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ON A CERTAIN NON-SPLIT CUBIC SURFACE

In this note, we establish an asymptotic formula with a power-saving error term for the number of rational points of bounded height on the singular cubic surface of P 3 Q

Introduction and results

Let V ⊂ P 3 Q be the cubic surface defined by x 0 (x 2 1 + x 2 2 ) -x 3 3 = 0. The surface V has three singular points ξ 1 = [1 : 0 : 0 : 0], ξ 2 = [0 : 1 : i : 0] and ξ 3 = [0 : 1 : -i : 0]. It is easy to see that the only three lines contained in V Q = V × Spec(Q) Spec(Q) are ℓ 1 := {x 3 = x 1 -ix 2 = 0}, ℓ 2 := {x 3 = x 1 + ix 2 = 0}, and ℓ 3 := {x 3 = x 0 = 0}. Clearly both ℓ 1 and ℓ 2 pass through ξ 1 , which is actually the only rational point lying on these two lines.

Let U = V {ℓ 1 ∪ ℓ 2 ∪ ℓ 3 }, and B a parameter that can approach infinity. In this note we are concerned with the behavior of the counting function N U (B) = #{x ∈ U(Q) : H(x) B}, where H is the anticanonical height function on V defined by

H(x) := max |x 0 |, x 2 1 + x 2 2 , |x 3 | (1.1)
where each x j ∈ Z and gcd(x 0 , x 1 , x 2 , x 3 ) = 1. The main result of this note is the following. Remark. If follows from the arguments in [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF] or [START_REF] Liu | Manin's conjecture for a class of singular cubic hypersurfaces[END_REF] that, at least, any ϑ < 1 9 is acceptable in Theorem 1.1, and further improvements are possible.

The Manin-Peyre conjectures for smooth toric varieties were established by Batyrev and Tschinkel in their seminal work [START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF]. Since our cubic surface V is a (non-split) toric surface, the main term of the asymptotic formula (1.2) can be derived from [START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF]. In addition to providing a different proof of the Manin-Peyre's conjectures for V and to getting a power-saving error term of the counting function N U (B), this note also serves to complement the results in [START_REF] Liu | Manin's conjecture for a class of singular cubic hypersurfaces[END_REF], in which Manin's conjecture for the cubic hypersurfaces S n ⊂ P n+1 defined by the equation

x 3 0 = (x 2 1 + . . . + x 2 n )
x n+1 with n = 4k was established. The cubic surface V is the case for n = 2.

We conclude the introduction by a brief discussion of the split toric surface of P 3 Q given by V ′ : x 0 x 1 x 2 = x 3 3 . The variety V ′ is isomorphic to V over Q(i) and was well studied by a number of authors. Manin's conjecture for V ′ is a consequence of Batyrev and Tschinkel [START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF]. Others include the first author [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], the first author and Swinnerton-Dyer [START_REF] De La Bretèche | Fonction zêta des hauteurs associée à une certaine surface cubique[END_REF], Fouvry [START_REF] Fouvry | Sur la hauteur des points d'une certaine surface cubique singulière[END_REF], Heath-Brown and Moroz [START_REF] Heath-Brown | The density of rational points on the cubic surface X 3 = X 1 X 2 X 3[END_REF] and Salberger [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF]. Derenthal and Janda [START_REF] Derenthal | Gaussian rational points on a singular cubic surface[END_REF] established Manin's conjecture for V ′ over imaginary quadratic fields of class number one and Frei [START_REF] Frei | Counting rational points over number fields on a singular cubic surface[END_REF] further generalized their work to arbitrary number fields. Of the unconditional asymptotic formulae obtained, the strongest is the one in [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], which yields the estimate

N U (B) = BP (log B) + O B 7/8 exp(-c(log B) 3/5 (log log B) -1/5 ) ,
where U is a Zariski open subset of V ′ , and P is a polynomial of degree 6 and c is a positive constant. In [START_REF] De La Bretèche | Fonction zêta des hauteurs associée à une certaine surface cubique[END_REF], even the second term of the counting function N U (B) is established under the Riemann Hypothesis as well as the assumption that all the zeros of the Riemann ζ-function are simple.

