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ON A CERTAIN NON-SPLIT CUBIC SURFACE

R. DE LA BRETÈCHE, K. DESTAGNOL, J. LIU, J. WU & Y. ZHAO

Abstract. In this note, we establish an asymptotic formula with
a power-saving error term for the number of rational points of
bounded height on the singular cubic surface of P3

Q

x0(x
2

1
+ x

2

2
) = x

3

3

in agreement with the Manin-Peyre conjectures.

1. Introduction and results

Let V ⊂ P3
Q be the cubic surface defined by

x0(x
2
1 + x2

2)− x3
3 = 0.

The surface V has three singular points ξ1 = [1 : 0 : 0 : 0], ξ2 = [0 : 1 :
i : 0] and ξ3 = [0 : 1 : −i : 0]. It is easy to see that the only three lines
contained in VQ = V ×Spec(Q) Spec(Q) are

ℓ1 := {x3 = x1 − ix2 = 0}, ℓ2 := {x3 = x1 + ix2 = 0},

and

ℓ3 := {x3 = x0 = 0}.

Clearly both ℓ1 and ℓ2 pass through ξ1, which is actually the only
rational point lying on these two lines.
Let U = V r {ℓ1 ∪ ℓ2 ∪ ℓ3}, and B a parameter that can approach

infinity. In this note we are concerned with the behavior of the counting
function

NU(B) = #{x ∈ U(Q) : H(x) 6 B},

where H is the anticanonical height function on V defined by

H(x) := max
{
|x0|,

√
x2
1 + x2

2, |x3|
}

(1.1)

where each xj ∈ Z and gcd(x0, x1, x2, x3) = 1. The main result of this
note is the following.

Theorem 1.1. There exists a constant ϑ > 0 and a polynomial Q ∈
R[X ] of degree 3 such that

NU (B) = BQ(logB) +O(B1−ϑ). (1.2)
1
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The leading coefficient C of Q satisfies

C =
7

216
(3π)

(
π

4

)3

τ (1.3)

with

τ =
∏

p

(
1−

1

p

)4(
1−

χ(p)

p

)3(
1 +

2 + 3χ(p) + 2χ2(p)

p
+

χ2(p)

p2

)

and χ the non-principal character modulo 4. The constant C agrees

with Peyre’s prediction [29, Formule 5.1].

Remark. If follows from the arguments in [5] or [26] that, at least,
any ϑ < 1

9
is acceptable in Theorem 1.1, and further improvements are

possible.

The Manin-Peyre conjectures for smooth toric varieties were estab-
lished by Batyrev and Tschinkel in their seminal work [1]. Since our
cubic surface V is a (non-split) toric surface, the main term of the as-
ymptotic formula (1.2) can be derived from [1]. In addition to providing
a different proof of the Manin-Peyre’s conjectures for V and to getting a
power-saving error term of the counting function NU(B), this note also
serves to complement the results in [26], in which Manin’s conjecture
for the cubic hypersurfaces Sn ⊂ Pn+1 defined by the equation

x3
0 = (x2

1 + . . .+ x2
n)xn+1

with n = 4k was established. The cubic surface V is the case for n = 2.
We conclude the introduction by a brief discussion of the split toric

surface of P3
Q given by

V ′ : x0x1x2 = x3
3.

The variety V ′ is isomorphic to V over Q(i) and was well studied by
a number of authors. Manin’s conjecture for V ′ is a consequence of
Batyrev and Tschinkel [1]. Others include the first author [5], the first
author and Swinnerton-Dyer [8], Fouvry [19], Heath-Brown and Moroz
[23] and Salberger [32]. Derenthal and Janda [15] established Manin’s
conjecture for V ′ over imaginary quadratic fields of class number one
and Frei [21] further generalized their work to arbitrary number fields.
Of the unconditional asymptotic formulae obtained, the strongest is
the one in [5], which yields the estimate

NU(B) = BP (logB) +O
(
B7/8 exp(−c(logB)3/5(log logB)−1/5)

)
,

where U is a Zariski open subset of V ′, and P is a polynomial of degree 6
and c is a positive constant. In [8], even the second term of the counting
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function NU(B) is established under the Riemann Hypothesis as well
as the assumption that all the zeros of the Riemann ζ-function are
simple.

