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COMPLEX LEGENDRE DUALITY
BO BERNDTSSON, DARIO CORDERO-ERAUSQUIN, BO’AZ KLARTAG, YNIR A. RUBINSTEIN

ABSTRACT. We introduce complex generalizations of the classicablnelge transform, operating
on Kéhler metrics on a compact complex manifold. These Leégetnansforms give explicit local
isometric symmetries for the Mabuchi metric on the space @fil&r metrics around any real
analytic Kahler metric, answering a question originatim@emmes’ work.

1. INTRODUCTION

For a function : RY — R its classical Legendre transform is defined as [9, 15]
(1.1) V" (y) = sup[z -y — ().

This transform plays an important role in several parts afh@atics, notably in classical me-
chanics and convex geometry. Being the supremum of affinetiims (ofy), v* is always
convex and in case is convex it equals the Legendre transform of its Legenduesfiorm. One
easily verifies (see Sectibh 2) that = ¢ if and only if )(z) = 2?/2, so the Legendre transform
is a symmetry on the space of convex functions around its fixéck 22 /2.

In particular this applies wheR” = C”. In this case we change the definition slightly and
put

(1.2) h(w) = sup[2Re (z - @) — (2]},

wherea - b := """  a;b;. The reason for this change is that while the supremum i) (8.1
attained ify = 0v(x)/0x, the supremum in (1.2) is attainecif = 0¢(z)/0z, and one verifies
that the unique fixed point is now(z) = |z|°.

In this connection a very interesting observation was mgdeempert, [13]: Putv,, := i001).
Assuming that is smooth and strictly convey;w; = wy, if g(2) = 9¢(z)/0z. It follows from

this that
(1.3) g*wg = W,

The measureyj}/n! =: MA¢(v) is the complex Monge—-Ampere measure associated snd

~

Lempert’'s theorem thus implies that M&)) and MAc(¢) are related under the gradient map
g. This may be compared and perhaps contrasted to the way reyddAmpére measures
transform under gradient maps, see Sedtion 2.

At this point we recall the definition of the Mabuchi metric timle somewhat nonstandard
setting of smooth, strictly plurisubharmonic functions @h. The idea is to view this space
as an infinite dimensional manifold; an open subset of theespé all smooth functions. Its

tangent space at a pointshould consist of smooth functionssuch that) + ¢y remains strictly
1
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plurisubharmonic fot close enough to zero. This set of course depends on theyariicwe
have chosen, but at any rate the tangent space will alwayaioa@mooth functions of compact
support, so we take by definition the space of such functisrmiatangent space. The Mabuchi
norm of a tangent vectoy at a pointp is now defined by

(1.4) I3 = / xPe /.

We will interpret (1.3) as saying that the Legendre tramef@® an isometry for the Mabuchi
metric on the space of convex functions (see section 4). lltvig, at least formally, that the
Legendre transform maps geodesics for the Mabuchi metgetalesics, which reflects the so
called duality principle for the complex method of intergibdn [3].

This is only a special case of Lempert’s result, which ingptigat a much more general class
of gradient-like maps are isometries for the Mabuchi methicthis note we will develop this
scheme and define ‘Legendre tranforms’ for Kahler potestakr a manifold\/, usually com-
pact.

For this we note first that the usual Legendre transform ismatiutive on all plurisubhar-
monic functions, but just on convex functions, hence inipaldr on functions that are close to
its fixed point|z|%. Imitating this, we start with a (local) Kéhler potentiabn A/, and define a
‘Legendre tranform’ depending anthat is defined for potentials close ¢0 fixes ¢ and is an
isometry for the Mabuchi metric. For this to work, we need $swane that is real analytic.
The definition of thes-Legendre transform involves a polarization of our real@potential,
which is locally a functionpc(z, w) defined near the diagonal iIW x M. ¢¢ is holomorphic
in z, antiholomorphic inv and coincides withp on the diagonal (these properties determine
uniquely). Roughly speaking, the idea is then to replace by ¢¢ and define our transform as

(1.5) (Lg¥)(w) = sup[2Re pe(z, w) — P(2)).

