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COMPLEX LEGENDRE DUALITY

BO BERNDTSSON, DARIO CORDERO-ERAUSQUIN, BO’AZ KLARTAG, YANIR A. RUBINSTEIN

ABSTRACT. We introduce complex generalizations of the classical Legendre transform, operating
on Kähler metrics on a compact complex manifold. These Legendre transforms give explicit local
isometric symmetries for the Mabuchi metric on the space of Kähler metrics around any real
analytic Kähler metric, answering a question originating in Semmes’ work.

1. INTRODUCTION

For a functionψ : RN → R its classical Legendre transform is defined as [9, 15]

(1.1) ψ∗(y) = sup
x
[x · y − ψ(x)].

This transform plays an important role in several parts of mathematics, notably in classical me-
chanics and convex geometry. Being the supremum of affine functions (of y), ψ∗ is always
convex and in caseψ is convex it equals the Legendre transform of its Legendre transform. One
easily verifies (see Section 2) thatψ∗ = ψ if and only ifψ(x) = x2/2, so the Legendre transform
is a symmetry on the space of convex functions around its fixedpointx2/2.

In particular this applies whenRN = Cn. In this case we change the definition slightly and
put

(1.2) ψ̂(w) = sup
z
[2Re (z · w̄)− ψ(z)],

wherea · b :=
∑n

i=1 aibi. The reason for this change is that while the supremum in (1.1) is
attained ify = ∂ψ(x)/∂x, the supremum in (1.2) is attained ifw = ∂ψ(z)/∂z̄, and one verifies
that the unique fixed point is nowψ(z) = |z|2.

In this connection a very interesting observation was made by Lempert, [13]: Putωψ := i∂∂̄ψ.
Assuming thatψ is smooth and strictly convex,g∗ωψ̂ = ωψ, if g(z) = ∂ψ(z)/∂z̄. It follows from
this that

(1.3) g∗ωn
ψ̂
= ωnψ.

The measureωnψ/n! =: MAC(ψ) is the complex Monge–Ampère measure associated toψ, and

Lempert’s theorem thus implies that MAC(ψ) and MAC(ψ̂) are related under the gradient map
g. This may be compared and perhaps contrasted to the way real Monge–Ampère measures
transform under gradient maps, see Section 2.

At this point we recall the definition of the Mabuchi metric inthe somewhat nonstandard
setting of smooth, strictly plurisubharmonic functions onCn. The idea is to view this space
as an infinite dimensional manifold; an open subset of the space of all smooth functions. Its
tangent space at a pointφ should consist of smooth functionsχ such thatφ+ tχ remains strictly
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plurisubharmonic fort close enough to zero. This set of course depends on the particularφ we
have chosen, but at any rate the tangent space will always contain smooth functions of compact
support, so we take by definition the space of such functions as our tangent space. The Mabuchi
norm of a tangent vectorχ at a pointφ is now defined by

(1.4) ‖χ‖2φ :=

∫

Cn

|χ|2ωnφ/n!.

We will interpret (1.3) as saying that the Legendre transform is an isometry for the Mabuchi
metric on the space of convex functions (see section 4). It follows, at least formally, that the
Legendre transform maps geodesics for the Mabuchi metric togeodesics, which reflects the so
called duality principle for the complex method of interpolation [3].

This is only a special case of Lempert’s result, which implies that a much more general class
of gradient-like maps are isometries for the Mabuchi metric. In this note we will develop this
scheme and define ‘Legendre tranforms’ for Kähler potentials over a manifoldM , usually com-
pact.

For this we note first that the usual Legendre transform is notinvolutive on all plurisubhar-
monic functions, but just on convex functions, hence in particular on functions that are close to
its fixed point|z|2. Imitating this, we start with a (local) Kähler potentialφ onM , and define a
’Legendre tranform’ depending onφ that is defined for potentials close toφ, fixesφ and is an
isometry for the Mabuchi metric. For this to work, we need to assume thatφ is real analytic.
The definition of theφ-Legendre transform involves a polarization of our real analytic potential,
which is locally a functionφC(z, w) defined near the diagonal inM ×M . φC is holomorphic
in z, antiholomorphic inw and coincides withφ on the diagonal (these properties determineφC

uniquely). Roughly speaking, the idea is then to replacez · w̄ by φC and define our transform as

(1.5) (Lφψ)(w) := sup
z
[2ReφC(z, w)− ψ(z)].