2. Geometry and Peyre’s constant

In [28], Peyre proposed a general conjecture about the shape of the
leading constant arising in the asymptotic formula for the number of
points of bounded height but only for smooth Fano varieties.
The surface V that we study in this note is singular so we can not

apply directly this conjecture and [28, Définition 2.1]. To get around
this, we construct explicitly in this section a minimal resolution π :

Ṽ → V of V and show that for U = V r{ℓ1∪ℓ2∪ℓ3} and Ũ = π−1(U),

we have π|Ũ : Ũ ∼= U . This implies that our counting problem on V

can be seen as a counting problem on the smooth variety Ṽ since

NU(B) = #{x ∈ Ũ(Q) : H ◦ π(x) 6 B}

where H ◦ π is an anticanonical height function on Ṽ . Indeed, by
[10, Lemma 1.1] the surface V has only du Val singularities which are
canonical singularities (see [25, Theorem 4.20]) and alluding to [25,
2.26, 4.3, 4.4 and 4.5], we can conclude that π∗KV = KṼ where KV

and KṼ denote the anticanonical divisors of V and Ṽ respectively.

However, Ṽ is not a Fano variety and therefore we still can not apply
[28, Définition 2.1].

We nevertheless establish in this section that Ṽ is “almost Fano” in
the sense of [29, Definition 3.1]. Alluding to the fact that the original
conjecture of Peyre has been refined by Batyrev and Tscinkel [2] and
Peyre [29] to this setting, we may refer to [29, Formule empirique 5.1]
to interpret the constant C arising in our Theorem 1.1. According to
[29, Formule empirique 5.1], the leading constant C in our Theorem 1.1
takes the form

C = α(Ṽ )β(Ṽ )τ(Ṽ ) (2.1)

where α(Ṽ ) is a rational number defined in terms of the cone of effec-

tive divisors, β(Ṽ ) a cohomological invariant and τ(Ṽ ) a Tamagawa
number. For more details, see définition 4.8 of [29].
Our main strategy to check that the constant C in Theorem 1.1

agrees with the prediction [29, Formule empirique 5.1] relies in a crucial
way on the (non-split) toric structure of the surface V and on results
from [2].
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2.1. Minimal resolution of V and interpretation of the power

of logB. We refer the reader to the following references for details
about toric varieties over arbitrary fields [27, 20, 13, 12] and especially
[3, 1] and [32, End of §8].
The toric surface V is easily seen to be an equivariant compactifica-

tion of the non-split torus T given by the equation x0(x
2
1 + x2

2) = 1.
The torus T is isomorphic to RQ(i)/Q(Gm) where RQ(i)/Q(·) denotes
the Weil restriction functor and is split by the quadratic extension

k = Q(i). We now introduce M = T̂k := Hom(T, k×) the group of
regular k-rational characters of T and N = Hom(M,Z). Alluding to
[34, Lemma 1.3.1], we see that M ∼= N ∼= Z×Z with the Galois group
G = Gal(k/Q) ∼= Z/2Z interchanging the two factors. Let (e1, e2) be a
Z-basis of N . In a similar manner as in [32, Example 11.50], we denote
by ∆ the fan of NR = N ⊗ R given by the rays ρ1, ρ2, ρ

′
2 generated by

−e1 − e2, −e1 + 2e2 and 2e1 − e2.

ρ1

ρ2

ρ′2

Figure 1. The fan ∆.

The fan ∆ is G-invariant in the sense of [5, Definition 1.11] and
hence defines a non-split toric surface P∆ over Q. Using the same ar-
guments as in [32, Example 11.50], one easily sees that the k-variety
P∆,k = P∆ ⊗Spec(Q) Spec(k) is given by the equation x3

3 = x0z1z2 with
G exchanging z1 and z2. The change of variables x1 = (z1 + z2)/2 and
x2 = (z1−z2)/(2i) yields that P∆,k is isomorphic to the variety of equa-
tion x3

3 = x0(x
2
1 + x2

2), all the variables being G-invariant. Hence, the
surface V is a complete algebraic variety such that V ⊗Spec(Q) Spec(k)
is isomorphic to P∆,k, the isomorphism being compatible with the G-
actions. Then, theorem 1.12 of [1] allows us to conclude that V is given
by the G-invariant fan ∆ after noting that the assumption that the fan
is regular is not necessary.
The fan ∆ is not complete and regular in the sense of [2, Definition

1.9] which accounts for the fact that V is singular. As in [32, Example

11.50], there exists a complete and regular refinement ∆̃ of ∆ given by
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the extra rays ρ̃1, ρ̃2, ρ̃3, ρ̃
′
1, ρ̃

′
2, ρ̃

′
3 generated by −e1, −e1 + e2, e2, −e2,

e1 − e2 and e1.