Geometry and Peyre's constant

In [START_REF] Peyre | Hauteurs et nombres de Tamagawa sur les variétés de Fano[END_REF], Peyre proposed a general conjecture about the shape of the leading constant arising in the asymptotic formula for the number of points of bounded height but only for smooth Fano varieties.

The surface V that we study in this note is singular so we can not apply directly this conjecture and [28, Définition 2.1]. To get around this, we construct explicitly in this section a minimal resolution π : V → V of V and show that for U = V {ℓ 1 ∪ ℓ 2 ∪ ℓ 3 } and U = π -1 (U), we have π | U : U ∼ = U. This implies that our counting problem on V can be seen as a counting problem on the smooth variety V since

N U (B) = #{x ∈ U (Q) : H • π(x) B}
where H • π is an anticanonical height function on V . Indeed, by [START_REF] Coray | Arithmetic on singular del Pezzo surfaces[END_REF]Lemma 1.1] the surface V has only du Val singularities which are canonical singularities (see [START_REF] Kollár | Birational geometry of algebraic varieties[END_REF]Theorem 4.20]) and alluding to [25, 2.26, 4.3, 4.4 and 4.5], we can conclude that π * K V = K V where K V and K V denote the anticanonical divisors of V and V respectively. However, V is not a Fano variety and therefore we still can not apply [START_REF] Peyre | Hauteurs et nombres de Tamagawa sur les variétés de Fano[END_REF]Définition 2.1].

We nevertheless establish in this section that V is "almost Fano" in the sense of [START_REF] Peyre | Points de hauteur bornée, topologie adélique et mesures de Tamagawa, Les XXII-èmes Journées Arithmétiques[END_REF]Definition 3.1]. Alluding to the fact that the original conjecture of Peyre has been refined by Batyrev and Tscinkel [START_REF] Batyrev | Tamagawa numbers of polarized algebraic varieties[END_REF] and Peyre [START_REF] Peyre | Points de hauteur bornée, topologie adélique et mesures de Tamagawa, Les XXII-èmes Journées Arithmétiques[END_REF] to this setting, we may refer to [29, Formule empirique 5.1] to interpret the constant C arising in our Theorem 1.1. According to [29, Formule empirique 5.1], the leading constant C in our Theorem 1.1 takes the form

C = α( V )β( V )τ ( V ) (2.1)
where α( V ) is a rational number defined in terms of the cone of effective divisors, β( V ) a cohomological invariant and τ ( V ) a Tamagawa number. For more details, see définition 4.8 of [START_REF] Peyre | Points de hauteur bornée, topologie adélique et mesures de Tamagawa, Les XXII-èmes Journées Arithmétiques[END_REF].

Our main strategy to check that the constant C in Theorem 1.1 agrees with the prediction [29, Formule empirique 5.1] relies in a crucial way on the (non-split) toric structure of the surface V and on results from [START_REF] Batyrev | Tamagawa numbers of polarized algebraic varieties[END_REF].

2.1. Minimal resolution of V and interpretation of the power of log B. We refer the reader to the following references for details about toric varieties over arbitrary fields [START_REF] Oda | Convex bodies and algebraic geometry[END_REF][START_REF] Fulton | Introduction to toric varieties[END_REF][START_REF] Demazure | Sous-groupes algébriques de rang maximum du groupe de Cremona[END_REF][START_REF] Danilov | The geometry of toric varieties[END_REF] and especially [START_REF] Batyrev | Rational points of bounded height on compactifications of anisotropic tori[END_REF][START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF] and [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF]End of §8].

The toric surface V is easily seen to be an equivariant compactification of the non-split torus T given by the equation

x 0 (x 2 1 + x 2 2 ) = 1. The torus T is isomorphic to R Q(i)/Q (G m ) where R Q(i)/Q (•)

denotes the Weil restriction functor and is split by the quadratic extension

k = Q(i). We now introduce M = T k := Hom(T, k × ) the group of regular k-rational characters of T and N = Hom(M, Z). Alluding to [34, Lemma 1.3.1], we see that M ∼ = N ∼ = Z × Z with the Galois group G = Gal(k/Q) ∼ = Z/2Z
interchanging the two factors. Let (e 1 , e 2 ) be a Z-basis of N. In a similar manner as in [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF]Example 11.50], we denote by ∆ the fan of N R = N ⊗ R given by the rays ρ 1 , ρ 2 , ρ ′ 2 generated by -e 1 -e 2 , -e 1 + 2e 2 and 2e 1 -e 2 .

