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Abstract

We investigate gathering algorithms for asynchronous autonomous mobile robots moving in uniform
ring-shaped networks. Different from most work using the Look-Compute-Move (LCM) model, we
assume that robots have limited visibility and lights. That is, robots can observe nodes only within
a certain fixed distance, and emit a color from a set of constant number of colors. We consider
gathering algorithms depending on two parameters related to the initial configuration: Minit, which
denotes the number of nodes between two border nodes, and Oinit, which denotes the number of
nodes hosting robots between two border nodes. In both cases, a border node is a node hosting
one or more robots that cannot see other robots on at least one side. Our main contribution is
to prove that, if Minit or Oinit is odd, gathering is always feasible with three or four colors. The
proposed algorithms do not require additional assumptions, such as knowledge of the number of
robots, multiplicity detection capabilities, or the assumption of towerless initial configurations. These
results demonstrate the power of lights to achieve gathering of robots with limited visibility.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases LCM robot system, ASYNC schedulers, myopic, luminous, ring networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.27

Related Version A full version of the paper is available at [13], http://arxiv.org/abs/1911.04757.

Funding Supported in part by JST SICORP Grant Number JPMJSC1806, Japan.
Sayaka Kamei: Supported in part by JSPS KAKENHI No. 19K11828.
Fukuhito Ooshita: Supported in part by JSPS KAKENHI No. 18K11167.
Sébastien Tixeuil: Supported in part by Hiroshima University and by project ESTATE (Ref. ANR-
16-CE25-0009-03).
Koichi Wada: Supported in part by JSPS KAKENHI No. 17K00019.

© Sayaka Kamei, Anissa Lamani, Fukuhito Ooshita, Sébastien Tixeuil, and Koichi Wada;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s10kamei@hiroshima-u.ac.jp
mailto:anissa.lamani@eisti.eu
mailto:f-oosita@is.naist.jp
mailto:Sebastien.Tixeuil@lip6.fr
mailto:wada@hosei.ac.jp
https://doi.org/10.4230/LIPIcs.OPODIS.2019.27
http://arxiv.org/abs/1911.04757
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Gathering on Rings for Myopic Asynchronous Robots With Lights

1 Introduction

A lot of research about autonomous mobile robots coordination has been conducted by the
distributed computing community. The common goal of these research is to clarify the
minimum capabilities for robots to achieve a given task. Hence, most work adopts weak
assumptions such as: robots are identical (i.e., robots execute the same algorithm and cannot
be distinguished), oblivious (i.e., robots have no memory to record past actions), and silent
(i.e., robots cannot send messages to other robots). In addition, to model the behavior of
robots, most work uses the Look-Compute-Move (LCM) model introduced by Suzuki and
Yamashita [18]. In the LCM model, each robot repeats executing cycles of Look, Compute
and Move phases. During the Look phase, the robot takes a snapshot to observe the positions
of other robots. According to this snapshot, the robot computes the next movement during
the Compute phase. If the robot decides to move, it moves to the target position during
the Move phase. By using the LCM model, it is possible to clarify problem solvability
both continuous environments (i.e., two- or three-dimensional Euclidean space) and discrete
environments (i.e., graph networks). State-of-the-art surveys are given in the recent book by
Flocchini et al. [8].

In this paper, we focus on gathering in graph networks. The goal of gathering is to make
all robots gather at a non-predetermined single node. Since gathering is a fundamental task of
mobile robot systems and a benchmark application, numerous algorithms have been proposed
for various graph network topologies. In particular, many papers focus on ring-shaped
networks because symmetry breaking becomes a core difficulty, and any such solution is
likely to adapt well on other topologies, as it is possible to make virtual rings over arbitrary
networks and hence use ring algorithms in such networks[14, 11, 5, 3, 4].

Klasing et al. [14] proposed gathering algorithms for rings with global-weak multiplicity
detection. Global-weak multiplicity detection enables a robot to detect whether the number
of robots on each node is one, or more than one. However, the exact number of robots on a
given node remains unknown if there is more than one robot on the node. Izumi et al. [11]
provided a gathering algorithm for rings with local-weak multiplicity detection under the
assumption that the initial configurations are non-symmetric and non-periodic, and that the
number of robots is less than half the number of nodes. Local-weak multiplicity detection
enables a robot to detect whether the number of robots on its current node is one, or more
than one. D’Angelo et al. [5, 3] proposed unified ring gathering algorithms for most of the
solvable initial configurations, using global-weak multiplicity detection [5], or local-weak
multiplicity detection [3]. Finally, Klasing et al. [4] proposed gathering algorithms for grids
and trees. All aforementioned work assumes unlimited visibility, that is, each robot can take
a snapshot of the whole network graph with all occupied positions.