Whenφ(z) = |z|2 this gives us back the Legendre transform of (1.2). Let us first examine this
transform in the case of a linear space, the cradle of the classical Legendre transform. Write
∆Cn = {(z, z) ; z ∈ C

n} for the diagonal. We say that a smooth functionφ onC
n is strongly

plurisubharmonic if its complex Hessian is bounded from below by a positive constant, uniformly
at all points ofCn.

Theorem 1.1. Let φ : Cn → R be a real-analytic, strongly plurisubharmonic function. Then
there are an open setVφ ⊆ Cn×Cn containing∆Cn and a neighborhoodU of φ in theC2-norm
onCn with the following properties:

0. For u ∈ U the functionLφ(u) : Cn → R ∪ {+∞} is well-defined, where the supremum in
(1.5) runs over allz with (z, w) ∈ Vφ.

1. Lφ(u) = u if and only ifu = φ.
2. Foru in a smaller neighbourhoodU ′ ⊂ U , the functionLφ(u) lies inU andL2

φ(u) = u.
3. Lφ is an isometry for the Mabuchi metric restricted toU .

The transform in (1.5) works fine ifφ, ψ andφC are defined on all ofCn or C2n, but for
functions that are only locally well defined we need to find a variant of the definition that has a
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global meaning on a manifold. For this it turns out to be very convenient to use a remarkable
idea of Calabi, [5]. The Calabidiastasis functionis defined as

Dφ(z, w) = φ(z) + φ(w)− 2ReφC(z, w).

We then change the above definition by applying it toψ + φ instead ofψ, and then subtractφ
afterwards. This way we arrive at the equivalent transform

Lφ(ψ)(w) := Lφ(ψ + φ)(w)− φ(w) = sup
z
(−Dφ(z, w)− ψ(z)).

Notice that in the classical case whenφ(z) = |z|2, Dφ(z, w) = |z − w|2 and the transform
becomes the familiar variant of the Legendre transform

sup
z

−(|z − w|2 + ψ(z)).

The point of this is that, as is well known from the work of Calabi, Dφ only depends onωφ =
i∂∂̄φ, i e it does not change if we add a pluriharmonic function toφ. As we shall see this implies
that our construction ofLφ = Lωφ globalizes and becomes well defined on functionsψ on a
manifoldM that are close to 0 in theC2-norm. Following the ideas, but not the precise proof, of
Lempert, we can then verify thatLωφ is an isometry for the Mabuchi metric onUωφ. Our main
result is as follows:

Theorem 1.2. LetM be a compact Kähler manifold, and letω be a real analytic Kähler form
onM . LetHω := {u ∈ C∞(M); i∂∂̄u+ ω > 0}. Then the generalized Legendre transform,Lω
(defined in section 4) is defined on a neigbourhoodU of 0 inHω in theC2-toplogy and

1. Lω(u) = u if and only ifu = 0.
2. Foru in a smaller neighbourhoodU ′ ⊂ U , Lω(u) lies inU andL2

ω(u) = u.
3. Lω is an isometry for the Mabuchi metric onHω restricted toU .

2. THE CLASSICAL LEGENDRE TRANSFORM

As a warm up and for comparison we first briefly look at the classical Legendre transform,
(1.1). If ψ is differentiable, and if the supremum in the right hand sideis attained in a pointx,
theny = ∂ψ/∂x =: gψ(x). Hence we have that

(2.1) x · y ≤ ψ(x) + ψ∗(y)

with equality if and only ify = gψ(x), or in other wordsx · gψ(x) − ψ(x) = ψ∗(gψ(x)). If
moreoverψ is assumed smooth and strictly convex,gψ is invertible. It follows thatψ∗ is also
smooth, and by the symmetry of (2.1) that the inverse ofgψ is gψ∗. Recall that the (real) Monge–
Ampère measure of a (smooth) convex function is MAR(ψ) := det(ψj,k(x))dx. It follows from
the above that

g∗ψ(dy) = MAR(ψ), and g∗ψ∗(dx) = MAR(ψ
∗).