ρ1

ρ2

ρ′2

ρ̃1

ρ̃2
ρ̃3

ρ̃′1

ρ̃′3

ρ̃′2

Figure 2. The fan ∆̃.

The toric surface Ṽ defined over Q by the G-invariant fan ∆̃ is then
smooth by [1, Theorems 1.10 and 1.12] and, thanks to [12, 5.5.1] and
[20, §2.6], comes with a proper equivariant birational morphism π :

Ṽ → V which is an isomorphism on the torus T . Here T corresponds to
the open subset U = V r{ℓ1∪ℓ2∪ℓ3}. Now the proof of the proposition
11.2.8 of [11] yields that π is a crepant resolution and hence that it is
minimal since we are in dimension 2.
We note that thanks to [13, Corollaire 3] and [1, Proposition 1.15],

the minimal resolution Ṽ is “almost Fano” in the sense of [29, Definition
3.1].

Let us now turn to the computation of the Picard group of Ṽ . To
this end, we will exploit the exact sequence given by [1, Proposition
1.15]. With the notations of [1, Proposition 1.15], we have MG ∼= Z

generated by e∗1 + e∗2 if (e∗1, e
∗
2) is a Z-basis of M . Moreover, a function

ϕ ∈ PL(∆̃)G being completely determined by its integer values on ρ1, ρ2
and ρ̃1, ρ̃2 and ρ̃3, we have PL(∆̃)G ∼= Z5. Finally, the Z-module M is
a permutation module and therefore H1(G,M) is trivial. Bringing all

of that together yields that rk(Pic(Ṽ )) = 5− 1 = 4, which agrees with
the prediction coming from Manin’s conjecture regarding the power of
logB in Theorem 1.1.

2.2. The factor α. We will use the same method as in [4, Lemma 5]

to compute the nef cone volume α(Ṽ ) and we refer the reader to [4,
Lemma 5] for more details and definitions.

Let Ti, T
′
i , T̃i and T̃ ′

i be the Zariski closures of the one dimensional
tori corresponding respectively to the cones R>0ρi, R>0ρ

′
i, R>0ρ̃i and

R>0ρ̃
′
i. We also introduce the G-invariant divisors

D1 = T1, D2 = T2 + T ′
2, D3 = T̃1 + T̃ ′

1, D4 = T̃2 + T̃ ′
2, D5 = T̃3 + T̃ ′

3.
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Using [1, Proposition 1.15], one immediately sees that Pic(Ṽ ) is gener-
ated by D1, D2, D3, D4, D5 with the relation D5 = 2D1 +D2 −D4 and
that the divisor

D1 +D2 +D3 +D4 +D5 ∼ 3D1 + 2D2 +D3

is an anticanonical divisor for Ṽ . Following the strategy of [4, Lemma
5] and using the same notations than in [4, Lemma 5], it now follows
that C∨

eff is the subset of R4
>0 given by 2z1+ z2− z4 > 0 and that HṼ is

given by the equation 3z1 + 2z2 + z3 = 1. Therefore, a straightforward
computation finally yields

α(Ṽ ) =

∫ 1

0

(1− z3)
2dz3 ×

1

2
Vol

{
(z1, z4) ∈ R2

>0 :
3z1 6 1,
2z4 − z1 6 1

}

=
1

6

∫ 1

3

z1=0

(∫ 1+z1
2

z4=0

dz4

)
dz1 =

7

216
.

2.3. The factor β. Let us now briefly justify that β(Ṽ ) = 1. We know

that Ṽ is birational to the torus RQ(i)/Q(Gm). But the open immersion
Gm,Q(i) →֒ A2

Q(i) gives rise to an open immersion RQ(i)/Q(Gm) →֒ A2
Q by

taking the functor RQ(i)/Q(·) and by alluding to [33, Proposition 4.9].

Hence, RQ(i)/Q(Gm) is rational and so is Ṽ . Finally this implies that

β(Ṽ ) = 1 (see [4, section 5] for details).