When¢(z) = |z|? this gives us back the Legendre transform of (1.2). Let usdixamine this
transform in the case of a linear space, the cradle of theicks_egendre transform. Write
Acn = {(2,2); z € C"} for the diagonal. We say that a smooth functipon C™ is strongly
plurisubharmonic if its complex Hessian is bounded fronoiadby a positive constant, uniformly
at all points ofC".

Theorem 1.1.Let¢ : C* — R be a real-analytic, strongly plurisubharmonic functionheh
there are an open séf, C C" x C" containingAc» and a neighborhood’ of ¢ in the C?-norm
on C™ with the following properties:

0. Foru € U the functionC,(u) : C* — R U {400} is well-defined, where the supremum in
(1.5) runs over alk with (z, w) € V.

1. L4(u) = wif and only ifu = ¢.

2. Foru in a smaller neighbourhood” C U, the functionZ,(u) lies inU and L; (u) = u.

3. L, is an isometry for the Mabuchi metric restrictedto

The transform in (1.5) works fine if, v and ¢¢ are defined on all o™ or C?*, but for
functions that are only locally well defined we need to find gara of the definition that has a
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global meaning on a manifold. For this it turns out to be vespwenient to use a remarkable
idea of Calabi,[[5]. The Calalliastasis functions defined as

Dy(z,w) = ¢(2) + ¢p(w) — 2Re ¢ (2, w).

We then change the above definition by applying it/te- ¢ instead ofy, and then subtract
afterwards. This way we arrive at the equivalent transform

Lg(0)(w) := Ly(¥ + ¢)(w) — d(w) = Sgp(—%(z, w) = 9(2)).

Notice that in the classical case whef:) = |z|?, Dy(z,w) = |z — w|* and the transform
becomes the familiar variant of the Legendre transform

sup —(|z — wl +¥(2)).

The point of this is that, as is well known from the work of GalaD, only depends o, =
i00¢, i e it does not change if we add a pluriharmonic function té\s we shall see this implies
that our construction oty = L, globalizes and becomes well defined on functignen a
manifold M that are close to 0 in thé?-norm. Following the ideas, but not the precise proof, of
Lempert, we can then verify thdt,, is an isometry for the Mabuchi metric @4,,. Our main
result is as follows:

Theorem 1.2.Let M be a compact Kéhler manifold, and letbe a real analytic Kéhler form
onM. LetH,, := {u € C=(M);id0u + w > 0}. Then the generalized Legendre transforiy,
(defined in section 4) is defined on a neigbourhdodf 0 in 4, in the C?-toplogy and

1. L,(u) = wifand only ifu = 0.

2. Forw in a smaller neighbourhoodl” C U, L, (u) liesinU and L2 (u) = u.

3. L, is an isometry for the Mabuchi metric @, restricted toU.

2. THE CLASSICAL LEGENDRE TRANSFORM

As a warm up and for comparison we first briefly look at the ¢tadd egendre transform,
(1.2). If ¢ is differentiable, and if the supremum in the right hand sgdattained in a point,
theny = 0vy/0z =: g,(x). Hence we have that

(2.1) z-y < (x) + 497 (y)
with equality if and only ify = g, (z), or in other wordsr - g, (x) — ¥ (z) = ¢¥*(gy(z)). If
moreovery is assumed smooth and strictly convey,is invertible. It follows that)* is also
smooth, and by the symmetry of (2.1) that the inverse,at g,,-. Recall that the (real) Monge—
Ampere measure of a (smooth) convex function is M) := det(v; x(x))dz. It follows from
the above that

9y(dy) = MAg(¢y), and gj.(dr) = MAg(¥").