We next turn to the Legendre transform of functions onCn and its relation to complex Monge–
Ampère measures. We then redefine the Legendre transform by (1.2). Equality now occurs when
w = ∂ψ(z)/∂z̄ =: gψ, where we have also redefined the gradient mapg to fit better with complex
notation. We now give the first case of Lempert’s theorem; it should be compared to howreal
Monge–Ampère measures transform.
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Theorem 2.1. (Lempert)With the above notation

(2.2) g∗ψ(ωψ̂) = ωψ,

so the complex Monge–Ampère measures ofψ andψ̂ are related byg∗ψ(MAC(ψ̂)) = MAC(ψ).

Proof. Let Λ = {(z, w);w = gψ(z)} be the graph of the gradient mapgψ considered as a
submanifold ofC2n. OnΛ

d(z · w̄) = ∂ψ(z) + ∂̄ψ̂(w).

(This is simply because when(z, w) lie onΛ, then∂ψ(z) =
∑

w̄jdzj and∂̄ψ̂(w) =
∑

zjdw̄j.)
Since the left hand side is a closed form, it follows that

∂̄∂ψ(z) = d∂ψ(z) = −d∂̄ψ̂(w) = −∂∂̄ψ̂(w).
If we pull back this equation under the mapz → (z, gψ(z)) we get

∂∂̄ψ = g∗ψ(∂∂̄ψ̂),

which proves the theorem. �

We remark that the apparent discrepancy between how the gradient map transforms the real
versus the complex Monge–Ampère measures can be rectified asfollows. First, since[ψij ] :=
[ψij ]

−1 = [ψ∗

ij ] under appropriate regularity assumptions, the Riemannianmetricψijdxi ⊗ dxj is
the pull-back ofψ∗

ijdy
i ⊗ dyj via the gradient map∇ψ : Rn → Rn. Therefore the gradient map

pulls back the measure
√

det[ψ∗

ij ]dy
1∧· · ·∧dyn to the measure

√

det[ψij ]dx
1∧· · ·∧dxn. When

M has toric symmetry, Theorem 2.1 precisely produces this observation via a careful translation
between the real notation and the complex notation (cf. the proof of [6, Proposition 2.1]).

3. COMPLEX LEGENDRE TRANSFORMS

Let Ω denote a domain inCn. Denote byφ a real-analytic psh function onΩ. Denote byφC

the analytic extension ofφ to a holomorphic function on a neighborhoodWφ of the diagonal
in Cn × Cn (whenever(M,J) is a complex manifold we denote byM the complex manifold
(M,−J)). Such an extension exists since the diagonal

∆C := {(p, p) ∈ C
n × C

n : p ∈ C
n}

is totally real inCn × Cn. We immediately switch point of view and work from now on in
Cn × Cn, whereφC can be considered as a function on

Wφ ⊂ C
n × C

n

that is holomorphic in the first factor and anti-holomorphicin the second. Explicitly, if in local
coordinates

φ(z) =
∑

cα,βz
αz̄β ,

then
φC(z, w) =

∑

cα,βz
αw̄β.
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TheCalabi diastasis functionassociated to a real-analytic strongly psh functionφ onΩ ⊂ Cn

is the function

(3.1) Dφ(p, q) := φ(p) + φ(q)− φC(p, q)− φC(q, p) = φ(p) + φ(q)− 2ReφC(p, q).

defined onWφ ⊂ Ω × Ω. ClearlyDφ(p, q) = Dφ(q, p) with Dφ(p, p) = 0. In the local coordi-
nates,

Dφ(p, q) =
∑

cα,β(p
α − qα)(pβ − qβ).

Note that the first non-zero term in the Taylor series is non-negative asφ is psh. Moreover, denote
byπi : Cn×Cn → Cn, i = 1, 2, the natural projections, i.e.,π1(z, w) = z, π2(z, w) = w. Calabi
proves the following [5].

Lemma 3.1. There exists an open neighborhoodVφ of ∆Ω contained inWφ on whichDφ( · , q)
is strongly convex with

(3.2) Dφ(z, q) ≥ C|z − q|2 onπ1(Vφ ∩ Ω× {q}).
We can now define a Legendre type transform associated toφ. For simplicity, whenever we

refer to a function in our discussions below, we do not allow the constant function+∞. We
denote by uscf the upper semi-continuous (usc) regularization of a functionf : X → R,

uscf(x) := lim
δ→0

sup
y∈X

|y−x|<δ

f(y).

It is the smallest usc function majorizingf .

Definition 3.2. The complex Legendre transformLφ is a mapping taking a functionψ : Ω →
R ∪ {∞} to

Lφ(ψ)(q) := usc sup
p∈Ω

(p,q)∈Vφ

[2ReφC(p, q)− ψ(p)].