2.4. The Tamagawa number.

2.4.1. Conjectural expression. Let us choose S = {∞, 2} and note that
our definition will be independent of that choice. We have from [3,

Theorem 1.3.2] that Pic(ṼQ) is the free abelian group generated by

the divisors T1, T2, T
′
2, T̃1, T̃

′
1, T̃2, T̃

′
2 defined in §2.2 with the following

G-action

σ(T2) = T ′
2, σ(T̃i) = T̃ ′

i (i ∈ {1, 2})

if σ denotes the complex conjugation. Alluding to [24, Defintion 7.1],
we have the following conjectural expression

τ(Ṽ ) := lim
s→1+

(s− 1)4LS(s, χPic(ṼQ))ω∞

∏

p

λ−1
p ωp

where

LS(s, χPic(ṼQ)) =
∏

p 6∈S

det
(
Id− p−sFrobp | Pic(ṼQ)

Ip
)−1
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with Ip the inertia group and Frobp a representative of the Frobenius
automorphism and where

λp = Lp(1, χPic(ṼQ)), ω∞ = ω∞,Ṽ (Ṽ (R)), ωp = ωp,Ṽ (Ṽ (Qp))

for measures ωv,Ṽ on Ṽ (Qv) whose proper definitions are postponed to

the next section (they are the measures ωK ,v defined in [1, §2]) and
where λp is taken to be 1 for p ∈ S.
Let ℜe(s) > 1. First we notice that for all p 6∈ S, we have that Ip is

trivial since p is not ramified in Q(i). Then the Frobenius Frobp being
trivial for all p ≡ 1mod 4, it is easy to see that in that case

det
(
Id− p−sFrobp | Pic(ṼQ)

Ip
)
=

(
1−

1

ps

)7

.

When p ≡ 3mod 4, Frobp is of order 2 with the same action than σ on

Pic(ṼQ) and hence one sees immediately that

det
(
Id− p−sFrobp | Pic(ṼQ)

Ip
)
=

(
1−

1

ps

)(
1−

1

p2s

)3

.

Bringing all of this together yields that

LS(s, χPic(ṼQ)) =
∏

p>2

(
1−

1

ps

)−4(
1−

χ(p)

ps

)−3

and

lim
s→1

(s− 1)4LS(s, χPic(ṼQ)) =
L(1, χ)2

24
=

1

24
×
(π
4

)3

and therefore

τ(Ṽ ) =
(π
4

)3
ω∞ ×

ω2

24
×
∏

p>2

(
1−

1

p

)4(
1−

χ(p)

p

)3

ωp.

2.4.2. Construction of the Tamagawa measure. Let us write here V(i)

for the affine subset of V where xi 6= 0 with coordinates x
(i)
j = xj/xi

for j 6= i. Note that V(i) is defined by the equation

f (i)(x
(i)
0 , . . . , x̂

(i)
i , . . . , x

(i)
3 ) =

(
x3

xi

)3

−
x0

xi

((
x1

xi

)2

+

(
x2

xi

)2
)

where (x
(i)
0 , . . . , x̂

(i)
i , . . . , x

(i)
3 ) denotes (x

(i)
0 , x

(i)
2 , x

(i)
3 ) after removing the

i-th component. The same arguments as in [22, §13] go through to
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yield that ωV
∼= OV (−1) and that such an isomorphism is given on V(i)

by

x−1
i 7−→

(−1)i+t

∂f (i)/∂x
(i)
j

dx
(i)
k ∧ dx

(i)
ℓ

for k < ℓ ∈ {0, 1, 2, 3} r {i}, {i, j, k, ℓ} = {0, 1, 2, 3} and t = k + ℓ if
k < i < ℓ and t = k+ ℓ− 1 otherwise. Moreover, we have already seen
that ωṼ

∼= π∗ωV . The dual sections τi of si in ω−1
V

∼= OV (1) define the
embedding V →֒ P3 under consideration in this note and the morphism

Ṽ → V →֒ P3 is given by the sections π∗τi of H
0(Ṽ , ω−1

Ṽ
).

Consider now the subsequent Arakelov heights (ω−1

Ṽ
, (||.||v)v∈Val(Q))

and (ω−1
V , (||.||′v)v∈Val(Q)) defined by these global sections where for all

v ∈ Val(Q), x ∈ V (Qv), y ∈ Ṽ (Qv), τ ∈ ω−1

Ṽ
and σ ∈ ω−1

V we use
respectively the v-adic metrics defined by

||τ ||v = min
06i63

π∗τi 6=0

{∣∣∣∣
τ

π∗τi(x)

∣∣∣∣
v

}

if v is finite and

||τ ||∞ = min



 min

i∈{0,3}
π∗τi 6=0

{∣∣∣∣
τ

π∗τi(x)

∣∣∣∣
∞

}
,

(∣∣∣∣
π∗τ1(x)

τ

∣∣∣∣
2

∞

+

∣∣∣∣
π∗τ2(x)