We next turn to the Legendre transform of functiong@nand its relation to complex Monge—
Ampere measures. We then redefine the Legendre transforind)y Equality now occurs when
w = 0Y(z)/0z =: g4, Where we have also redefined the gradient peyfit better with complex
notation. We now give the first case of Lempert’s theoremhdwsd be compared to hoveal
Monge—Ampere measures transform.
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Theorem 2.1. (Lempert)With the above notation
(2.2) 9p(wy) = wy,
so the complex Monge—Ampére measures afid¢> are related b)@;;(MA(C(zﬁ)) = MAc().

Proof. Let A = {(z,w);w = gy(2)} be the graph of the gradient map considered as a
submanifold ofC**. OnA
d(z - w) = 0v(z) + O(w).
(This is simply because when, w) lie on A, thendy(z) = S w;dz; anddy(w) = 3 z;dw;.)
Since the left hand side is a closed form, it follows that
DO (2) = do(z) = —dd(w) = —0dp(w).
If we pull back this equation under the map- (z, g,(2)) we get
00 = g3,(00),

which proves the theorem. O

We remark that the apparent discrepancy between how théegtadap transforms the real
versus the complex Monge—Ampére measures can be rectifiefl@ss. First, sincgy”] :=
151" = [13;] under appropriate regularity assumptions, the Riemamnitnicy;;dz’ @ da’ is
the pull-back ofy;;dy’ ® dy’ via the gradient maf/+ : R® — R™. Therefore the gradient map
pulls back the measur,gdet[ 5ldy' A- - - Ady™ to the measurg/det[t;;]dz' A- - - Adz". When

M has toric symmetry, Theorem 2.1 precisely produces thisrehtion via a careful translation
between the real notation and the complex notation (cf. thefpf [6, Proposition 2.1]).

3. COMPLEX LEGENDRE TRANSFORMS

Let €2 denote a domain i©”. Denote byy a real-analytic psh function dil. Denote bypc
the analytic extension af to a holomorphic function on a neighborhodd, of the diagonal
in C" x C» (whenever(M,.J) is a complex manifold we denote by the complex manifold
(M, —J)). Such an extension exists since the diagonal

Ac:={(p,p) €eC"xC" : pe C"}

is totally real inC" x C*. We immediately switch point of view and work from now on in
C™ x C™, whereg. can be considered as a function on

W, C C" x C"

that is holomorphic in the first factor and anti-holomorpimi¢he second. Explicitly, if in local
coordinates

then
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TheCalabi diastasis functioassociated to a real-analytic strongly psh functian 2 c C”
is the function

(3.1) Dy(p,q) == ¢(p) + ¢(q) — dc(p; @) — ¢cla, p) = ¢(p) + ¢(q) — 2Re ge(p, ).
defined onV, C Q x Q. ClearlyD,(p, q) = Dy(q, p) with Dy(p,p) = 0. In the local coordi-

nates,

Dy(p.q) =Y _ cap(p™ — ¢*)(p? — ).
Note that the first non-zero term in the Taylor series is negative ag is psh. Moreover, denote
by, : C*xC" — C™, i = 1,2, the natural projections, i.er; (z,w) = z, my(z, w) = w. Calabi
proves the followingl[5].

Lemma 3.1. There exists an open neighborholdgdof A, contained ini¥, on whichDy( -, ¢)
is strongly convex with

(3.2) Dy(2,q) > Clz —q]* onm(VyNQ x {q}).

We can now define a Legendre type transform associatéd Eor simplicity, whenever we
refer to a function in our discussions below, we do not allbe tonstant functior-oco. We
denote by usf the upper semi-continuous (usc) regularization of a famcfi: X — R,

usef(x) = lim sup f(y).
ly—z|<é

It is the smallest usc function majorizirnfg

Definition 3.2. The complex Legendre transforfl) is a mapping taking a functioty : 2 —
RU {0} to
Ly(1)(q) :=usc sup [2Re dc(p, q) — 1(p)].

peEQ
(PaCZ)EVdg

SinceRe ¢¢(p, ¢) is pluriharmonic ing, L, is psh. The definition depends a5, and we
discuss that dependence later.