SinceReφC(p, q) is pluriharmonic inq, Lφ is psh. The definition depends onVφ, and we
discuss that dependence later.

Whenφ(z) = |z|2, thenφC(z, w) = z ·w, whileDφ(z, w) = |z−w|2, C = 1 andWφ = Vφ =
Cn × Cn; we recover, up to a factor of 2, the Legendre transform onR2n.

Lemma 3.3. Letψ : Ω → R ∪ {∞}. ThenLφ(ψ) = ψ if and only ifψ = φ.

Proof. According to Lemma 3.1, whenever(z, w) ∈ Vφ,

2ReφC(z, w) ≤ φ(z) + φ(w),

with equality iff z = w. ThusLφφ = φ. Conversely, supposeLφψ = ψ. Then, whenever
(z, w) ∈ Vφ,

ψ(z) + Lφψ(w) = ψ(z) + ψ(w) ≥ 2ReφC(z, w).

Settingz = w givesψ ≥ φ. Since the complex Legendre transform is order-reversing then also
ψ ≤ φ. �

Definition 3.4. Say that a functionψ : Ω → R ∪ {∞} is φ-convex ifψ = Lφη for some usc
functionη : Ω → R ∪ {∞}.
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Lemma 3.5. Let η : Ω → R ∪ {∞} be usc. ThenL2
φη ≤ η with equality iffη is φ-convex.

Proof. Whenever(z, w) ∈ Vφ,

η(z) + Lφη(w) ≥ 2ReφC(z, w).

Thus,

(3.3) L2
φη(z) = uscsup

w
[2ReφC(w, z)−Lφη(w)] ≤ uscη(z) = η(z).

Next, if L2
φη = η, then by definitionη is φ-convex. It remains therefore to show the converse,

and for this it suffices to show thatL3
φν = Lφν for any usc functionν : Ω → R∪{∞}. By (3.3),

L3
φν ≤ Lφν. However,L2

φν ≤ ν by (3.3), thusL3
φν ≥ Lφν.

�

4. LEGENDRE DUALITY ON COMPACT MANIFOLDS

Remarkably, a variant of these transforms can be defined on any Kähler manifoldM . Let ω
be a closed strictly positive real-analytic(1, 1)-form onM . Locally thenω equals

√
−1∂∂̄u for

some strongly psh real-analytic functionu, and we defineuC and subsequently

Dω := Du,

locally. To check that these definitions are actually consistent globally and give rise to a diastasis
function on a non-empty neighborhood of∆M it suffices to observe [5] that wheneverh is a real-
valued function on a ball inCn that is pluriharmonic, i.e.,

√
−1∂∂̄h = 0, thenh = h1(p)+h1(p)

with h1 holomorphic; thus,hC(p, q̄) = h1(p) + h1(q), soDh ≡ 0. Once again, by a variant of
Lemma 3.1 [5, Proposition 5] we obtain an open neighborhoodVω of the diagonal on whichDω

is nonnegative and strongly convex in each variable and on which ω admits local real analytic
Kähler potentialu for which uC exists. This neighborhood contains aδ-tubular neighborhood
(with respect to some Riemannian metric) of the diagonal, atleast wheneverM is compact.

Now, fix a real-analytic Kähler formω onM .
We can now define a Legendre transform with respect toω.

Definition 4.1. The complex Legendre transformLω maps a functionψ :M → R ∪ {∞} to

Lω(ψ)(q) := usc sup
p∈M

(p,q)∈Vωϕ

[−Dω(p, q)− ψ(p)].

As in the setting ofΩ ⊂ Cn, the transform also depends onVωϕ.

Definition 4.2. Say thatψ is ω-convex ifψ = Lωη for some usc functionη :M → R ∪ {∞}.

The following lemmas follow in the same manner as Lemmas 3.3 and 3.5. In fact, intuitively,
Lω is locally given by

Lω(ψ)(q) = Lu(u+ ψ)− u,

whereu is a local Kähler potential forω.

Lemma 4.3. Letψ :M → R ∪ {∞}. ThenLω(ψ) = ψ if and only ifψ = 0.