The unlimited visibility assumption somewhat contradicts the principle of weak mobile
robots, hence several recent studies focus on myopic robots [9, 10, 12, 7]. A myopic robot
has limited visibility, that is, it can take a snapshot of nodes (with occupying robots) only
within a certain fixed distance φ. Not surprisingly, many problems become impossible to
solve in this setting, and several strong assumptions have to be made to enable possibility
results. Datta et al. [7] study the problem of ring exploration with different values for φ.
Guilbault et al. [9] study gathering in bipartite graphs with the global-weak multiplicity
detection (limited to distance φ) in case of φ = 1, and prove that gathering is feasible only
when robots form a star in the initial configuration. They also study the case of infinite
lines with φ > 1 [10], and prove that no universal algorithm exists in this case. In the case
of rings, since a ring with even nodes is also a bipartite graph, gathering is feasible only
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Table 1 Summary of gathering algorithms for myopic robots in rings. All algorithms assume
that the visibility graph is connected, and that there exist two border nodes. R denotes the number
of robots and Hcenter denotes the size of the center hole in the initial configuration. The global
(resp., local) strong multiplicity detection enables a robot to observe the exact number of robots on
every node (resp., on its current node).

φ #colors Multiplicity detection Assumptions

[12] ≥ 1 1 local strong R is odd
R is known

towerless initial configuration
[12] ≥ 3 1 global strong R is even

R is known
Hcenter is odd
Hcenter ≤ φ− 2

towerless initial configuration
Algorithm 1 ≥ 1 3 none Minit is odd
Algorithm 2 ≥ 2 4 none Oinit is odd

when three robots occupy three successive nodes. For this reason, Kamei et al. [12] give
gathering algorithms for rings with φ ≥ 1 by using strong assumptions, such as knowledge of
the number of robots, and strong multiplicity detection, which enables a robot to obtain the
exact number of robots on a particular node. Overall, limited visibility severely hinders the
possibility of gathering oblivious robots on rings.

On the other hand, completely oblivious robots (that can not remember past actions) may
be too weak of a hypothesis with respect to a possible implementation on real devices, where
persistent memory is widely available. Recently, enabling the possibility that robots maintain
a non-volatile visible light [6] has attracted a lot of attention to improve the task solvability.
A robot endowed with such a light is called a luminous robot. Each luminous robot can emit
a light to other robots whose color is chosen among a set of colors whose size is constant. The
light color is non-volatile, and so it can be used as a constant-space memory. Viglietta [19]
gives a complete characterization of the rendezvous problem (that is, the gathering of two
robots) on a plane using two visible colored lights assuming unlimited visibility robots. Das
et al. [6] prove that unlimited visibility robots on two-dimensional space with a five-color
light have the same computational power in the asynchronous and semi-synchronous models.
Di Luna et al. [15] discuss how lights can be used to solve some classical distributed problems
such as rendezvous and forming a sequence of patterns. The robots they assume have
unlimited visibility, but they also discuss the case where robots visibility is limited by the
presence of obstruction. Hence, luminous robots seem to dramatically improve the possibility
to solve tasks in the LCM model.

As a result of the above observations, it becomes interesting to study the interplay between
the myopic and luminous properties for LCM robots: can lights improve task solvability of
myopic robots. To our knowledge, only three papers [17, 16, 2] consider this combination.
Ooshita et al. [17] and Nagahama et al. [16] demonstrate that for the task of ring exploration,
even a two-color light significantly improves task solvability. Bramas et al. [2] give exploration
algorithms for myopic robots in infinite grids by using a constant-color light. To this day, the
characterization of gathering feasibility for myopic luminous robots (aside from the trivial
case where a single color is available) is unknown.

OPODIS 2019
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3

Figure 1 Example of an initial configuration where Minit = 7 and Oinit = 4. Border nodes are
represented in orange color. The robot on the left border node can sense the range represented by
green dots.

Our contributions. We clarify the solvability of gathering for myopic luminous robots in
rings. We consider the asynchronous (ASYNC) model, which is the most general timing
assumption. As in a previous work [12], we focus on initial configurations such that the
visibility graph1 is connected and there exist two border nodes2 (see Figure 1 for an example).
Both assumptions are necessary for the class of cautious gathering algorithms (see Lemmas 24
and 25). A cautious gathering protocol never expands the span of a given visibility graph. In
addition, we assume that all robots have the same color in initial configurations. We partition
initial configurations using two parameters Minit and Oinit; Minit is defined as the number
of nodes between two border nodes, and Oinit is defined as the number of nodes occupied by
some robots (also see Figure 1). We can easily observe that, if both Minit and Oinit are even,
there exist (so-called edge-symmetric) initial configurations such that no algorithm achieves
gathering (Corollary 22). Hence, we consider the case that Minit or Oinit is odd.