Wheng(z) = |z|?, thengc(z, w) = z -w, while Dy(z,w) = |z —w|*,C = 1andW, =V, =
C" x C™; we recover, up to a factor of 2, the Legendre transforniRén

Lemma 3.3. Lety : Q@ — R U {oo}. ThenL,(¢) = ¢ if and only ify) = ¢.

Proof. According to Lemma 311, whenever, w) € V,,

2Re ¢c(z,w) < ¢(2) + o(w),
with equality iff = = w. ThusLy¢ = ¢. Conversely, supposé,y = . Then, whenever
(z,w) € V,
(2) + Loth(w) = ¢(2) + ¢(w) = 2Re oc(z, w).
Settingz = w givesy > ¢. Since the complex Legendre transform is order-reversiag tlso

P < ¢ O

Definition 3.4. Say that a function) : 2 — R U {oo} is ¢-convex ifyy = L,n for some usc
functionn : Q@ — R U {oo}.
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Lemma 3.5. Letn : Q@ — R U {oo} be usc. Ther?n < n with equality iffy is ¢-convex.
Proof. Whenever(z, w) € V,,
n(z) + Lyn(w) > 2Re ¢c(z, w).
Thus,
(3.3) LG(z) = USCSI;}p[2Re dc(w, z) — Lon(w)] < usen(z) = n(z).

Next, if 55)77 = 7, then by definition; is ¢-convex. It remains therefore to show the converse,
and for this it suffices to show thatt;y = L,v for any usc function : Q@ — RU{oo}. By (3.3),
EZ’)V < Lyv. However,ﬁiz/ < v by (3.3), thUSC‘;’)l/ > Lyv. .

4. LEGENDRE DUALITY ON COMPACT MANIFOLDS

Remarkably, a variant of these transforms can be defined piKanler manifold)/. Letw
be a closed strictly positive real-analytit, 1)-form on M. Locally thenw equalsy/—100u for
some strongly psh real-analytic functianand we define.,c and subsequently

D, = Dua

locally. To check that these definitions are actually cdesisglobally and give rise to a diastasis
function on a non-empty neighborhoodaf;, it suffices to observe [5] that whenevers a real-
valued function on a ball i€” that is pluriharmonic, i.es/—190h = 0, thenh = hy(p) + hi(p)
with h; holomorphic; thushe(p, @) = hi(p) + hi(q), soD;, = 0. Once again, by a variant of
Lemmda 3.1L[[5, Proposition 5] we obtain an open neighborHdodf the diagonal on whiclD,,
is nonnegative and strongly convex in each variable and anohwh admits local real analytic
Kahler potentiak: for which u¢ exists. This neighborhood containgi-dubular neighborhood
(with respect to some Riemannian metric) of the diagonadéast wheneved/ is compact.

Now, fix a real-analytic Kahler forrw on M.

We can now define a Legendre transform with respect to

Definition 4.1. The complex Legendre transforiy maps a function) : M — R U {oc} to

L,(¥)(q) :=usc sup [=Dy(p,q) —(p)].

pEM
(P, 0)EVwy,

As in the setting of2 C C", the transform also depends &}, .
Definition 4.2. Say that) is w-convex ifiy = L,n for some usc function: M — R U {oo}.

The following lemmas follow in the same manner as Lemmas 3d8385. In fact, intuitively,
L,, is locally given by

Lo(¥)(q) = Lu(u+9) —u,

whereu is a local K&hler potential fop.
Lemma 4.3.Lety : M — R U {oo}. ThenL,(¢) = ¢ if and only ify) = 0.
Lemma 4.4.Letn : M — R U {oc}. ThenL?n < n with equality iffr is w-convex.



