procedures and functions to provide custom implementa-
tions of extraction and analysis procedures, which then
can be called from Cypher directly.

The methodology behind VEXA pursues an iterative work-
flow, in which the user of the toolkit (a software developer
or domain expert) specifies all analysis steps in a flexible
way—tailored to his specific needs—using Cypher queries.

Context-specific Cypher queries can be employed to support
the user in visualizing relevant dependencies between analyzed
artifacts, e.g. feature locations and their relation to source files
and code elements, in the form of graphs and tables.

D. KernelHaven

1) Input artifacts: Annotated C/C++ code containing em-
bedded annotations and precompiler statements.

2) Functionality and user interaction: Extraction of vari-
ability based on in-file annotations, no user interaction.

3) Output artifacts: Excel file and SQLite database con-
taining relations between identified features.

1https://github.com/neo4j/neo4j
2https://www.opencypher.org/

4) Tool summary: KernelHaven3 [17] is an experimentation
workbench designed to simplify the realization of various
analyses in the domain of static software product line anal-
ysis. Within the demonstrator, KernelHaven is used to extract
variability information from C-preprocessor statements and
annotations of C/C++ files and perform further analysis on
this information. Thus, KernelHaven is used for the analysis
of annotations as created by the FINALIsT2 tool (cf. Section
V-A) and optionally detects inconsistent, manually-written an-
notations. KernelHaven also provides a feature effect analysis
as described in [15] to compute variability dependency infor-
mation among features from annotations and C-preprocessor
statements. The result of the analysis is a Boolean precondition
for each feature used in a code artifact, showing when its
selection influences the product derivation.

A subsequent analysis component uses the dependency in-
formation to compute a dependency graph among the features.
The graph contains directed edges between features and their
dependent features. Annotations of the edges show whether
the depending feature must not be selected (e.g., exclusive
relationship), must be selected (e.g., requires relationship), or
a propositional formula, if the precondition of the feature effect
analysis cannot be split into one of the two previous cases.

E. FLOrIDA

1) Input artifacts: Annotated C/C++ code.
2) Functionality and user interaction: Graphical user in-

terface to visualize and navigate through features that are
scattered across the file system.

3) Output artifacts: -
4) Tool summary: The Feature Location and Identification

Dashboard (FLOrIDA) is used within the demonstrator for
visualizing features, their metrics, and their dependencies. The
tool has been thoughtfully discussed in [21].

F. FeDeV

1) Input artifacts: Graph database originating from VEXA
tool or SQLite database originating from KernelHaven.

2) Functionality and user interaction: Interactive visual-
ization and navigation of feature dependencies, feature anno-
tations, and variation points within source files.

3) Output artifacts: Visualization of feature dependencies,
variation points, and file systems as tables, graphs, and trees.

4) Tool summary: The Feature Dependency Visualization
(FeDeV) tool is a visualization application for analysis re-
sults of KernelHaven and VEXA based on the TomSawyer
Visualization framework4. The tool covers tabular lists for
all data elements, some tree structures (e.g., to represent
variation points within files, or showing a directory hierarchy)
and interactive graphs to inspect the analysis results. The
tool mainly focuses on visualizing the feature dependencies,
feature annotations, and variation points. Each analysis source
is mapped to an internal metamodel and instantiated during

3Publicly available at https://github.com/KernelHaven/KernelHaven
4https://www.tomsawyer.com/products/visualization/



an import process. Currently, FeDeV is able to import, inspect
and explore the analysis results of KernelHaven and VEXA.

The inspection workflow depends on the desired analysis.
Dependencies of features are explored step-by-step. Starting
with an empty graph, identified features can be added via
table selection or a search function and composed to a feature-
dependency-graph. There are also dedicated commands to add
features of incoming and outgoing dependencies to the graph
as well as a path of dependencies up to related root features
(i.e., independent features) of the selected context feature. In
contrast, variation points and feature annotations detected by
the VEXA can be inspected by browsing the analyzed file tree
or a projection of feature annotations used by files.

A feature is represented as a node, showing its name, the
number of incoming and outgoing dependencies, and a textual
constraint (if defined). Dependencies are denoted as edges
between feature nodes. Each dependency can have a constraint
fragment, that is calculated from the actual feature’s constraint
and describes, which additional features must be selected to
get a valid variant configuration.

VI. PRELIMINARY EVALUATION RESULTS

In the following, the preliminary results of the toolchain
evaluation are discussed. Tools of the first workflow stage of
feature extraction (scenarios S1 and S2) have been evaluated
more thoughtfully as a foundation for the following steps.

A. Feature Extraction

1) FINALiST2: In previous work [18], we performed no
expert interviews and were able to achieve 98% accuracy on
file-level (full files included in a feature) and 68% accuracy
on in-file-level (certain lines of a file included in a feature) for
a feature when compared to included precompiler definitions.