Lemma 4.4. Let η :M → R ∪ {∞}. ThenL2
ωη ≤ η with equality iffη is ω-convex.
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5. A GENERALIZED GRADIENT MAP

The fact that Calabi’s diastasisDω is locally uniformly convex in each variable on a neighbor-
hood of the diagonal should, intuitively, ensure the supremum in the definition ofLω is attained
in a unique point. In this section we make this intuition rigorous by giving a condition that en-
sures the supremum is attained. We will discuss only the caseof compact manifolds. The case
of non compact manifolds, leading up to Theorem 1.1, is proved similarily.

Theorem 5.1. Let (M,ω) be a compact closed real-analytic Kähler manifold. There existsǫ =
ǫ(ω) > 0 such that for every functionη satisfying||η||C2(M) < ǫ, the supremum in Definition 4.1
is for anyq in M attained at a unique point,z = G(η)(q).

1. If η is of classCk thenG(η) is a diffeomorphism ofM of classCk−1.

2. Lω(η) is of classCk and the mapη → Lω(η) is continuous for theCk-topology.

3. L2
ω(η) = η.

4.G(Lω(η)) = G(η)−1.

Proof. BecauseM is compact, the neighborhoodVω contains a ball of fixed size, call itδ > 0
(with respect to the the distance functiond of the reference metricω, say), around every point on
the diagonal. Fixq ∈M . Let

(5.1) fq(z) = −Dω(z, q)− η(z), z ∈ π1(Vω ∩ (M × {q})).
We claim thatfq attains a unique maximum inπ1(Vω ∩ (M × {q})). First, Lemma 3.1 implies
that

fq(z) ≤ −Cd(z, q)2 − η(z), z ∈ π1(Vω ∩ (M × {q})),
and if ||η||C2(M) is sufficiently small,fq is uniformly concave onπ1(Vω ∩ (M × {q})).

If ||η||C0(M) < ǫ,
fq(q) ≥ −ǫ,

while,
fq(z) ≤ −Cd(z, q)2 + ǫ, z ∈ π1(Vϕ ∩ (M × {q})),

So, if ǫ is small enough,

fq(z) ≤ −2ǫ, z ∈ π1(Vϕ ∩ (M × {q})) \Bδ/2(q),

Thus we see that the maximum offq overπ1(Vω ∩ (M × {q})) must be attained at a point in
Bδ/2(q), which moreover is unique by the strict concavity offq.

This maximum point is the unique solutionz of

(5.2) Fq(z) := ∇zfq(z) = 0

in Bδ/2(q) ⊂ π1(Vφ ∩ (M × {q})). We denote this unique solution byz = G(η)(q). Thus,

(5.3) Lω(η)(q) = fq(G(η)(q))

Sincefq is uniformly concave inBδ/2(q), the Implicit Function Theorem (IFT) implies that
G(η)(q) is of classCk−1 in q wheneverη ∈ Ck. Thus, by (5.3) it follows thatLωψ ∈ Ck−1.
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Next, we claim thatG(η) is invertible. To see that, let

(5.4) Ft,q(z) := ∇ft,q(z), ft,q(z) := −Dω(z, q)− tη(z).

The IFT, applied toFt,q, implies that

(5.5) ∇G(tη) = −(∇zFt,q)
−1∇qFt,q = (∇2

zDω(z, q)− t∇2
zη)

−1∇qFq.

Whent = 0, Lemma 4.3 implies thatG(0)(q) = q, so

(5.6) I = ∇Gϕ(0) = −(∇2
zFq)

−1∇qFq = (∇2
zD(z, q))−1∇qFq.

Combining (5.5) and (5.6) we see that whenever||η||C2 is sufficiently small, the Jacobian of
G(tη) is positive definite for allt ∈ [0, 1], hence the Jacobian ofG(η) is invertible. This means
thatG(η) is locally injective, i e that ifq 6= q′ andd(q, q′) is sufficiently small, thenG(η)(q) 6=
G(η)(q′). Since we moreover know thatG(η) is uniformly close to the identity, this gives that
G(η) is globally injective. Since it is also open, it is a diffeomorphism onto its image.

That the supremum in Definition 4.1 is obtained forz = G(η)(q) means that

(5.7) Lω(η)(q) = −Dω(G(η)(q), q)− η(G((η)(q)).

Since, for(z, q) ∈ Vω we always have

(5.8) η(z) ≥ −Dω(z, q)− Lω(η)(q)

it follows that

(5.9) ∇Lω(η)(q) = −∇qDω(z, q).

whenG(η)(q) = z, so

(5.10) ∇Lω(η)(q) = −(∇qDω)(G(η)(q), q).