5. A GENERALIZED GRADIENT MAP

The fact that Calabi’s diastasi3, is locally uniformly convex in each variable on a neighbor-
hood of the diagonal should, intuitively, ensure the supnenn the definition ofZ,, is attained
in a unique point. In this section we make this intuition riges by giving a condition that en-
sures the supremum is attained. We will discuss only the absempact manifolds. The case
of non compact manifolds, leading up to Theorem 1.1, is ptcmilarily.

Theorem 5.1. Let (M, w) be a compact closed real-analytic Kahler manifold. Theristex =
e(w) > 0 such that for every functionsatisfying||n||c2(a) < €, the supremum in Definition 4.1
is for anyq in M attained at a unique point, = G(1)(q).

1. If n is of classC* thenG/(n) is a diffeomorphism of/ of classC*~1.

2. L,(n) is of classC* and the map) — L (n) is continuous for th&'*-topology.

3. L (n) = 1.

4. G(Lu(n)) = G(n)~™.
Proof. Becausel! is compact, the neighborhodd, contains a ball of fixed size, call &t > 0
(with respect to the the distance functidof the reference metrie, say), around every point on
the diagonal. Fixy € M. Let
(5.1) fa(z) = =Du(z,q) = n(2), ze€m(Vo,n (M x{q})).
We claim thatf, attains a uniqgue maximum iy (V,, N (M x {q})). First, Lemma3]1 implies
that

foz) < =Cd(z,q)* = n(2), z€m(Vun (M x{q})),

and if||n||c2(ar) is sufficiently small.f, is uniformly concave om (V,, N (M x {q})).

If HT}HCO(M) < €,

fq(Q) 2 —€,
while,
foz) £ =Cd(z,9)* + ¢, z€m(V,N (M x {q})),

So, ife is small enough,

fol2) < =2¢, zem(Vo N (M x {g})) \ Bs2(q);

Thus we see that the maximum §f overm,(V,, N (M x {q})) must be attained at a point in
B;s/2(q), which moreover is unique by the strict concavity/fpf
This maximum point is the unique solutiarof

(5.2) Fy(z) == V. fy(2) =0
in Bsa(q) € m(Vy N (M x {q})). We denote this unique solution by= G(n)(q). Thus,
(5.3) Lo(n)(q) = f4(G(n)(q))

Since f, is uniformly concave inB;s/,(q), the Implicit Function Theorem (IFT) implies that
G(n)(q) is of classC*~! in ¢ whenever € C*. Thus, by[(5.B) it follows that,,:» € C*~1,



Next, we claim thats(n) is invertible. To see that, let

(5.4) Fiq(2) :=Vifiq(2),  frq(2) := =Du(z,q) —tn(2).

The IFT, applied taF; ,, implies that

(5.5) VG(tn) = _(VzFuq)_lqut,q = (Vti(z, q) — tvin)_lquq'
Whent = 0, Lemmd 4.8 implies that(0)(q) = ¢, SO

(5.6) I = VG@(O) = _<V§Fq)_lquq = (VED(z, Q))_lquq-

Combining [5.5) and[(516) we see that wheneNef|-- is sufficiently small, the Jacobian of
G(tn) is positive definite for alt € [0, 1], hence the Jacobian 6f(n) is invertible. This means
thatG(n) is locally injective, i e that ify # ¢’ andd(q, ¢') is sufficiently small, thertz(n)(q) #
G(n)(¢'). Since we moreover know th&t(n) is uniformly close to the identity, this gives that
G(n) is globally injective. Since it is also open, it is a diffeorphism onto its image.

That the supremum in Definition 4.1 is obtained fox G(n)(¢) means that

(5.7) L,(m)(q) = —=Du(G(n)(q), a) — n(G((n)(q))-
Since, for(z, q) € V,, we always have

(5.8) n(z) = —Du(2,9) — Lu(n)(q)

it follows that

(5.9) VL,(n)(q) = =VeDu(2,q).

whenG(n)(q) = z, SO

(5.10) VL,(n)(q) = =(VeDu,)(G(n)(q), 9)-

But D,, is smooth, in fact real analytic, so we get, siti¢@)) is of classC*~! thatV L, (n) is of
classC*~! too. In other wordd.,,(n) is of classC*.