On the positive side, our main contribution is to prove that, if Minit or Oinit is odd, gath-
ering is always feasible by using a constant number of colors without additional assumptions
(so, no multiplicity detection is necessary) for any positive visible distance φ. First, for the
case that Minit is odd and φ ≥ 1 holds, we give a gathering algorithm that uses three colors.
Second, for the case that Oinit is odd and φ ≥ 2, we give a gathering algorithm that uses
four colors. Note that we assume φ ≥ 2 in the second algorithm because, if φ = 1 holds,
then Oinit = Minit also holds from the assumption of connected visibility graphs, so the
first algorithm can be used in this case. We compare the current work with that of Kamei
et al. [12] in Table 1. Overall, lights with a constant number of colors permit to remove
most of the previously considered assumptions. For example, our algorithms do not require
any multiplicity detection (that is, robots do not distinguish whether the number of robots
with the same color on a single node is one or more than one). Furthermore, our algorithms
solve gathering even if initial configurations include tower nodes (a tower node is a node
that hosts multiple robots). These results demonstrate the power of lights to achieve mobile
robot gathering with limited visibility.

Because of space limitations, we give proofs of lemmas and theorems in [13].

2 Model

We consider anonymous, disoriented and undirected rings G of N(≥ 3) nodes u0, u1, . . . , uN−1
such that ui is connected to both u((i−1) mod N) and u((i+1) mod N). On this ring, R
autonomous robots collaborate to gather at one of the N nodes of the ring, not known
beforehand, and remain there indefinitely.

1 A visibility graph is defined as GV = (R, EV ) where R is a set of all robots, and EV is a set of pairs of
robots that can observe each other.

2 Node v is a border node if robots on v can observe other robots only in one direction.
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The distance between two nodes u and v on a ring is the number of edges in a shortest
path connecting them. The distance between two robots r1 and r2 is the distance between
two nodes occupied by r1 and r2, respectively. Two robots or two nodes are neighbors if the
distance between them is one.

Robots are identical, i.e., they execute the same program and use no localized parameter
such as an identifier or a particular orientation. Also, they are oblivious, i.e., they cannot
remember their past observations or actions. We assume that robots do not know N , the
size of the ring, and R, the number of robots.

Each robot ri maintains a variable Li, called light, which spans a finite set of states
called colors. A light is persistent from one computational cycle to the next: the color
is not automatically reset at the end of the cycle. Let K denote the number of available
light colors. Let Li(t) be the light color of ri at time t. We assume the full light model:
each robot ri can see the light of other robots, but also its own light. Robots are unable
to communicate with each other explicitly (e.g., by sending messages), however, they can
observe their environment, including the positions and colors of the other robots. We assume
that besides colors, robots do not have multiplicity detection capability: if there are multiple
robots r1, r2, . . . rk in a node u, an observing robot r can detect only colors, so r can detect
there are multiple robots at u if and only if at least two robots among r1, r2, . . . rk have
different colors. So, a robot r observing a single color at node u cannot know how many
robots are located in u.

Based on the sensing result, a robot r may decide to move or to stay idle. At each
time instant ti(1 ≤ i), robots occupy nodes of the ring, their positions and colors form a
configuration C(ti) of the system at time ti. When C(ti) reaches C(ti+1) by executing some
phases between ti and ti+1, it is denoted as C(ti) −→ C(ti+1). The reflexive and transitive
closure is denoted as −→∗.

We assume that robots have limited visibility: an observing robot r at node u can only
sense the robots that occupy nodes within a certain distance, denoted by φ (φ ≥ 0), from u.
As robots are identical, they share the same φ.

Let Xi(t) be the set of colors of robots located in node ui at time t. If a robot rj located
at ui at t, the sensor of rj outputs a sequence, Vj , of 2φ+ 1 set of colors:

Xi−φ(t), . . . ,Xi−1(t), (Xi(t)),Xi+1(t), . . . ,Xi+φ(t).

This sequence Vj is the view of rj . If the sequence Xi+1, . . . ,Xi+φ is equal to the sequence
Xi−1, . . . ,Xi−φ, then the view Vj of rj is symmetric. Otherwise, it is asymmetric. In Vj , a
node uk is occupied at instant t whenever |Xk(t)| > 0. Conversely, if uk is not occupied by
any robot at t, then Xk(t) = ∅ holds, and uk is empty at t.

If there exists a node ui such that |Xi(t)| = 1 holds, ui is singly-colored. Note that |Xi(t)|
denotes the number of colors at node ui, thus even if ui is singly-colored, it may be occupied
by multiple robots (sharing the same color). Now, if a node ui is such that |Xi(t)| > 1 holds,
ui is multiply-colored. As each robot has a single color, a multiply-colored node always hosts
more than one robot.

In the case of a robot rj located at a singly-colored node ui, rj ’s view Vj contains an
Xi(t) that can be written as [Lj ]. Then, if the left node of ui contains one or more robots
with color Lk, and the right node of ui contains one or more robots with color Ll, while
ui only hosts rj , then Vj can be written as Lk[Lj ]Ll. Now, if robot rj at node ui occupies
a multiply-colored position (with two other robots rk and rl having distinct colors), then

OPODIS 2019
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|Xi(t)| = 3, and we can write Xi(t) in Vj as

 LkLl
[Lj ]

. When the view does not consist of a

single observed node, we use brackets to distinguish the current position of the observing
robot in the view and the inner bracket to explicitly state the observing robot’s color.