For this work, we performed an initial comparison of
unassisted and tool-supported extraction of one randomly
picked front-end and one back-end feature. The extraction
was performed by non-experts in drive firmware development
and cross-checked in expert interviews. The tool-assisted ex-
traction was measured to be 69% quicker than comparable
manual extraction for both features having a similar accuracy
as confirmed by the development team.

2) BUT4Reuse: On the code base with 12 variants
BUT4Reuse identified the scattered features that were covered
as “blocks” with temporary IDs and represented them as a
variant-feature matrix (see Fig. 2) where block “A” represents
the code that is shared by every variant. Word cloud feature
helped in recognizing and renaming the identified blocks.

In the code base, the tool identified 24 features out of
around 80 front-end features. Worth to mention, the tool only
finds differences between built variants, s.t., a feature identified
by the tool typically contains multiple features as defined in
Section III-A. Therefore, the generated insights are considered
very useful and are used to validate/extend the extraction
results from the FINALiST2 tool as no additional information
for feature identification like keywords is needed.

A B C D E F G H I J K L M N O P Q R S T U V W X

V1 X X X X X X X X X X X X X X X

V2 X X X X X X X X X X X X

V3 X X X X X X X X X X X X

V4 X X X X X X X X X X X X X X

V5 X X X X X X X X X X X X

V6 X X X X X X X X X X

V7 X X X X X X X X X X X X

V8 X X X X X X X X X X X X X

V9 X X X X X X X X X X X X X

V10 X X X X X X X X X X X X

V11 X X X X X X X X X X X X X

V12 X X X X X X X X X X X X X X

Fig. 2. BUT4Reuse: The variant-feature matrix (names are obfuscated)

B. Feature Analysis

1) VEXA: Feature analysis is performed by writing cus-
tom Cypher queries. In brevity, we present a small part of
the overall analysis to demonstrate what is possible. After
VEXA processed the code base, the property graph (a graph
representation of the whole code base containing all embedded
annotations, preprocessor directives, code statements, source
files, etc.) is available and can be queried for information.

The first task was listing source code files containing spe-
cific feature annotations.The second task was defining a query
to show which feature annotations contain which precompiler
flags to find out and compare eventually double-annotations.

With the help of a Cypher expert, we were able to create
queries to solve both tasks. The queries required intermedi-
ate steps that inserted additional information into the graph
database. On one hand, it proved the flexibility of the tool.
On the other hand, a good knowledge of Cypher language and
VEXA property graph structure is needed to use it efficiently.

2) KernelHaven: By using KernelHaven we were able to
identify multiple inconsistencies in manually injected code
annotations, e.g., forgotten closing block annotation or typos.
Furthermore, a specific dependency between a preprocessor-
#ifdef and an embedded annotation was found and manually
verified by tracing through the code base. The dependency
stated that the disabling of the preprocessor statement removes
all feature-annotated code blocks. A larger evaluation of
feature dependencies in the code base is currently pending.

C. Feature Visualization and Metrics

1) FLOrIDA: Visualization possibilities of the FLOrIDA
tool were discussed in [21].

2) FeDeV: We evaluated FeDeV on the output of both
VEXA and KernelHaven. FeDeV provides different views like
tables, trees, and graphs for manual inspection of extraction
results. To simplify the visualization of large code bases,
FeDeV provides a useful feature of predefined and user-
defined filters to hide non-relevant features from such graphs.



Regarding VEXA results on the feature annotation and
#ifdef block level, the coupling of annotated features and files
is visualized graphically allowing to inspect the number of
annotated code blocks and their impact on the source code
file. Different layout options allow to re-center from feature-
to file-centric view easily. Results of KernelHaven analysis
are rendered as dependency feature graphs providing color
coding of edges and links provide additional information, e.g.,
to identify mandatory and optional features visually.

VII. SUMMARY AND FUTURE WORK

In this paper, we presented a prototype of a holistic
toolchain for feature extraction, analysis, and visualization that
combines variant-centric and platform-centric tools for reverse
engineering of variability information. We were able to show
first promising improvements in terms of reduced time and
effort by iterative usage of the toolchain for feature extraction.

Future work can be separated into two dimensions: On
one hand, improving the evaluation methodology by defining
quantitative KPIs and performing a more reliable evaluation
of the used case study. Furthermore, the case study can
be extended to consider multiple clone-and-own repositories,
e.g., to locate similar/same features across product groups to
automatically generate 150% model files and eventually merge
these into one.

On the other hand, the toolchain itself, single tool building
blocks and their inputs/outputs can be improved, in particular:

• Improving precision of variant-centric feature extraction
by pre-processing source files before analysis by means
of a compiler or further tools, e.g., Coan5.

• Use and combine constraint information from variant-
centric extraction with feature constraints and relations.

• Further steps towards a complete feature model extrac-
tion, e.g., by generating pure::variants feature models.

• Merge tool results in one visualization view of feature
location and dependencies between them.

• A unified graphical or command-line interface.
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