On the other hand, if; is close to zero, we know th&t(n) is close to the identity, which
is G(0). Hence, by (5.9)VL,(n) is close toVL,(0) = 0. Since it follows directly from the
definition that the_°-norm of L, (n) is small if theC°-norm ofr is small, it follows thatZ,,(n)
is close to zero in thé€*-norm if ) is close to zero in th€*-norm. In particular, withk = 2,
this implies that we can apply the arguments in the beginafrigis proof toL,(n). Then (5.6)
implies thatZ2 (n) = n and thatG(L(n)) = G(n)~".

This completes the proof. O

6. THE INVERSE GRADIENT MAP AND THE COMPLEXMONGE-AMPERE OPERATOR
As we shall comment later on, our next result can be viewedsasant of a result of Lempert.

Theorem 6.1. Fix a real-analytic Kahler formov. Then, for each smooth functiansuch that
V—100¢ + w > 0, we letw,, := w + /—190%. Then ify satisfies the assumptions of Theorem
5.1

G(@D)*ww = WL, -
Therefore, the complex Monge—Ampére measure,af!}, is pulled-back undet7() to the
complex Monge—Ampére measurd gi).
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As pointed out in the introduction and section 2, this shdnddompared with the contrasting
fact that the real Monge—Ampére operator is pulled-bacleuttte inverse gradient map to the
Euclidean measure.

Proof. Since the statement is local we look at a neighborhiddod- M where we have a real-
analytic Kahler potentiap of w. By definition, for(z,w) € V,

—D,(z,w) < Y(2) + Lop(w)

with equality precisely when = G(v)(w). Let A be the set where this holds. Then, when
(z,w) € A,

—0.Dy(2,w) = 9:9(2),
or, equivalently,
—0w D (2, w) = Oy L,b(w).
In other words (sincd,, (2, w) = ¢(2) + ¢(w) — dc(z, w) — dc(z, w)),

and
(62) 5w¢(C(Z> ’LU) - 5w¢(w) = 5wLw¢(w)

This means that the identity holds when both sides are cereichs forms oft?" and(z, w)
lies onA. SinceA is the graph of7(¢), A is a manifold of real dimensiotw.. Let p; andp, be
the projections ofV/ x W to the first and second factors, andtgtandm, be their restrictions
to A. By Theoreni 517, andw, are invertible maps and

(6.3) G() =mom" .
By (6.1) and (6.2),
doc(z,w) = 70(¢p + ) (2) + m50(¢ + L) (w), when(z,w) € A,

Hence the same identity holds when we restrict both sidésde differential forms. Since the
left hand side is a closed form, it follows that

TrdO(¢ + V) (2) + 13dd(¢ + Lotp)(w) =0, onA.
If we apply (; *)* to this equation we get
(w3 ) m00(¢ + 1) + 00(¢ + L) = 0.
By (6.3) it follows that
G(¥)'wy = GW)"(V=100(¢ + ¥)) = V=100(¢ + L)) = wiy,

sSo we are done. O
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7. THE MABUCHI METRIC

Let M be a closed compact Kahler manifold. Recall that ifs a Kéhler form on)M, the
space ofw-plurisubharmonic functionst,, is the space of smooth functions ari such that
wy = v/—190¢ + w > 0. This is an open subset of the space of smooth functions dediis
a structure as a differentiable manifold from the one”6n(\/). The tangent space #,, is the
space of smooth functions advi and one defines a weak Riemannian metri¢Qnby

gu (¥, X)y = / VXWy,
M
for everyv, x € TyH,, = C>(M).