Our algorithms are driven by observations made on the current view of a robot, so many
instances of the algorithms we use view predicates: a Boolean function based on the current
view of the robot. The predicate Lj matches any set of colors that includes color Lj , while
predicate (Lj , Lk) matches any set of colors that contains Lj , Lk, or both. Now the predicate(
L1
L2

)
matches any set that contains both L1 and L2. Some of our algorithm rules expect

that a node is singly-colored, e.g. with color Lk, in that case, the corresponding predicate is
denoted by Lk!. To express predicates in a less explicit way, we use character ’?’ to represent
any non-empty set of colors, so a set of colors Xi 6= ∅ satisfies predicate ’?’. The ¬ operator
is used to negate a particular predicate P (so, ¬P returns false whenever P returns true and
vice versa). Also, the superscript notation P y represents a sequence of y consecutive sets of
colors, each satisfying predicate P . Observe that y ≤ φ. In a given configuration, if the view
of a robot rj at node ui satisfies predicate ∅φ[?] or predicate [?]∅φ, then rj is a border robot
and ui a border node. Sometimes, we require a particular color L1 to be present at some
position ui and a particular color L2 not to be present at some position ui. For the above

case, the corresponding predicate would be:
(
L1
¬L2

)
.

In this paper, we aim at maintaining the property that at most two border nodes exist
at any time. On the ring G, let Hmax be the size of the maximum hole (i.e., the maximum
sequence of empty nodes). Note that by the assumptions, at instant t = 0 (i.e., in the initial
configuration), Hmax > φ holds. Let V ′ be the subset of nodes on a path between two border
nodes u and v, such that all robots are hosted by nodes in V ′. Also, let G′ be the subgraph
of G induced by V ′. Note that, G′ does not include the hole with the size Hmax. At instant
t = 0, let Hinit be the maximum distance between occupied nodes in G′, Minit be the number
of nodes in G′, and Oinit(≤Minit) be the number of occupied nodes in G′. We assume that
φ ≥ Hinit ≥ 1 holds. Note that, Hinit is the size of the second maximum hole in the ring
because there are two border nodes. As previously stated, no robot is aware of Hinit, Minit

and Oinit. In G′, let D denote the distance between the two border nodes. Note that, at
t = 0, D = Minit − 1 holds.

Each robot r executes Look-Compute-Move cycles infinitely many times: (i) first, r takes
a snapshot of the environment and obtains an ego-centered view of the current configuration
(Look phase), (ii) according to its view, r decides to move or to stay idle and possibly
changes its light color (Compute phase), (iii) if r decided to move, it moves to one of its
neighbor nodes depending on the choice made in the Compute phase (Move phase). At each
time instant t, a subset of robots is activated by an entity known as the scheduler. This
scheduler is assumed to be fair, i.e., all robots are activated infinitely many times in any
infinite execution. In this paper, we consider the most general asynchronous model: the time
between Look, Compute, and Move phases is finite but unbounded. We assume however that
the move operation is atomic, that is, when a robot takes a snapshot, it sees robots colors
on nodes and not on edges. Since the scheduler is allowed to interleave the different phases
between robots, some robots may decide to move according to a view that is different from
the current configuration. Indeed, during the compute phase, other robots may move. Both
the view and the robot are in this case said to be outdated.
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In this paper, each rule in the proposed algorithms is presented in the similar notation as
in [17]: < Label > : < Guard > :: < Statement >. The guard is a predicate on the view
Vj = Xi−φ, . . . ,Xi−1, (Xi),Xi+1, . . . ,Xi+φ obtained by robot rj at node ui during the Look
phase. If the predicate evaluates to true, rj is enabled, otherwise, rj is disabled. In the first
case, the corresponding rule < Label > is also said to be enabled. If a robot rj is enabled,
rj may change its color and then move based on the corresponding statement during its
subsequent Compute and Move phases. The statement is a pair of (New color, Movement).
Movement can be (i) →, meaning that rj moves towards node ui+1, (ii) ←, meaning that rj
moves towards node ui−1, and (iii) ⊥, meaning that rj does not move. For simplicity, when
rj does not move (resp. rj does not change its color), we omit Movement (resp. New color)
in the statement. The label < Label > is denoted as R followed by a non-negative integer
(i.e., R0, R1, etc.) where a smaller label indicates higher priority.

3 Algorithms

In this section, we propose two algorithms for myopic luminous robots. One is for the case
that Minit is odd, uses three colors (K = 3). The other is for the case that Minit is even
and Oinit is odd, uses four colors (K = 4). We assume that the initial configurations satisfy
the following conditions:

All robots have the same color White,
Each occupied node can have multiple robots, and
φ ≥ Hinit ≥ 1 holds.