ρ 1 ρ 2 ρ ′ 2 Figure 1. The fan ∆.
The fan ∆ is G-invariant in the sense of [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF]Definition 1.11] and hence defines a non-split toric surface P ∆ over Q. Using the same arguments as in [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF]Example 11.50], one easily sees that the k-variety P ∆,k = P ∆ ⊗ Spec(Q) Spec(k) is given by the equation

x 3 3 = x 0 z 1 z 2 with G exchanging z 1 and z 2 . The change of variables x 1 = (z 1 + z 2 )/2 and x 2 = (z 1 -z 2 )/(2i) yields that P ∆,k is isomorphic to the variety of equa- tion x 3 3 = x 0 (x 2 1 + x 2 2
), all the variables being G-invariant. Hence, the surface V is a complete algebraic variety such that V ⊗ Spec(Q) Spec(k) is isomorphic to P ∆,k , the isomorphism being compatible with the Gactions. Then, theorem 1.12 of [START_REF] Batyrev | Manin's conjecture for toric varieties[END_REF] allows us to conclude that V is given by the G-invariant fan ∆ after noting that the assumption that the fan is regular is not necessary.

The fan ∆ is not complete and regular in the sense of [2, Definition 1.9] which accounts for the fact that V is singular. As in [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF] The toric surface V defined over Q by the G-invariant fan ∆ is then smooth by [1, Theorems 1.10 and 1.12] and, thanks to [12, 5.5.1] and [20, §2.6], comes with a proper equivariant birational morphism π : V → V which is an isomorphism on the torus T . Here T corresponds to the open subset U = V {ℓ 1 ∪ℓ 2 ∪ℓ 3 }. Now the proof of the proposition 11.2.8 of [START_REF] Cox | Toric varieties[END_REF] yields that π is a crepant resolution and hence that it is minimal since we are in dimension 2.

We note that thanks to [13, Corollaire 3] and [1, Proposition 1.15], the minimal resolution V is "almost Fano" in the sense of [START_REF] Peyre | Points de hauteur bornée, topologie adélique et mesures de Tamagawa, Les XXII-èmes Journées Arithmétiques[END_REF]Definition 3.1].

Let us now turn to the computation of the Picard group of V . To this end, we will exploit the exact sequence given by [ ) is a Z-basis of M. Moreover, a function ϕ ∈ PL( ∆) G being completely determined by its integer values on ρ 1 , ρ 2 and ρ1 , ρ2 and ρ3 , we have PL( ∆) G ∼ = Z 5 . Finally, the Z-module M is a permutation module and therefore H 1 (G, M) is trivial. Bringing all of that together yields that rk(Pic( V )) = 5 -1 = 4, which agrees with the prediction coming from Manin's conjecture regarding the power of log B in Theorem 1.1.

2.2.

The factor α. We will use the same method as in [4, Lemma 5] to compute the nef cone volume α( V ) and we refer the reader to [4, Lemma 5] for more details and definitions.

Let T i , T ′ i , T i and T ′ i be the Zariski closures of the one dimensional tori corresponding respectively to the cones R 0 ρ i , R 0 ρ ′ i , R 0 ρi and R 0 ρ′ i . We also introduce the G-invariant divisors

D 1 = T 1 , D 2 = T 2 + T ′ 2 , D 3 = T 1 + T ′ 1 , D 4 = T 2 + T ′ 2 , D 5 = T 3 + T ′ 3 .
Using 

D 1 + D 2 + D 3 + D 4 + D 5 ∼ 3D 1 + 2D 2 + D 3
is an anticanonical divisor for V . Following the strategy of [4, Lemma 5] and using the same notations than in [4, Lemma 5], it now follows that C ∨ eff is the subset of R 4 0 given by 2z 1 + z 2 -z 4 0 and that H V is given by the equation 3z 1 + 2z 2 + z 3 = 1. Therefore, a straightforward computation finally yields

α( V ) = 1 0 (1 -z 3 ) 2 dz 3 × 1 2 Vol (z 1 , z 4 ) ∈ R 2 0 : 3z 1 1, 2z 4 -z 1 1 = 1 6 1 3 z 1 =0 1+z 1 2 z 4 =0 dz 4 dz 1 = 7 216
.