τ

∣∣∣∣
2

∞

)− 1

2





if v is the archimedean place and τ 6= 0 and

||σ||′v = min
06i63

τi 6=0

{∣∣∣∣
σ

τi(y)

∣∣∣∣
v

}

if v is finite and

||σ||′∞ = min



 min

i∈{0,3}
τi 6=0

{∣∣∣∣
σ

τi(y)

∣∣∣∣
∞

}
,

(∣∣∣∣
τ1(y)

σ

∣∣∣∣
2

∞

+

∣∣∣∣
τ2(y)

σ

∣∣∣∣
2

∞

)− 1

2





if v is the archimedean place and σ 6= 0. These heights correspond

to the heights H on V and H ◦ π on Ṽ that we used in our counting
problem. Applying the definition 2.2.1 of [29], we get a measure ωv,Ṽ

on Ṽ (Qv) associated to the v-adic metric ||.||v which is the measure
defined in [1, §2] and used in §2.4.1 and a measure ωv,V on V (Qv)
associated to the v-adic metric ||.||′v.

2.4.3. Computation of the archimedean density. We follow once again
the strategy adopted in [22, §13]. One sees easily that U = V(3) and
the same argument as in [22, §13] shows that

ω∞ = ω∞,Ṽ (Ṽ (R)) = ω∞,Ṽ (π
−1(U)(R)).
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Now the local coordinates x
(3)
1 −1 and x

(3)
2 at the rational point (1, 1, 0)

of U give an isomorphism

U(R) ∼= W = {(z1, z2) ∈ R2 : (z1 + 1)2 + z22 6= 0}

and a similar computation as in [22, §13] yields

ω∞,Ṽ (π
−1(U)(R)) =

∫

R2

dz1dz2
max {1, z21 + z22 , (z

2
1 + z22)

3/2}

=

∫

z2
1
+z2

2
61

dz1dz2 +

∫

z2
1
+z2

2
>1

dz1dz2
(z21 + z22)

3/2

= 3π

after a polar change of coordinates. We can therefore conclude that
ω∞ = 3π.

2.4.4. Computation of ωp for odd p. Thanks to the remarks of [32,

Page 187], one can construct a model Ṽ over Spec(Z) satisfying the
conditions of [29, Notation 4.5] with S = {∞, 2}. Hence, one can

consider the reduction Ṽp modulo p of Ṽ for every prime number p.
The torus T has good reduction Tp for every prime p > 2 since p is

not ramified in Q(i) and Tp is a split torus of rank 2 if p ≡ 1mod 4
and a non-split torus of rank 2 split by Fp2 if p ≡ 3mod 4. Hence,

the reduction Ṽp modulo p can be realized as the toric variety over Fp

under the torus Tp given by the fan ∆′ which is invariant under Frobp.

Since the fan stays regular and complete, we can conclude that Ṽp is

smooth and hence that Ṽ has good reduction modulo p > 2 (see [12]).
We can therefore apply [24, Corollary 6.7] to obtain for all odd p the

following expression

ωp =
#Ṽ (Fp)

p2
.

Now alluding to Weil’s formula, we obtain

ωp = 1 +
Tr(Frobp|Pic(ṼQ))

p
+

1

p2
= 1 +

4 + 3χ(p)

p
+

1

p2

by using the description of the action of Frobp on Pic(ṼQ) given in §2.4.1.

2.4.5. Computation of ω2. For p = 2, the model Ṽ having bad reduc-
tion, we appeal to the lemma 6.6 of [24] to compute ω2. By [1, Propo-
sition 2.10] and noting that the smooth assumption is not necessary,
one gets

ω2,Ṽ (Ṽ (Q2)) = ω2,Ṽ (π
−1(U)), ω2,V (V (Q2)) = ω2,V (U).
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Now an analogous computation as the one in §2.4.3 yields that both
quantities ω2,Ṽ (π

−1(U)) and ω2,V (U) are equal to the expression
∫

W

dz1dz2
max {1, |z21 + z22 |2, |z1(z

2
1 + z22)|2, |z2(z

2
1 + z22)|2}

with W = {(z1, z2) ∈ Q2
2 : (z1 + 1)2 + z22 6= 0}. Therefore, ω2 is equal

to ω2,V (V (Q2)) and [24, Remark 6.8] implies that

ω2 = lim
n→+∞

N(2n)

23n
,

where

N(2n) := #
{
x (mod 2n) : x0(x

2
1 + x2

2) ≡ x3
3 (mod 2n)

}
.