3.1 Algorithm for the case Minit is odd
The strategy of our algorithm is as follows: The robots on two border nodes keep their lights
Red or Blue, then the algorithm can recognize that they are originally on border nodes.
When robots on a border node move toward the center node, they change the color of their
light to Blue or Red alternately regardless of the neighboring nodes being occupied, where
initially robots become Red colors. To keep the connected visibility graph, when a border
node becomes singly-colored, the border robot changes its light to Blue or Red according
to the distance from the original border node and moves toward the center node and the
neighboring non-border robot becomes a border robot. Eventually, two border nodes become
neighboring. Then, one has Blue robots and the other has Red robots because Minit is odd.
At the last moment, Red robots join Blue robots to achieve the gathering.

The formal description of the algorithm is in Algorithm 1. The rules of our algorithm are
as follows:

R0: If the gathering is achieved, a robot does nothing3.
R1: A border White robot on a singly-colored border node changes its light to Red.
R2a and R2b: A border Red robot on a singly-colored border node changes its light to
Blue and moves toward an occupied node.
R3a and R3b: A border Blue robot on a singly-colored border node changes its light to
Red and moves toward an occupied node.

3 Note, this algorithm and the next one cannot terminate because gathering configurations are not
terminating ones due to robots with outdated views even if this rule is executed. Because this rule has
higher priority, if it is enabled, robots do not need to check other guards.
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Figure 2 An execution example of Algorithm 1 with φ = 2.

R4a and R4b: When White robots become border robots, they change their color to the
same color as the border Red or Blue robots.
R5: If two border nodes are neighboring, a border Red robot on a singly-colored border
node moves to the neighboring singly-colored node with Blue robots.

Figure 2 illustrates an execution example of Algorithm 1. This figure assumes φ = 2.
Figure 2(a) shows an initial configuration. First, border White robots change their lights to
Red by R1 (Fig. 2(b)). Next, left border Red robots move by R2a. Since we consider the
ASYNC model, some robots may become outdated. In Fig. 2(c), the top robot has changed
its light but not yet moved, and the middle robot has looked but not yet changed its light.
The outdated robots move in Fig. 2(d), and then the right border Red robot also moves in
Fig. 2(e) by R2a. Here, one left border Red robot has not yet moved. However, since it still
observes a White robot, it can move by R2a (Fig. 2(f)). Then, border Blue robots can move
by R3b. In Fig. 2(g), one left border robot becomes outdated and the right border robot
completes the movement. After the right border White robot changes its light to Red by R4a
(Fig. 2(h)), the right border Red robots move by R5 (Fig. 2(i)). Note that, all robots stay at
a single node but one of them is outdated. Hence the robot moves after that (Fig. 2(j)), but
it can go back to the gathering node by R5 (Fig. 2(k)). Now robots have achieved gathering.

In the case of φ = 1, each robot can view only its neighboring nodes. In this case, we
should add some assumptions as follows:

R2a and R3a are always disabled.
R2b and R3b are enabled when there are White robots in the neighboring node.
R5 is enabled when the neighboring node is singly-colored with Blue robots.

In that case, because of the connectivity of the visibility graph, there is no empty node in G′.
That is, until gathering is achieved, there is at least one White robot on the neighboring
node. Thus, such assumption is natural and we can prove the correctness in the same way
as other cases by deleting R2a and R3a (the case such that there is no White robot on the
neighboring node but gathering is not achieved).

We now discuss the correctness of our algorithm. Because there is no rule such that
non-border robot ri can execute, we can derive the following lemma.

I Lemma 1. When a robot ri looks, if it is a non-border robot, it cannot execute any action.

To discuss the correctness, we consider the time instants such that the distance D
between two border nodes has just reduced at least one. The duration between them is
called mega-cycle. Note that, D is reduced at most two by the algorithm during a mega-cycle.
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Algorithm 1 Algorithm for the case that Minit is odd.
Colors
W (White), R (Red), B (Blue)

Rules

/* Do nothing after gathering. */
R0: ∅φ[?]∅φ :: ⊥

/* Start by the initial border robot. */
R1: ∅φ[W !](¬∅φ) :: R

/* Border robots on singly-colored nodes change
their color alternately and move. */
R2a: ∅φ[R!](∅, B!)(¬(∅φ−1)) :: B,→

R2b: ∅φ[R!](W )(?φ−1) :: B,→

R3a: ∅φ[B!](∅, R!)(¬(∅φ−1)) :: R,→

R3b: ∅φ[B!](W )(?φ−1) :: R,→

/* When White robots become a border robot,
they change their color to the same color as the
border robot. */

R4a: ∅φ
[
R

[W ]

]
(¬∅φ) :: R

R4b: ∅φ
[
B

[W ]

]
(¬∅φ) :: B

/* When two border nodes are neighboring, ro-
bots gather to a node with the Blue border robots.
*/
R5: ∅φ[R!](B!)(∅φ−1) :: B,→

Let t0, t1, . . . ti, . . . be starting times of mega-cycles, where t0 is the starting time of the
algorithm and for each i (≥ 1), D is reduced at least one from ti−1 at time ti. Letting C(ti)
be the configuration at time ti, the transition of configurations from ti to ti+1 is denoted as
C(ti)