2.3. The factor β. Let us now briefly justify that β( V ) = 1. We know that V is birational to the torus

R Q(i)/Q (G m ). But the open immersion G m,Q(i) ֒→ A 2 Q(i) gives rise to an open immersion R Q(i)/Q (G m ) ֒→ A 2
Q by taking the functor R Q(i)/Q (•) and by alluding to [33, Proposition 4.9]. Hence, R Q(i)/Q (G m ) is rational and so is V . Finally this implies that β( V ) = 1 (see [4, section 5] for details).

2.4. The Tamagawa number.

Conjectural expression.

Let us choose S = {∞, 2} and note that our definition will be independent of that choice. We have from [3, Theorem 1.3.2] that Pic( V Q ) is the free abelian group generated by the divisors

T 1 , T 2 , T ′ 2 , T 1 , T ′ 1 , T 2 , T ′ 2 defined in §2.2 with the following G-action σ(T 2 ) = T ′ 2 , σ( T i ) = T ′ i (i ∈ {1, 2})
if σ denotes the complex conjugation. Alluding to [24, Defintion 7.1], we have the following conjectural expression

τ ( V ) := lim s→1 + (s -1) 4 L S (s, χ Pic ( V Q ))ω ∞ p λ -1 p ω p where L S (s, χ Pic ( V Q )) = p ∈S det Id -p -s Frob p | Pic( V Q ) Ip -1
with I p the inertia group and Frob p a representative of the Frobenius automorphism and where

λ p = L p (1, χ Pic ( V Q )), ω ∞ = ω ∞, V ( V (R)), ω p = ω p, V ( V (Q p ))
for measures ω v, V on V (Q v ) whose proper definitions are postponed to the next section (they are the measures ω K ,v defined in [1, §2]) and where λ p is taken to be 1 for p ∈ S. Let ℜe(s) > 1. First we notice that for all p ∈ S, we have that I p is trivial since p is not ramified in Q(i). Then the Frobenius Frob p being trivial for all p ≡ 1 mod 4, it is easy to see that in that case

det Id -p -s Frob p | Pic( V Q ) Ip = 1 - 1 p s 7 .
When p ≡ 3 mod 4, Frob p is of order 2 with the same action than σ on Pic( V Q ) and hence one sees immediately that

det Id -p -s Frob p | Pic( V Q ) Ip = 1 - 1 p s 1 - 1 p 2s 3 .
Bringing all of this together yields that

L S (s, χ Pic ( V Q )) = p>2 1 - 1 p s -4 1 - χ(p) p s -3 and lim s→1 (s -1) 4 L S (s, χ Pic ( V Q )) = L(1, χ) 2 2 4 = 1 2 4 × π 4 3 and therefore τ ( V ) = π 4 3 ω ∞ × ω 2 2 4 × p>2 1 - 1 p 4 1 - χ(p) p 3 ω p .
2.4.2. Construction of the Tamagawa measure. Let us write here V (i) for the affine subset of V where x i = 0 with coordinates x (i) j = x j /x i for j = i. Note that V (i) is defined by the equation

f (i) (x (i) 0 , . . . , x (i) i , . . . , x (i) 3 ) = x 3 x i 3 - x 0 x i x 1 x i 2 + x 2 x i 2 
where (x

(i) 0 , . . . , x (i) i , . . . , x (i) 
3 ) denotes (x

(i) 0 , x (i) 2 , x (i) 
3 ) after removing the i-th component. The same arguments as in [22, §13] go through to yield that ω V ∼ = O V (-1) and that such an isomorphism is given on V (i) by

x -1 i -→ (-1) i+t ∂f (i) /∂x (i) j dx (i) k ∧ dx (i) ℓ for k < ℓ ∈ {0, 1, 2, 3} {i}, {i, j, k, ℓ} = {0, 1, 2, 3} and t = k + ℓ if k < i < ℓ and t = k + ℓ -1 otherwise. Moreover, we have already seen that ω V ∼ = π * ω V . The dual sections τ i of s i in ω -1 V ∼ = O V (1)
define the embedding V ֒→ P 3 under consideration in this note and the morphism V → V ֒→ P 3 is given by the sections