Let v2(x
2
1 + x2

2) = k and v2(x0) = k0. If k = 1 + 2k′ is odd and
1 + 2k′ < n, then the number of (x1, x2) satisfying v2(x

2
1 + x2

2) = k is
22n−2k′−2. There are 2n−(1+2k′+k0)/3−1 ways to choose x3 and then 22k

′+1

choices for x0. Then, in the case where v2(x
2
1 + x2

2) is odd, the number
of solutions is asymptotic to

23n
∑

3|1+2k′+k′
0

k′>0

2−2−(1+2k′+k′
0
)/3 ∼

5

6
23n.

The number of (x1, x2) satisfying v2(x
2
1 + x2

2) = 2k′ is, at least for
2k′ < n, equal to 22n−2k′−1. There are 2n−(2k′+k0)/3−1 ways to choose x3

and then 22k
′
choices for x0. Summing over 3 | 2k′ + k0 and k′ > 0

we get the contribution of the case v2(x
2
1 + x2

2) even in N(2n), which is
asymptotic to 7

6
· 23n. It follows that

ω2 = 2 = 1 +
2 + 3χ(2) + 2χ2(2)

2
+

χ2(2)

22
.

2.4.6. Conclusion. Bringing everything together yields the following
expression for the Peyre constant

α(Ṽ )β(Ṽ )τ(Ṽ ) =
7

216
(3π)

(
π

4

)3

τ.

This is in agreement with the constant C in (1.3).

3. Proof of Theorem 1.1

By symmetry, we have

NU(B) = #

{
x ∈ E : x0(x

2
1 + x2

2) = x3
3, max

{
x0,
√

x2
1 + x2

2

}
6 B

}
,
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where E := {x ∈ N × Z2 × N : gcd(x0, x1, x2, x3) = 1} and N = Z>1.
As in [5], we parametrize x2

1 + x2
2, x0 and x3 by

x2
1 + x2

2 = n1n
2
2n

3
3, x0 = n2

1n2n
3
4, x3 = n1n2n3n4,

where n1 and n2 are squarefree and gcd(n1, n2) = 1 which is equivalent
to µ2(n1n2) = 1. It follows that

NU(B) = 4
∑

n∈N4

µ2(n1n2)=1
n2
1n2n3

46B

n1n2
2n

3
36B2

r(n1n
2
2n

3
3, n1n2n4)

where

r(n,m) := 1
4
#
{
(x1, x2) ∈ Z2 : x2

1 + x2
2 = n, ((x1, x2), m) = 1

}
.

Here, we remark that our choice of height function is particularly
well suited to handle the expression r(n,m).
Let χ be the non-principal character modulo 4 and r0 := 1 ∗ χ. The

quantity r(n,m) is a multiplicative arithmetic function in n, and we
have

r(n,m) :=
∏

p

r
(
pvp(n), pvp(m)

)
.

We use the fact that, when ν > 1,

r(pν , p) =





2 if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4),

1 if ν = 1, p = 2,

0 if ν > 2, p = 2.
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Then, when ν1 + ν2 6 1, the value of r(pν1+2ν2+3ν3, pν1+ν2+ν4) is given
by




1 if (ν1, ν2, ν3, ν4) = (0, 0, 0, ν4),

r0(p
3ν3) if (ν1, ν2, ν3, ν4) = (0, 0, ν3, 0),

0 if (ν1, ν2) = (0, 0), min{ν3, ν4} > 1, p ≡ 2, 3 (mod 4),

2 if (ν1, ν2) = (0, 0), min{ν3, ν4} > 1, p ≡ 1 (mod 4),

0 if min{ν1, ν3} > 1, p ≡ 2, 3 (mod 4),

2 if min{ν1, ν3} > 1, p ≡ 1 (mod 4),

0 if ν1 = 1, ν3 = 0, p ≡ 3 (mod 4),

2 if ν1 = 1, ν3 = 0, p ≡ 1 (mod 4),

1 if ν1 = 1, ν3 = 0, p = 2,

0 if ν2 = 1, p ≡ 2, 3 (mod 4),

2 if ν2 = 1, p ≡ 1 (mod 4).

The Dirichlet series associated to this counting problem is

F (s1, s2) :=
∑

n∈N4

µ2(n1n2)=1

r(n1n
2
2n

3
3, n1n2n4)

n2s1+s2
1 ns1+2s2

2 n3s2
3 n3s1

4

,

(
ℜe(s1),ℜe(s2) >

1

3

)
.