MC−−→ C(ti+1).
Figure 3 shows a transition diagram of configurations for each mega-cycle (We prove all

transitions later). The small blue box represents a node, and the circle represents a set of
robots (One single circle may represent a set of robots with the same color). The doubly
(resp. singly) lined arrows represent that D decreases by 2 (resp. 1). The letter in each
circle represents the color of the lights. The circles in parentheses represent that they are
optional. The circles in brackets represent that one of them should exist. In Conf 1-3, there
is no Red or Blue robot with an outdated view (i.e., all robots are after Move phases before
they look). In Conf 4-7, left side border node represents that there is no Red or Blue robot
with an outdated view. Right side border robots in Conf 4-7 represent that they are still
working on their movements, i.e., there may be robots with outdated views. The second
node from the right can be empty, and there can be White robots on the node. In the right
side border node, the white circles represent that the robots can be on the node, but with
the outdated view. Actually, there may be White robots which do not change their color
to the same as the border color, Red or Blue, yet. We omit such White robots changing to
border color for simplicity, i.e., they may be included in any set of White robots in border
nodes in this figure4. For example, consider an example in Fig. 2. The initial configuration in
Fig. 2(a) is represented by Init. The next mega-cycle starts in Fig. 2(e) and this configuration
is represented by Conf 4. Note that mapping from left and right border nodes in Conf 1-7 to
two border nodes in configurations may change during an execution. The next mega-cycle
starts in Fig. 2(f) and this configuration is represented by Conf 1.

Because the border node becomes singly-colored by R4, we can derive the following
lemma.

4 However, it is considered in the proof.
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Figure 3 Transition Diagram for Algorithm 1 while D > 2.

I Lemma 2. Assume that a border node contains White and γ robots, where γ ∈ {Red, Blue}
at time t. Then there exists a time t′(> t) such that the border node becomes singly-colored
one with γ robots. In the case that the border node contains only White robots, the border
node becomes Red singly-colored.

Because border robots on a singly-colored node eventually move to a neighboring node
by R2 or R3, the following lemma holds.

I Lemma 3. Assume that a border node u is singly-colored with Red (resp. Blue) at time
t, then if there is no robot in u at time t′(> t), all robots in u change their color to Blue
(resp. Red), move to the neighboring node of u, and the distance between the border nodes is
reduced by at least one at t′.

We showed that the transition diagram in Figure 3 is correct while D > 2. In each
mega-cycle, D decreases by at least one, and border robots change their color Red and Blue
alternately every hop.

I Lemma 4. From the initial configuration, D decreases monotonically and eventually
becomes 2.

I Lemma 5. Let h be the distance from the original border node to a node uh in G′. If h is
odd (resp. even), a Blue (resp. Red) border robot comes into uh.

In the following part, we consider the execution after D becomes 2.
Let Conf BW-MR be the configuration with D = 1 such that there are Blue robots and

White robots without outdated views in a border node and there are Red robots and Blue
robots with outdated views and Red robots without outdated views in the other border
node, where Blue robots with outdated views will move to the other border node and Red
robots with outdated views will change their color to Blue and move to the other border
node (Figure 4a).

Let Conf RW-MB be the configuration with D = 1 such that there are Red robots and
White robots without outdated views in a border node and there are Red robots and Blue
robots with outdated views and Blue robots without outdated views in the other border
node, where Red robots with outdated views will move to the other border node and Blue
robots with outdated views will change their color to Red and move to the other border node
(Figure 4b).

I Lemma 6. After D becomes 2, the configuration becomes Conf BW-MR or Conf RW-MB.
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Figure 4 The configurations Conf BW-MR and Conf RW-MB with D = 1.

To show that the gathering is achieved, by Lemmas 4 and 6, we consider the gathering
only from Conf BW-MR and Conf RW-MB respectively.

I Lemma 7. From Conf BW-MR, the gathering is achieved.

I Lemma 8. From Conf RW-MB, the gathering is achieved.

By Lemmas 7 and 8, we can derive the following theorem.

I Theorem 9. Gathering is solvable in full-light of 3 colors when Minit is odd.

3.2 Algorithm for the case Minit is even and Oinit is odd
In this case, we can assume φ > 1 because the visibility graph is connected. The strategy of
our algorithm is similar to Algorithm 1. Initially, all robots are White, and robots on two
border nodes become Red in their first activation. The two border robots keep their lights
Red or Blue, then the algorithm can recognize that they are originally border robots. When
non-border White robots become border robots, they change their color to Red (resp., Blue)
if borders that join the node have Red (resp., Blue). To keep the connected visibility graph,
when a border node becomes singly-colored, the border robot moves toward the center node.
At that time, if there exists a White robot in the directed neighboring node, the border
robot changes its color. Otherwise, it just moves without changing its color. Eventually, two
border nodes become neighboring. In this algorithm, when two border nodes are neighboring,
an additional color Purple is used to decide the gathering point.