π * τ i of H 0 ( V , ω -1 V ). Consider now the subsequent Arakelov heights (ω -1 V , (||.|| v ) v∈Val(Q) ) and (ω -1 V , (||.|| ′ v ) v∈Val(Q) )
defined by these global sections where for all

v ∈ Val(Q), x ∈ V (Q v ), y ∈ V (Q v ), τ ∈ ω -1
V and σ ∈ ω -1 V we use respectively the v-adic metrics defined by

||τ || v = min 0 i 3 π * τ i =0 τ π * τ i (x) v if v is finite and ||τ || ∞ = min    min i∈{0,3} π * τ i =0 τ π * τ i (x) ∞ , π * τ 1 (x) τ 2 ∞ + π * τ 2 (x) τ 2 ∞ -1 2    if v
is the archimedean place and τ = 0 and

||σ|| ′ v = min 0 i 3 τ i =0 σ τ i (y) v if v is finite and ||σ|| ′ ∞ = min    min i∈{0,3} τ i =0 σ τ i (y) ∞ , τ 1 (y) σ 2 ∞ + τ 2 (y) σ 2 ∞ -1 2    if v
is the archimedean place and σ = 0. These heights correspond to the heights H on V and H • π on V that we used in our counting problem. Applying the definition 2.2.1 of [START_REF] Peyre | Points de hauteur bornée, topologie adélique et mesures de Tamagawa, Les XXII-èmes Journées Arithmétiques[END_REF], we get a measure ω v, V on V (Q v ) associated to the v-adic metric ||.|| v which is the measure defined in [1, §2] and used in §2.4.1 and a measure ω v,V on V (Q v ) associated to the v-adic metric ||.|| ′ v . 2.4.3. Computation of the archimedean density. We follow once again the strategy adopted in [22, §13]. One sees easily that U = V (3) and the same argument as in [22, §13] shows that

ω ∞ = ω ∞, V ( V (R)) = ω ∞, V (π -1 (U)(R)).

Now the local coordinates x

(3) 1 -1 and x

(3) 2 at the rational point (1, 1, 0) of U give an isomorphism

U(R) ∼ = W = {(z 1 , z 2 ) ∈ R 2 : (z 1 + 1) 2 + z 2
2 = 0} and a similar computation as in [22, §13] yields

ω ∞, V (π -1 (U)(R)) = R 2 dz 1 dz 2 max {1, z 2 1 + z 2 2 , (z 2 1 + z 2 2 ) 3/2 } = z 2 1 +z 2 2 1 dz 1 dz 2 + z 2 1 +z 2 2 >1 dz 1 dz 2 (z 2 1 + z 2 2 ) 3/2 = 3π
after a polar change of coordinates. We can therefore conclude that ω ∞ = 3π. 2.4.4. Computation of ω p for odd p. Thanks to the remarks of [32, Page 187], one can construct a model V over Spec(Z) satisfying the conditions of [29, Notation 4.5] with S = {∞, 2}. Hence, one can consider the reduction V p modulo p of V for every prime number p.

The torus T has good reduction T p for every prime p > 2 since p is not ramified in Q(i) and T p is a split torus of rank 2 if p ≡ 1 mod 4 and a non-split torus of rank 2 split by F p 2 if p ≡ 3 mod 4. Hence, the reduction V p modulo p can be realized as the toric variety over F p under the torus T p given by the fan ∆ ′ which is invariant under Frob p . Since the fan stays regular and complete, we can conclude that V p is smooth and hence that V has good reduction modulo p > 2 (see [START_REF] Danilov | The geometry of toric varieties[END_REF]).