It can be written as an Euler product of Fp(s1, s2), where

F2(s1, s2) =
1

1− 2−3s1
+

1

23s2 − 1
+

1

22s1+s2(1− 2−3s1)
,

Fp(s1, s2) =
1

1− p−3s1
+

1

p6s2 − 1
,

if p ≡ 3 (mod 4) and

Fp(s1, s2) =
1

1− p−3s1
+

4− p−3s2

p3s2(1− p−3s2)2

+ 2
p−3(s1+s2) + p−(2s1+s2) + p−(s1+2s2)

(1− p−3s2)(1− p−3s1)
,

if p ≡ 1 (mod 4). For Re(s) > 1, let

ζQ(i)(s) :=
∑

n>1

r0(n)

ns
= ζ(s)L(s, χ)

=
1

1− 2−s

∏

p≡3 (mod 4)

1

1− p−2s

∏

p≡1 (mod 4)

1

(1− p−s)2
.

Let s stand for the pair (s1, s2). Then there exists G such that

F (s) = ζ(3s1)ζQ(i)(3s2)
2ζQ(i)(s1 + 2s2)ζQ(i)(s2 + 2s1)G(s).
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The above quantity G(s) can be written as an Euler product of Gp(s)
where

G2(1/3, 1/3) = 2−3

while, for p ≡ 3 (mod 4)

Gp(s) =
(
1− p−2(s1+2s2)

)2(
1− p−2(2s1+s2)

)(
1− p−3(s1+2s2)

)
.

and for p ≡ 1 (mod 4),

Gp(s) =
(
1− p−3s2

)4(
1− p−(s1+2s2)

)2(
1− p−(2s1+s2)

)2

+
(
1− p−3s1

)(
4p−3s2 − p−6s2

)

×
(
1− p−3s2

)2(
1− p−(s1+2s2)

)2(
1− p−(2s1+s2)

)2

+ 2
(
p−3(s1+s2) + p−(2s1+s2) + p−(s1+2s2))

×
(
1− p−3s2

)3(
1− p−(s1+2s2)

)2(
1− p−(2s1+s2)

)2
.

The series F is absolutely convergent when ℜe(s1) >
1
3
and ℜe(s2) >

1
3

and the function G can be analytically continued to ℜe(s1) > 1
6
and

ℜe(s2) >
1
6
. Moreover, we have

G

(
1

3
,
1

3

)
=

1

23

∏

p 6=2

(
1−

1

p

)4(
1−

χ(p)

p

)3(
1 +

4 + 3χ(p)

p
+

1

p2

)

= τ. (3.1)

Thus F satisfies the assumptions of Theorem 1 of [6] with (β1, β2) =
(1, 2), (α1, α2) = (1

3
, 1
3
),

ℓ1(s) = 3s1, ℓ2(s) = ℓ3(s) = 3s2,

ℓ4(s) = s1 + 2s2, ℓ5(s) = 2s1 + s2.

It follows that there exists a constant ϑ > 0 and a polynomialQ ∈ R[X ]
of degree 3 such that

NU (B) = BQ(logB) +O(B1−ϑ).

Now alluding to Theorem 2 of [6] to get the leading coefficient C of Q,
we obtain

Q(logB) ∼
B→+∞

4L(1, χ)4G(1
3
, 1
3
)

B

∫
(y1,y2,y3,y4,y5)∈[1,+∞[5

y3
1
y4y256B, y3

2
y3
3
y2
4
y56B2

dy

∼
B→+∞

4

(
π

4

)4

G
(1
3
,
1

3

)∫
(y3,y4,y5)∈[1,+∞[3

y4y256B, y3
3
y2
4
y56B2

dy

y3y4y5

∼
B→+∞

π4

26
G
(1
3
,
1

3

)
(logB)3I,
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where

I :=vol
{
(t3, t4, t5) ∈ R3

+ : t4 + 2t5 6 1, 3t3 + 2t4 + t5 6 2
}
.

An straightforward computation immediately yields

I =
1

3

∫ 1/2

0

∫ 1−2t5

0

(2− 2t4 − t5)dt4dt5 =
7

72
,

and therefore the leading coefficient C of Q is given by

C =
7

216

(π
4

)3
(3π)G

(1
3
,
1

3

)
.

By (3.1) we have G(1
3
, 1
3
) = τ , from which (1.3) follows. This completes

the proof.

4. The descent argument

Our main argument in order to derive Theorem 1.1 in section 3
consists of a descent from our original variety Ṽ onto the variety of
equation

x2
1 + x2

2 = n1n
2
2n

3
3.