Proposition 7.1. Let w be real-analytic. There exists a neighborhddg of 0 in 7, in the C?
topology such thal,,, defines a Fréchet differentiable map fréfm to 4,,. Its differential is

dLy(n).x = —xoG(n), Yn€U,.
Proof. Letq € M. Define (cf. [5.1)),
fa(z:n) == =Du(z,q) —=n(z), ze€m(Von(M x{q})),

and letF,(z,n) = V.f,(z,n). ThenFE, is of classC*~! if n is of classC*. By the implicit
function theorem the equation

FQ(Zvn) = 0

definesz as a function ofj, z = z(n), and since:(n) is the point maximazing,(z, ) for given
n we have that(n) = G(n)(q) (which we now regard as a functiongfwhile ¢ is fixed). Hence
we see that(n) = G(n)(q) is of classC*~!. Moreover

Lo(n)(q) = f4(2(n), ).
Hence, by the chain rule
d/dt|i=oLw,(n +tx) = d/dt|i=of4(2(n),n + tx),
sinceV, f,(z,n) = 0 for z = z(n). Since
d/dt]i=of4(2(n);n +tx) = —x(2(n)) = —x(G(n)(q))
we are done. H

Theorem 7.2.Let M be a closed compact Kéhler manifold anddebe a real analytic Kéhler
form. There exists &2 neighborhood/, of 0 in #,, such thatL,, defines a Fréchet differentiable
map fromi4,, to itself with the following properties:

() L, is an isometry for the Mabuchi metric én,.
(i) L2y =4 fory € U,
(i) L,y = ifand only ify = 0.
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Proof. Properties (ii) and (iii) are the content of Lemmal4.3 anddrkal5.1. We turn to proving
(i). Indeed, by Theorem 5.1 and Proposition 7.1

(L0, AL los = [ o Gl

- | woowewr )

1

=/ xvwy, = g (X V) |y,
M

proving (i).
Finally, if 4, is a neighborhood satisfying properties (i)—(iii), theplexingl{, by U, NL(U,,),
we may assumg€ mapsii,, to itself. OJ

This theorem should be seen in the light of the pictur@{gfas a symmetric space, put for-
ward by Mabuchi, Semmes and Donaldson)/ [14,21, 7]. In thes&sfH,, is first studied as a
Riemannian manifold, its curvature tensor is computed aridund to be covariantly constant.
In the finite dimensional case, this implies the existencgyaimetries around any point in the
space. As described i 8.1, Semmes has also found symsrfetridtne Mabuchi metric, but to
our knowledge they,-Legendre transforms are the first examples of explicit sptnies for#,,.

It would be interesting to generalize the theorems of Amisfe/idan—Milman [1] and Béréczky—
Schneider[]4] to this setting and investigate whether tlz@eall the symmetries of{, under
some reasonable regularity assumptions.

From Theorem 7.2 it follows in particular that theLegendre transform maps geodesics in
‘H,, to geodesics. By the work of Semmesl|[21], geodesifg jrare precisely given by solutions
of the homogenous complex Monge—Ampére equation, so thatve t — ;(z) = ¥(t, 2) ,
wheret lies in a stripd < Ret < 1 andt> depends only on the real part®fis a geodesic if,,
if and only if

(\/ —185t,z¢ -+ W)n+1 =0.

One main motivation for Lempert’'s work was to find symmetoéthe inhomogenous complex
Monge—Ampere equation. Here we find a somewhat differerd kinsymmetries for the ho-
mogenous complex Monge—Ampére equation (HCMA). The apbiiity of this may be some-
what limited by the absence of positive existence resultgéodesics, but if we change the set
up slightly and consider functions defined fort in a disk instead of a strip, there is at least one
setting in which our theorem applies. Considering boundatgs — ), on the unit circle that
happen to extend to a smooth solution of the HCMA, then theestdang holds for sufficiently
small perturbations of the datal [8], see alsa [16]. Takirgdlven boundary data to be identi-
cally equal to 0O, for which trivially an extension exists, see that any boundary data that are
sufficiently small can be extended to a solution of the HCMAwith ¢ in the diskA. Theorem
7.2 shows that thei,, (1);) also solves the HCMA. Indeed, solutions of the HCMA are caiti
points of the energy functional induced by the Mabuchi naetri

E@) = /A Mat?/) A O N Wy, s
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and as shown above the energy functional is preserved umelgrltegendre transform.