We can therefore apply [START_REF] Jahnel | Tamagawa and rational points on algebraic varieties[END_REF]Corollary 6.7] to obtain for all odd p the following expression

ω p = # V (F p ) p 2
. Now alluding to Weil's formula, we obtain

ω p = 1 + Tr(Frob p |Pic( V Q )) p + 1 p 2 = 1 + 4 + 3χ(p) p + 1 p 2
by using the description of the action of Frob p on Pic( V Q ) given in §2.4.1.

2.4.5. Computation of ω 2 . For p = 2, the model Ṽ having bad reduction, we appeal to the lemma 6.6 of [START_REF] Jahnel | Tamagawa and rational points on algebraic varieties[END_REF] to compute ω 2 . By [1, Proposition 2.10] and noting that the smooth assumption is not necessary, one gets

ω 2, V ( V (Q 2 )) = ω 2, V (π -1 (U)), ω 2,V (V (Q 2 )) = ω 2,V (U).
Now an analogous computation as the one in §2.4.3 yields that both quantities ω 2, V (π -1 (U)) and ω 2,V (U) are equal to the expression

W dz 1 dz 2 max {1, |z 2 1 + z 2 2 | 2 , |z 1 (z 2 1 + z 2 2 )| 2 , |z 2 (z 2 1 + z 2 2 )| 2 } with W = {(z 1 , z 2 ) ∈ Q 2 2 : (z 1 + 1) 2 + z 2 2 = 0}. Therefore, ω 2 is equal to ω 2,V (V (Q 2 )
) and [START_REF] Jahnel | Tamagawa and rational points on algebraic varieties[END_REF]Remark 6.8] implies that

ω 2 = lim n→+∞ N(2 n ) 2 3n
, where

N(2 n ) := # x (mod 2 n ) : x 0 (x 2 1 + x 2 2 ) ≡ x 3 3 (mod 2 n ) . Let v 2 (x 2 1 + x 2 2 ) = k and v 2 (x 0 ) = k 0 . If k = 1 + 2k ′ is odd and 1 + 2k ′ < n, then the number of (x 1 , x 2 ) satisfying v 2 (x 2 1 + x 2 2 ) = k is 2 2n-2k ′ -2 .
There are 2 n-(1+2k ′ +k 0 )/3-1 ways to choose x 3 and then 2 2k ′ +1 choices for x 0 . Then, in the case where v 2 (x 2 1 + x 2 2 ) is odd, the number of solutions is asymptotic to

2 3n 3|1+2k ′ +k ′ 0 k ′ 0 2 -2-(1+2k ′ +k ′ 0 )/3 ∼ 5 6 2 3n .
The number of (x 1 , x 2 ) satisfying v 2 (x 2 1 + x 2 2 ) = 2k ′ is, at least for 2k ′ < n, equal to 2 2n-2k ′ -1 . There are 2 n-(2k ′ +k 0 )/3-1 ways to choose x 3 and then 2 2k ′ choices for x 0 . Summing over 3 | 2k ′ + k 0 and k ′ 0 we get the contribution of the case v 2 (x 2 1 + x 2 2 ) even in N(2 n ), which is asymptotic to 7 6 • 2 3n . It follows that

ω 2 = 2 = 1 + 2 + 3χ(2) + 2χ 2 (2) 2 + χ 2 (2) 2 2 .
2.4.6. Conclusion. Bringing everything together yields the following expression for the Peyre constant

α( V )β( V )τ ( V ) = 7 216 (3π) π 4 3 τ.
This is in agreement with the constant C in (1.3).

Proof of Theorem 1.1

By symmetry, we have

N U (B) = # x ∈ E : x 0 (x 2 1 + x 2 2 ) = x 3 3 , max x 0 , x 2 1 + x 2 2 B ,
where

E := {x ∈ N × Z 2 × N : gcd(x 0 , x 1 , x 2 , x 3 ) = 1} and N = Z 1 .
As in [START_REF] De La Bretèche | Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière[END_REF], we parametrize x 2 1 + x 2 2 , x 0 and x 3 by

x 2 1 + x 2 2 = n 1 n 2 2 n 3 3 , x 0 = n 2 1 n 2 n 3 4 , x 3 = n 1 n 2 n 3 n 4 ,
where n 1 and n 2 are squarefree and gcd(n