Although this is not required to verify Peyre’s conjecture since Ṽ is a
rational variety, it is particularly interesting to find out which torsor
were used during this descent argument because Ṽ is a non-split variety.
Indeed, as mentioned in [17], versal torsors parametrizations (see [9]
for precise definitions) are mostly used in the case of split varieties
and the question of the right approach in the case of non-split varieties
is quite natural. Using the Cox ring machinery over nonclosed fields
developed in [17], all known examples of Manin’s conjecture in the case
of non-split varieties derived by means of a descent rely on a descent on
quasi-versal torsors in the sense of [9]. For example, the descent in [18]
is a descent on torsors of injective type Pic(VQ(i)) →֒ Pic(VQ) whereas
it is shown in [17] that the ad hoc descent used in [7] is a descent on the
torsor of injective type Pic(V ) →֒ Pic(VQ). Here, we now show in the
following lemma that the descent corresponds to a torsor of a different
type, which is not quasi-versal.
With the notations of §2.2, we set T̂ = [D1]Z ⊕ [D3]Z ⊕ [D4]Z and

λ : T̂ →֒ Piv(ṼQ) be the natural embedding.

Lemma 4.1. Every Cox ring of injective type λ is isomorphic to the

Q-algebra

R = Q[x1, x2, η1, η2, η3, η4]/
(
x2
1 + x2

2 − η2η
2
3η

3
4

)
.
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Proof. The proof is very similar to the one in [31, Proposition 2.71] and

that is why we will not repeat all the details here. Since ṼQ is a split

toric variety, we know by [32] that a Cox ring of identity type for ṼQ

is given by
R = Q[t1, t2, t

′
2, t̃1, t̃

′
1, t̃2, t̃

′
2, t̃3, t̃

′
3]

where ti = div(Ti), t
′
i = div(T ′

i ), t̃i = div(T̃i) and t̃′i = div(T̃ ′
i ). We

then have by [31, Remark 2.51] that every Cox ring of injective type λ
is isomorphic to the ring of invariant of

⊕

m∈T̂

Rm

where Rm is the vector space generated by the degree m elements of
R. For m ∈ T̂ given by m = [a1D1 + a3D3 + a4D4] , we have to solve
the following linear system with ei, e

′
i, ẽi, ẽ

′
i > 0 to determine Rm[

e1T1 + e2T2 + e′2T
′
2 + ẽ1T̃1 + ẽ′1T̃

′
1 + ẽ2T̃2 + ẽ′2T̃

′
2 + ẽ3T̃3 + ẽ′3T̃

′
3

]

= [a1D1 + a3D3 + a4D4] .

Alluding to the fan ∆′ and [1, Proposition 1.15], we get that this linear
system is equivalent to




ẽ′3 + ẽ1 = ẽ3 + ẽ′1
ẽ′2 + ẽ3 − ẽ′3 = ẽ2 + ẽ′3 − ẽ3
e2 + ẽ′3 − 2ẽ3 = e′2 + ẽ3 − 2ẽ′3 = 0.

This easily yields that R is generated by

η1 = t1, η2 = t̃1t̃
′
1, η3 = t̃2t̃

′
2, η4 = t2t

′
2t̃3t̃

′
3, η5 = t̃1t̃

2
2t

3
2t̃

2
3t̃

′
3,

and η5 the conjugate of η5 with the relation

η5η5 = η2η
2
3η

3
4.

Using the Galois invariant variables

x1 =
η5 + η5

2
, x2 =

η5 − η5
2i

one finally ensures that every Cox ring of injective type λ is isomorphic
to R. �
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[19] É. Fouvry, Sur la hauteur des points d’une certaine surface cubique singulière,
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Bordeaux 15 (2003), no. 1, 319–349.

[30] E. Peyre and Y. Tschinkel, Tamagawa numbers of diagonal cubic surfaces,
numerical evidence, Math. Comput., vol. 70, 233, (2001) , 367–387.

[31] M. Pieropan, Torsors and generalized Cox rings for Manin’s conjecture, PhD
thesis, (2015).

[32] P. Salberger, Tamagawa measures on universal torsors and points of bounded
height on Fano varieties, Astérisque, 251, (1998), 91–258.
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18 R. DE LA BRETÈCHE, K. DESTAGNOL, J. LIU, J. WU & Y. ZHAO

Jie Wu, CNRS, UMR 8050, Laboratoire d’Analyse et de Mathématiques
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