8. RELATIONS WITH LEMPERT S AND SEMMES’ WORK

8.1. Comparison to Lempert’'s theorem. Lempert starts with a complex manifold and its
holomorphic cotangent bundIE*()M). If » are local coordinates of/ it induces local co-
ordinates(z, &) on T*(M), so that a one-form, i e a point ifi*(1/) can be written)  &;dz;.
There is a standard holomorphic symplectic fdmon 7*( A1) that in such coordinates is writ-
tenQ = > d¢; A dz;. A (local) holomorphic map fronT™(M) to itself, F, is symplectic if
F*(Q) = Q, and Lempert’s construction depends on the choice of sugimalsctic map. An-
other ingredient is a differentiable real valued functioon M. Fromt we get a gradient map

(8.1) z = (z,00) =: V¢
which is a section of *(M). Lempert’s generalized gradient map is the map franto itself
Gy =moF oV,

wherer is the projection fron7™* (M) to M. He then defines a generalized Legendre transform
by

Lp(¥)(Gy(2)) = ¥(2) + 2Re X(Vy),
where} is agenerating functiorf the symplectic tranformatiof’. This means that is holo-
morphic onT™ (M) and satisfies

d¥ = ¢ - dz — F*(¢ - d2).

Such a generating function exists at least locally sinceitiie hand side is a closed form#f is
symplectic.

We indicate briefly how this translates to our set up. Fitsgre is a minor difference that
we work with a symplectic form and generating function tisahdlomorphic inz and antiholo-
morphic in&, but the major difference is that we chose a different kingeferating function.
The symplectic transformatioR’ gives a map froni™*(M) to M by w = n(F(z)). For spe-
cial symplectic maps (sometimes calligde canonical transformatiof®ne can choosgz, w)
as coordinates oii* (M) and express the generating function in terms of these awates in-
stead. Locally, our construction amounts to choosin(r, w) as such a generating function. If
we define a symplectic transformation usimpgas a generating function one can check that our
Legendre transform coincides with Lempert’s.

8.2. Semmes’ work. Another major motivation for our work is Semmes’ work [21]dame now
relate the previous theorem to his work. Semmes starts byveind the holomorphic cotangent
bundle(7*)1°M with the complex structurd induced by pulling back the standard complex
structure (induced by the complex strucutten M) under the (locally defined) maps 21, p.
530]

(2,A) = (2, A+ 0.9).
This is well-defined and independent of the choice of locaéptal ¢ for w sinced,¢ — 0.¢’
is holomorphic whenevet’ is another such choice. To any smooth Kahler potegti@@emmes
then associates the submanifald, the graph oby in (7*)"°AM. Under the biholomorphism
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between((7*)“°M, J) and ((T*)'°M, .J) the standard tautological 1-form = 3" \;dz and
holomorphic symplectic fornf2 = > dz; A d); on the latter are pulled back to forms that we

denote byr and. Then\/——lﬂm = /—199(¢ + 1) = w,. Semmes goes on to observe that
whenevery is real-analytic, there exists an involutive anti-biholmphism of a neighborhood
of A, in ((T%)*°M, J) whose fixed-point set equals,. Thus, ifv is sufficiently close tap in

C? thenA,, is mapped to another submanifold that must be of the foyrfor somer. Theorem
precisely establishes that this involution is given bygeneralized gradient map,(v), so

Go()(ALyy) = Ay.
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