1 , n 2 ) = 1 which is equivalent to µ 2 (n 1 n 2 ) = 1. It follows that N U (B) = 4 n∈N 4 µ 2 (n 1 n 2 )=1 n 2 1 n 2 n 3 4 B n 1 n 2 2 n 3 3 B 2 r(n 1 n 2 2 n 3 3 , n 1 n 2 n 4 )
where

r(n, m) := 1 4 # (x 1 , x 2 ) ∈ Z 2 : x 2 1 + x 2 2 = n, ((x 1 , x 2 ), m) = 1 .
Here, we remark that our choice of height function is particularly well suited to handle the expression r(n, m).

Let χ be the non-principal character modulo 4 and r 0 := 1 * χ. The quantity r(n, m) is a multiplicative arithmetic function in n, and we have r(n, m) := p r p vp(n) , p vp(m) .

We use the fact that, when ν 1,

r(p ν , p) =          2 if p ≡ 1 (mod 4), 0 if p ≡ 3 (mod 4), 1 if ν = 1, p = 2, 0 if ν 2, p = 2.
Proof. The proof is very similar to the one in [START_REF] Pieropan | Torsors and generalized Cox rings for Manin's conjecture[END_REF]Proposition 2.71] and that is why we will not repeat all the details here. Since ṼQ is a split toric variety, we know by [START_REF] Salberger | Tamagawa measures on universal torsors and points of bounded height on Fano varieties[END_REF] that a Cox ring of identity type for ṼQ is given by R = Q[t 1 , t 2 , t ′ 2 , t1 , t′ 1 , t2 , t′ 2 , t3 , t′ 3 ] where t i = div(T i ), t ′ i = div(T ′ i ), ti = div( Ti ) and t′ i = div( T ′ i ). We then have by [START_REF] Pieropan | Torsors and generalized Cox rings for Manin's conjecture[END_REF]Remark 2.51] that every Cox ring of injective type λ is isomorphic to the ring of invariant of 

Theorem 1 . 1 . 1 p 2 and χ the non-principal character modulo 4 .

 11124 There exists a constant ϑ > 0 and a polynomial Q ∈ R[X] of degree 3 such thatN U (B) = BQ(log B) + O(B 1-ϑ ).(1.2)The leading coefficient C of Q satisfies The constant C agrees with Peyre's prediction [29, Formule 5.1].

2 Figure 2 .

 22 Figure 2. The fan ∆.

[ 1 ,

 1 Proposition 1.15], one immediately sees that Pic( V ) is generated by D 1 , D 2 , D 3 , D 4 , D 5 with the relation D 5 = 2D 1 + D 2 -D 4 and that the divisor

e 1 T 1 + e 2 T 2 + e ′ 2 3 = [a 1 D 1 + a 3 D 3 + 1 ẽ′ 2 + 3 ,η 3 4 . 1 = η 5 + η 5 2 , x 2 = η 5

 112223113312341225 m∈T R m where R m is the vector space generated by the degree m elements of R. For m ∈ T given by m = [a 1 D 1 + a 3 D 3 + a 4 D 4 ] , we have to solve the following linear system with e i , e ′ i , ẽi , ẽ′i 0 to determine R m a 4 D 4 ] .Alluding to the fan ∆ ′ and [1, Proposition 1.15], we get that this linear system is equivalent to  ẽ3 -ẽ′ 3 = ẽ2 + ẽ′ 3 -ẽ3 e 2 + ẽ′ 3 -2ẽ 3 = e ′ 2 + ẽ3 -2ẽ ′ 3 = 0. This easily yields that R is generated byη 1 = t 1 , η 2 = t1 t′ 1 , η 3 = t2 t′ 2 , η 4 = t 2 t ′and η 5 the conjugate of η 5 with the relationη 5 η 5 = η 2 η 2 3Using the Galois invariant variablesx -η 5 2i one finally ensures that every Cox ring of injective type λ is isomorphic to R.Foundation of China under Grant 11531008, the Ministry of Education of China under Grant IRT16R43, and the Taishan Scholar Project of Shandong Province. The hospitality and financial support of these institutions are gratefully acknowledged.

