L. M. De-lau and M. M. Breteler, Epidemiology of Parkinson's disease, The Lancet Neurology, vol.5, issue.6, pp.525-535, 2006.

J. Rusz, R. ?mejla, H. R??i?ková, and E. R??i?ka, Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson's disease, The Journal of the Acoustical Society of America, vol.129, issue.1, p.350, 2011.

B. Harel, M. Cannizzaro, and P. J. Snyder, Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: A longitudinal case study, Brain and Cognition, vol.56, issue.1, pp.24-29, 2004.

R. B. Postuma, A. E. Lang, J. F. Gagnon, A. Pelletier, and J. Y. Montplaisir, How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder, Brain, vol.135, issue.6, pp.1860-1870, 2012.

J. Rusz, J. Hlavni?ka, T. Tykalová, J. Bu?ková, O. Ulmanová et al., Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder, Sleep Medicine, 2015.

J. R. Orozco-arroyave, F. Hönig, J. D. Arias-londoño, J. F. Vargas-bonilla, K. Daqrouq et al., Automatic detection of Parkinson's disease in running speech spoken in three different languages, The Journal of the Acoustical Society of America, vol.139, issue.1, pp.481-500, 2016.

M. Novotný, J. Rusz, R. ?mejla, and E. R??i?ka, Automatic Evaluation of Articulatory Disorders in Parkinson's Disease, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.22, issue.9, pp.1366-1378, 2014.

A. A. Dibazar, S. Narayanan, and T. W. Berger, Feature analysis for automatic detection of pathological speech, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, vol.1, pp.182-183, 2002.

J. Godino-llorente and P. Gómez-vilda, Automatic Detection of Voice Impairments by Means of Short-Term Cepstral Parameters and Neural Network Based Detectors, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.380-384, 2004.

N. Malyska, T. F. Quatieri, and D. Sturim, Automatic dysphonia recognition using biologically-inspired amplitude-modulation features, Acoustics, Speech, and Signal Processing, vol.1, p.873, 2005.

A. Tsanas, M. A. Little, P. E. Mcsharry, J. Spielman, and L. O. Ramig, Novel Speech Signal Processing Algorithms for High-Accuracy Classification of Parkinson's Disease, IEEE Transactions on Biomedical Engineering, vol.59, issue.5, pp.1264-1271, 2012.

J. R. Orozco-arroyave, F. Hönig, J. D. Arias-londoño, J. F. Bonilla, S. Skodda et al., Automatic detection of parkinson's disease from words uttered in three different languages, INTER-SPEECH, pp.1573-1577, 2014.

J. R. Orozco-arroyave, E. A. Belalcazar-bolaños, J. D. Arias-londoño, J. F. Vargas-bonilla, S. Skodda et al., Characterization Methods for the Detection of Multiple Voice Disorders: Neurological, Functional, and Laryngeal Diseases, IEEE Journal of Biomedical and Health Informatics, vol.19, issue.6, pp.1820-1828, 2015.

J. R. Orozco-arroyave, J. C. Vàsquez-correa, F. Honig, J. D. Arias-londono, J. F. Vargas-bonilla et al., Towards an automatic monitoring of the neurological state of Parkinson's patients from speech, ICASSP 2016. IEEE, pp.6490-6494, 2016.

D. Hemmerling, J. R. Orozco-arroyave, A. Skalski, J. Gajda, and E. Nöth, Automatic Detection of Parkinson's Disease Based on Modulated Vowels, pp.1190-1194, 2016.

A. Benba, A. Jilbab, and A. Hammouch, Discriminating Between Patients With Parkinson's and Neurological Diseases Using Cepstral Analysis, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.24, issue.10, pp.1100-1108, 2016.

A. Jafari, Classification of Parkinson's Disease Patients using Nonlinear Phonetic Features and Mel-Frequency Cepstral Analysis, Biomedical Engineering: Applications, Basis and Communications, vol.25, issue.04, p.1350001, 2013.

A. Benba, A. Jilbab, and A. Hammouch, Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson's disease and healthy people, International Journal of Speech Technology, vol.19, issue.3, pp.449-456, 2016.

T. Kapoor and R. K. Sharma, Parkinson's disease diagnosis using Melfrequency cepstral coefficients and vector quantization, International Journal of Computer Applications, vol.14, issue.3, pp.43-46, 2011.

A. Benba, A. Jilbab, and A. Hammouch, Voice analysis for detecting persons with Parkinson's disease using MFCC and VQ, The 2014 international conference on circuits, systems and signal processing, pp.23-25, 2014.

T. F. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice, 2001.

T. Bocklet, S. Steidl, E. Nöth, and S. Skodda, Automatic evaluation of parkinson's speech-acoustic, prosodic and voice related cues, Interspeech, pp.1149-1153, 2013.

R. Fraile, N. Sáenz-lechón, J. Godino-llorente, V. Osma-ruiz, and C. Fredouille, Automatic Detection of Laryngeal Pathologies in Records of Sustained Vowels by Means of Mel-Frequency Cepstral Coefficient Parameters and Differentiation of Patients by Sex, Folia Phoniatrica et Logopaedica, vol.61, issue.3, pp.146-152, 2009.

A. J. Hughes, S. E. Daniel, Y. Ben-shlomo, and A. J. Lees, The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service, Brain, vol.125, issue.4, pp.861-870, 2002.

L. Jeancolas, D. Petrovska-delacrétaz, S. Lehéricy, H. Benali, and B. Benkelfat, L'analyse de la voix comme outil de diagnostic précoce de la maladie de Parkinson :état de l'art, CORESA 2016 : 18e Edition COmpressions et REpresentation des Signaux Audiovisuels, pp.113-121, 2016.

S. Davis and P. Mermelstein, Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.28, issue.4, pp.357-366, 1980.


R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Ijcai, vol.14, pp.1137-1145, 1995.

J. Rusz, R. ?mejla, H. R??i?ková, J. Klempí?, V. Majerová et al., Evaluation of speech impairment in early stages of Parkinson's disease: a prospective study with the role of pharmacotherapy, Journal of Neural Transmission, vol.120, issue.2, pp.319-329, 2013.

A. Tsanas, M. A. Little, P. E. Mcsharry, and L. O. Ramig, Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson's disease symptom severity, Journal of The Royal Society Interface, vol.8, issue.59, pp.842-855, 2011.