ButDω is smooth, in fact real analytic, so we get, sinceG(η) is of classCk−1 that∇Lω(η) is of
classCk−1 too. In other wordsLω(η) is of classCk.

On the other hand, ifη is close to zero, we know thatG(η) is close to the identity, which
is G(0). Hence, by (5.9),∇Lω(η) is close to∇Lω(0) = 0. Since it follows directly from the
definition that theC0-norm ofLω(η) is small if theC0-norm ofη is small, it follows thatLω(η)
is close to zero in theCk-norm if η is close to zero in theCk-norm. In particular, withk = 2,
this implies that we can apply the arguments in the beginningof this proof toLω(η). Then (5.6)
implies thatL2

ω(η) = η and thatG(Lω(η)) = G(η)−1.
This completes the proof. �

6. THE INVERSE GRADIENT MAP AND THE COMPLEXMONGE–AMPÈRE OPERATOR

As we shall comment later on, our next result can be viewed as avariant of a result of Lempert.

Theorem 6.1. Fix a real-analytic Kähler formω. Then, for each smooth functionψ such that√
−1∂∂̄ψ + ω > 0, we letωψ := ω +

√
−1∂∂̄ψ. Then ifψ satisfies the assumptions of Theorem

5.1
G(ψ)⋆ωψ = ωLωψ.

Therefore, the complex Monge–Ampère measure ofψ, ωnψ, is pulled-back underG(ψ) to the
complex Monge–Ampère measure ofLωψ.



9

As pointed out in the introduction and section 2, this shouldbe compared with the contrasting
fact that the real Monge–Ampère operator is pulled-back under the inverse gradient map to the
Euclidean measure.

Proof. Since the statement is local we look at a neighborhoodW ⊂ M where we have a real-
analytic Kähler potentialφ of ω. By definition, for(z, w) ∈ Vω

−Dω(z, w) ≤ ψ(z) + Lωψ(w)

with equality precisely whenz = G(ψ)(w). Let Λ be the set where this holds. Then, when
(z, w) ∈ Λ,

−∂zDω(z, w) = ∂zψ(z),

or, equivalently,

−∂̄wDω(z, w) = ∂̄wLωψ(w).

In other words (sinceDω(z, w) = φ(z) + φ(w)− φC(z, w)− φ̄C(z, w)),

(6.1) ∂zφC(z, w)− ∂zφ(z) = ∂zψ(z),

and

(6.2) ∂̄wφC(z, w)− ∂̄wφ(w) = ∂̄wLωψ(w).

This means that the identity holds when both sides are considered as forms onC2n and(z, w)
lies onΛ. SinceΛ is the graph ofG(ψ), Λ is a manifold of real dimension2n. Let p1 andp2 be
the projections ofW ×W to the first and second factors, and letπ1 andπ2 be their restrictions
toΛ. By Theorem 5.1,π1 andπ2 are invertible maps and

(6.3) G(ψ) = π1 ◦ π−1
2 .

By (6.1) and (6.2),

dφC(z, w) = π⋆1∂(φ + ψ)(z) + π⋆2 ∂̄(φ+ Lωψ)(w), when(z, w) ∈ Λ.

Hence the same identity holds when we restrict both sides toΛ as differential forms. Since the
left hand side is a closed form, it follows that

π∗

1d∂(φ + ψ)(z) + π∗

2d∂̄(φ+ Lωψ)(w) = 0, onΛ.

If we apply(π−1
2 )∗ to this equation we get

(π−1
2 )∗π∗

1 ∂̄∂(φ + ψ) + ∂∂̄(φ+ Lωψ) = 0.

By (6.3) it follows that

G(ψ)⋆ωψ = G(ψ)⋆(
√
−1∂∂̄(φ+ ψ)) =

√
−1∂∂̄(φ+ Lωψ) = ωLωψ,

so we are done. �
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7. THE MABUCHI METRIC

Let M be a closed compact Kähler manifold. Recall that ifω is a Kähler form onM , the
space ofω-plurisubharmonic functions,Hω is the space of smooth functions onM such that
ωψ :=

√
−1∂∂̄ψ + ω > 0. This is an open subset of the space of smooth functions and inherits

a structure as a differentiable manifold from the one onC∞(M). The tangent space toHω is the
space of smooth functions onM and one defines a weak Riemannian metric onHω by

gM(ν, χ)ψ =

∫

M

νχωnψ,

for everyν, χ ∈ TψHω
∼= C∞(M).