The rules of our algorithm are as follows:
R0: If the gathering is achieved, a robot does nothing.
R1: A border White robot on a singly-colored border node changes its light to Red.
R2: A border Red robot on a singly-colored border node moves toward an occupied node
without changing its color when there is no White robot on the neighboring node (R2a-1,
R2a-2). A border Red robot moves toward an occupied node and changes its light to
Blue only when there is at least one White robot on the neighboring node (R2b).
R3: A border Blue robot on a singly-colored border node moves toward an occupied node
without changing its color when there is no White robot on the neighboring node (R3a-1,
R3a-2). A border Blue robot moves toward an occupied node and changes its light to
Red only when there is at least one White robot on the neighboring node (R3b).
R4: When White robots become border robots, they change their color to the same color
as the border Red or Blue robots.
R5: If two border nodes are neighboring, every robot moves to the neighboring node with
Purple robots (R5a). A border Blue robot on a singly-colored border node changes its
light to Purple when there are only Red robots or Red and Blue robots on the neighboring
node (R5b-1, R5b-2). A border Blue robot changes its light to Purple when there is
Red robot on the same node and the neighboring node is a singly-colored node with Red
robots (R5b-3).
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Algorithm 2 Algorithm for the case that Minit is even and Oinit is odd.
Colors
W (White), R (Red), B (Blue), P (Purple)

Rules

/* Do nothing after gathering. */
R0: ∅φ[?]∅φ :: ⊥

/* Start by the initial border robots. */
R1: ∅φ[W !](¬∅φ) :: R

/* Border robots on singly-colored nodes move
inwards. */
R2a-1: ∅φ[R!](∅)(¬(∅φ−1)) :: →

R2a-2: ∅φ[R!]
(
¬W
R

)
(¬(∅φ−1)) :: →

R2b: ∅φ[R!](W )(?φ−1) :: B,→

R3a-1: ∅φ[B!](∅)(¬(∅φ−1)) :: →

R3a-2: ∅φ[B!]
(
¬W
B

)
(¬(∅φ−1)) :: →

R3b: ∅φ[B!](W )(?φ−1) :: R,→

/* When White robots become border robots,
they change their color to the same color as the
border robots. */

R4a: ∅φ
[
R

[W ]

]
(¬∅φ) :: R

R4b: ∅φ
[
B

[W ]

]
(¬∅φ) :: B

/* When two border nodes are neighboring, they
gather to the border node with Purple robots. */
R5a: ∅φ[?](P )(∅φ−1) :: →

R5b-1: ∅φ[B!](R!)(∅φ−1) :: P

R5b-2: ∅φ[B!]
(
R

B

)
(∅φ−1) :: P

R5b-3: ∅φ
[
R

[B]

]
(R!)(∅φ−1) :: P

The formal description of the algorithm is in Algorithm 2. Figure 5 illustrates an execution
example of Algorithm 2. This figure assumes φ = 3. Figure 5(a) shows an initial configuration.
First, the left border White robot changes its light to Red by R1 (Fig. 5(b)). Next, the left
border Red robot moves by R2a-1 (Fig. 5(c)). Note that, here, the robot does not change
its light. In the next movement, the left border Red robot moves to a node with a White
robot by R2b, and hence it changes its light to Blue (Fig. 5(d)). Then the left border White
robot changes its light to Blue (Fig. 5(e)). Left border Blue robots can move by R3a-1. In
Fig. 5(f), one of them completes the movement. In this case, another robot can move by
R3a-2 (Fig. 5(g)). Next, right border White robots change their lights by R1 (Fig. 5(h)).
After that, left and right border robots move toward each other by R2a-1 and R3a-1. In
Fig. 5(i), some Blue and Red robots meet at a node but border robots continue to move
until the number of occupied nodes is at most two by R2a-2 and R3a-2 (Fig. 5(j)). After the
number of occupied nodes is at most two, some robots change their lights to Purple. In this
case, the left Blue robot changes its light by R5b-2 (Fig. 5(k)). After that, all robots move to
the node with a Purple robot by R5a and achieve gathering (Fig. 5(l)).

We now discuss the correctness of Algorithm 2. As with Algorithm 1, since there is no
rule that non-border robot can execute by the definition of Algorithm 2, the following lemma
holds.

I Lemma 10. When a robot ri looks, if it is a non-border robot, it cannot execute any action.

To discuss the correctness, we change the definition of mega-cycle as follows: We consider
the time instants such that the number of occupied nodes with White robots among non-
border nodes (denoted as #OW ) has just reduced at least one. That is, mega-cycles end
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Figure 5 An execution example of Algorithm 2 with φ = 3.
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Figure 6 Transition Diagram for Algorithm 2 while D > 2.

when either the position of the border node moves to the nearest occupied node with White
robots. If the position of the border node moves to the nearest occupied node with White
robots, we say the border absorbs White robots.