  , Example 11.50], there exists a complete and regular refinement ∆ of ∆ given by the extra rays ρ1 , ρ2 , ρ3 , ρ′ 1 , ρ′ 2 , ρ′ 3 generated by -e 1 , -e 1 + e 2 , e 2 , -e 2 , e 1 -e 2 and e 1 .

  1, Proposition 1.15]. With the notations of [1, Proposition 1.15], we have M G ∼ = Z generated by e

* 1 + e * 2 if (e * 1 , e * 2
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Then, when ν 1 + ν 2 1, the value of r(p ν 1 +2ν 2 +3ν 3 , p ν 1 +ν 2 +ν 4 ) is given by

, ν 2 , ν 3 , ν 4 ) = (0, 0, 0, ν 4 ), r 0 (p 3ν 3 ) if (ν 1 , ν 2 , ν 3 , ν 4 ) = (0, 0, ν 3 , 0), 0 if (ν 1 , ν 2 ) = (0, 0), min{ν 3 , ν 4 } 1, p ≡ 2, 3 (mod 4), 2 if (ν 1 , ν 2 ) = (0, 0), min{ν 3 , ν 4 } 1, p ≡ 1 (mod 4),

The Dirichlet series associated to this counting problem is

It can be written as an Euler product of F p (s 1 , s 2 ), where

and

Let s stand for the pair (s 1 , s 2 ). Then there exists G such that

The above quantity G(s) can be written as an Euler product of G p (s) where G 2 (1/3, 1/3) = 2 -3 while, for p ≡ 3 (mod 4)

and for p ≡ 1 (mod 4),

The series F is absolutely convergent when ℜe(s 1 ) > 1 3 and ℜe(s 2 ) > 1 3

and the function G can be analytically continued to ℜe(s 1 ) > 1 6 and ℜe(s 2 ) > 1 6 . Moreover, we have

Thus F satisfies the assumptions of Theorem 1 of [START_REF] De La Bretèche | Estimation de sommes multiples de fonctions arithmétiques[END_REF] with (

It follows that there exists a constant ϑ > 0 and a polynomial Q ∈ R[X] of degree 3 such that

Now alluding to Theorem 2 of [START_REF] De La Bretèche | Estimation de sommes multiples de fonctions arithmétiques[END_REF] to get the leading coefficient C of Q, we obtain 

and therefore the leading coefficient C of Q is given by

.

3 ) = τ , from which (1.3) follows. This completes the proof.

The descent argument

Our main argument in order to derive Theorem 1.1 in section 3 consists of a descent from our original variety Ṽ onto the variety of equation

Although this is not required to verify Peyre's conjecture since Ṽ is a rational variety, it is particularly interesting to find out which torsor were used during this descent argument because Ṽ is a non-split variety. Indeed, as mentioned in [START_REF] Derenthal | Cox rings over nonclosed fields[END_REF], versal torsors parametrizations (see [START_REF] Colliot-Thélène | La descente sur mes variétés rationnelles II[END_REF] for precise definitions) are mostly used in the case of split varieties and the question of the right approach in the case of non-split varieties is quite natural. Using the Cox ring machinery over nonclosed fields developed in [START_REF] Derenthal | Cox rings over nonclosed fields[END_REF], all known examples of Manin's conjecture in the case of non-split varieties derived by means of a descent rely on a descent on quasi-versal torsors in the sense of [START_REF] Colliot-Thélène | La descente sur mes variétés rationnelles II[END_REF]. For example, the descent in [START_REF] Destagnol | La conjecture de Manin pour certaines surfaces de Châtelet[END_REF] is a descent on torsors of injective type Pic(V Q(i) ) ֒→ Pic(V Q ) whereas it is shown in [START_REF] Derenthal | Cox rings over nonclosed fields[END_REF] that the ad hoc descent used in [START_REF] De La Bretèche | On Manin's conjecture for singular del Pezzo surfaces of degree four II[END_REF] is a descent on the torsor of injective type Pic(V ) ֒→ Pic(V Q ). Here, we now show in the following lemma that the descent corresponds to a torsor of a different type, which is not quasi-versal.

With the notations of §2.