Proposition 7.1. Let ω be real-analytic. There exists a neighborhoodUω of 0 inHω in theC2

topology such thatLω defines a Fréchet differentiable map fromUω to Uω. Its differential is

dLω(η).χ = −χ ◦G(η), ∀η ∈ Uω.

Proof. Let q ∈M . Define (cf. (5.1)),

fq(z, η) := −Dω(z, q)− η(z), z ∈ π1(Vω ∩ (M × {q})),
and letFq(z, η) := ∇zfq(z, η). ThenFq is of classCk−1 if η is of classCk. By the implicit
function theorem the equation

Fq(z, η) = 0

definesz as a function ofη, z = z(η), and sincez(η) is the point maximazingfq(z, η) for given
η we have thatz(η) = G(η)(q) (which we now regard as a function ofη, while q is fixed). Hence
we see thatz(η) = G(η)(q) is of classCk−1. Moreover

Lω(η)(q) = fq(z(η), η).

Hence, by the chain rule

d/dt|t=0Lω(η + tχ) = d/dt|t=0fq(z(η), η + tχ),

since∇zfq(z, η) = 0 for z = z(η). Since

d/dt|t=0fq(z(η), η + tχ) = −χ(z(η)) = −χ(G(η)(q))
we are done. �

Theorem 7.2. LetM be a closed compact Kähler manifold and letω be a real analytic Kähler
form. There exists aC2 neighborhoodUω of 0 in Hω such thatLω defines a Fréchet differentiable
map fromUω to itself with the following properties:

(i) Lω is an isometry for the Mabuchi metric onUω.

(ii) L2
ωψ = ψ for ψ ∈ Uω.

(iii) Lωψ = ψ if and only ifψ = 0.
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Proof. Properties (ii) and (iii) are the content of Lemma 4.3 and Theorem 5.1. We turn to proving
(i). Indeed, by Theorem 5.1 and Proposition 7.1

gM(dLωψ(χ), dLωψ(ν))|Lωψ =

∫

M

χν ◦G(ψ)ωnLωψ

=

∫

M

χν ◦G(ψ)G(ψ)⋆(ωnψ)

=

∫

M

χνωnψ = gM(χ, ν)|ψ,

proving (i).
Finally, if Uω is a neighborhood satisfying properties (i)–(iii), then replacingUω byUω∩L(Uω),

we may assumeL mapsUω to itself. �

This theorem should be seen in the light of the picture ofHω as a symmetric space, put for-
ward by Mabuchi, Semmes and Donaldson, [14, 21, 7]. In these worksHω is first studied as a
Riemannian manifold, its curvature tensor is computed and is found to be covariantly constant.
In the finite dimensional case, this implies the existence ofsymmetries around any point in the
space. As described in §8.1, Semmes has also found symmetries for the Mabuchi metric, but to
our knowledge theωϕ-Legendre transforms are the first examples of explicit symmetries forHω.
It would be interesting to generalize the theorems of Artstein-Avidan–Milman [1] and Böröczky–
Schneider [4] to this setting and investigate whether theseareall the symmetries ofHω under
some reasonable regularity assumptions.

From Theorem 7.2 it follows in particular that theω-Legendre transform maps geodesics in
Hω to geodesics. By the work of Semmes [21], geodesics inHω are precisely given by solutions
of the homogenous complex Monge–Ampère equation, so that a curve t → ψt(z) = ψ(t, z) ,
wheret lies in a strip0 < Re t < 1 andψ depends only on the real part oft, is a geodesic inHω

if and only if

(
√
−1∂∂̄t,zψ + ω)n+1 = 0.

One main motivation for Lempert’s work was to find symmetriesof the inhomogenous complex
Monge–Ampère equation. Here we find a somewhat different kind of symmetries for the ho-
mogenous complex Monge–Ampère equation (HCMA). The applicability of this may be some-
what limited by the absence of positive existence results for geodesics, but if we change the set
up slightly and consider functionsψ defined fort in a disk instead of a strip, there is at least one
setting in which our theorem applies. Considering boundarydatas → ψs on the unit circle that
happen to extend to a smooth solution of the HCMA, then the same thing holds for sufficiently
small perturbations of the data [8], see also [16]. Taking the given boundary data to be identi-
cally equal to 0, for which trivially an extension exists, wesee that any boundary data that are
sufficiently small can be extended to a solution of the HCMA,ψt with t in the disk∆. Theorem
7.2 shows that thenLω(ψt) also solves the HCMA. Indeed, solutions of the HCMA are critical
points of the energy functional induced by the Mabuchi metric

E(ψ) =

∫

∆×M

∂tψ ∧ ∂̄tψ ∧ ωnψt ,
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and as shown above the energy functional is preserved under theϕ-Legendre transform.

8. RELATIONS WITH LEMPERT’ S AND SEMMES’ WORK

8.1. Comparison to Lempert’s theorem. Lempert starts with a complex manifoldM and its
holomorphic cotangent bundleT ∗(M). If z are local coordinates onM it induces local co-
ordinates(z, ξ) on T ∗(M), so that a one-form, i e a point inT ∗(M) can be written

∑

ξjdzj.
There is a standard holomorphic symplectic formΩ onT ∗(M) that in such coordinates is writ-
tenΩ =

∑

dξj ∧ dzj . A (local) holomorphic map fromT ∗(M) to itself, F , is symplectic if
F ∗(Ω) = Ω, and Lempert’s construction depends on the choice of such a symplectic map. An-
other ingredient is a differentiable real valued functionψ onM . Fromψ we get a gradient map

(8.1) z → (z, ∂ψ) =: ∇ψ
which is a section ofT ∗(M). Lempert’s generalized gradient map is the map fromM to itself

Gψ = π ◦ F ◦ ∇ψ,
whereπ is the projection fromT ∗(M) toM . He then defines a generalized Legendre transform
by

LF (ψ)(Gψ(z)) = ψ(z) + 2ReΣ(∇ψ),
whereΣ is agenerating functionof the symplectic tranformationF . This means thatΣ is holo-
morphic onT ∗(M) and satisfies

dΣ = ξ · dz − F ∗(ξ · dz).
Such a generating function exists at least locally since theright hand side is a closed form ifF is
symplectic.

We indicate briefly how this translates to our set up. First, there is a minor difference that
we work with a symplectic form and generating function that is holomorphic inz and antiholo-
morphic inξ, but the major difference is that we chose a different kind ofgenerating function.
The symplectic transformationF gives a map fromT ∗(M) to M by w = π(F (z)). For spe-
cial symplectic maps (sometimes calledfree canonical transformations) one can choose(z, w)
as coordinates onT ∗(M) and express the generating function in terms of these coordinates in-
stead. Locally, our construction amounts to choosingφC(z, w) as such a generating function. If
we define a symplectic transformation usingφC as a generating function one can check that our
Legendre transform coincides with Lempert’s.

8.2. Semmes’ work. Another major motivation for our work is Semmes’ work [21] and we now
relate the previous theorem to his work. Semmes starts by endowing the holomorphic cotangent
bundle(T ∗)1,0M with the complex structurêJ induced by pulling back the standard complex
structure (induced by the complex strucutreJ onM) under the (locally defined) maps [21, p.
530]

(z, λ) 7→ (z, λ+ ∂zφ).

This is well-defined and independent of the choice of local potentialφ for ω since∂zφ − ∂zφ
′

is holomorphic wheneverφ′ is another such choice. To any smooth Kähler potentialψ, Semmes
then associates the submanifoldΛψ, the graph of∂ψ in (T ∗)1,0M . Under the biholomorphism
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between((T ∗)1,0M, Ĵ) and ((T ∗)1,0M,J) the standard tautological 1-formα =
∑

λidzi and
holomorphic symplectic formΩ =

∑

dzi ∧ dλi on the latter are pulled back to forms that we
denote bŷα andΩ̂. Then

√
−1Ω̂|Λψ =

√
−1∂∂̄(φ + ψ) = ωψ. Semmes goes on to observe that

wheneverϕ is real-analytic, there exists an involutive anti-biholomorphism of a neighborhood
of Λϕ in ((T ∗)1,0M, Ĵ) whose fixed-point set equalsΛϕ. Thus, ifψ is sufficiently close toϕ in
C2 thenΛψ is mapped to another submanifold that must be of the formΛη for someη. Theorem
6.1 precisely establishes that this involution is given by our generalized gradient mapGϕ(ψ), so
Gϕ(ψ)(ΛLωψ) = Λψ.
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