Figure 6 shows a transition diagram of configurations for every mega-cycle. The doubly
(resp. singly) lined arrows represent that #OW is decreased by 2 (resp. 1). In the diagram,
Init and Conf 1-7 are the same as those of Algorithm 1 and they have the same transitions
between them as shown in Figure 3, where note that each node with W circle contains at
least one White robot. In addition to these configurations, there exist four configurations
Conf 8-11 in Algorithm 2. In Conf 1-3, both borders absorb White robots. In Conf 4-7, when
one border absorbs White robots, the other border node is neighbored to an occupied node
with a White robot. On the other hand, in Conf 8-11, when one border absorbs White robots,
the other border node is not neighbored to any occupied node with a White robot.

The following lemma can be proved similarly to the proof of Lemma 3.

I Lemma 11. Assume that a border node u is singly-colored with Red (resp. Blue) at time t
and there is no robot in u at time t′(> t). If the neighboring node of u (denoted as v) is an
occupied node with a White robot at t, all robots in u change their color to Blue (resp. Red),
move to v, and #OW and D are reduced by at least one at t′. Otherwise, that is, when v is
a node without White robots at t, all robots move to v and do not change their color and D
is reduced by at least one at t′.

By Lemma 11, each border node moves to the occupied node until either border node
absorbs White robots in any mega-cycle. Transitions among Init and Conf 1-7 can be proved
similarly to those in the corresponding lemmas using Lemma 11 instead of Lemma 3. The
difference occurs when one border absorbs White robots and the neighboring node of the
other border node is without White robots. In this case, since robots on the other border
nodes moves to the neighboring node, the configuration becomes Conf 8-11. The proofs can
be done similarly.
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Also, we showed that the transition diagram in Figure 6 is correct while D > 2. Then, in
each mega-cycle, because the number of occupied nodes between two borders decreases by at
least one, the following lemma holds.

I Lemma 12. From the initial configuration, #OW decreases monotonically and eventually
becomes at most one.

I Lemma 13. Let h be the number of occupied nodes where an original border robot rh
absorbed White robots in G′ from the initial configuration and let uh denote the current border
node rh is located. If h is odd (resp. even), rh’s light is Blue (resp. Red) when rh comes into
uh.

It can be easily verified by Figures 3 and 6 and Lemmas 12–13 that the following
configurations occur when #OW becomes at most one.

1. Conf 1, Conf 2, Conf 5 and Conf 6 (D ≥ 2 and #OW = 1).
2. Conf 3 (D ≥ 1 and #OW = 0) and Conf 9 (D ≥ 2 and #OW = 0), and Conf 10 (D ≥ 2

and #OW = 0).

In the former case, for configurations Conf 1,2,5,6(D = 2 and #OW = 1), we have the
following lemma, where Conf RW-MB and Conf BW-MR have been defined in the proof for
Algorithm 1. In Conf 3(D = 1), both border nodes may contain White robots with outdated
views and contain no White robots.

I Lemma 14.
1. Conf 1(D = 2 and #OW = 1) →∗ Conf RW-MB, or Conf 3(D = 1)
2. Conf 2(D = 2 and #OW = 1) →∗ Conf BW-MR, or Conf 3(D = 1)
3. Conf 5(D = 2 and #OW = 1) →∗ Conf BW-MR, or Conf 3(D = 1)
4. Conf 6(D = 2 and #OW = 1) →∗ Conf RW-MB, or Conf 3(D = 1)

Otherwise (D ≥ 3), we have the following transitions.

I Lemma 15.
1. Conf 1(D ≥ 3 and #OW = 1) MC−−→

∗
Conf 3(D ≥ 1 and #OW = 0), or Conf 10(D ≥ 2

and #OW = 0)
2. Conf 2(D ≥ 3 and #OW = 1) MC−−→

∗
Conf 3(D ≥ 1 and #OW = 0), or Conf 9(D ≥ 2 and

#OW = 0)
3. Conf 5(D ≥ 3 and #OW = 1) MC−−→

∗
Conf 3(D ≥ 1 and #OW = 0), or Conf BW-MR(D = 1

and #OW = 0)
4. Conf 6(D ≥ 3 and #OW = 1) MC−−→

∗
Conf 3(D ≥ 1 and #OW = 0), or Conf RW-MB(D = 1

and #OW = 0)

We can prove that Conf BW-MR, Conf RW-MB and Conf 3(D = 1) become gathering
configuration in the following lemma.

I Lemma 16. From configurations Conf BW-MR, Conf RW-MB and Conf 3(D = 1), gathering
is achieved.

Then by Lemmas 14-16, it is sufficient to consider Conf 3(D ≥ 2 and #OW = 0), Conf
9(D ≥ 2 and #OW = 0), and Conf 10(D ≥ 2 and #OW = 0) for the former case.

The latter case has the following transitions. Note that, these transition does not reduce
#OW and just reduces the distance between the two border nodes. Note also that, the
destinations of these transitions do not contain any White robots.
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I Lemma 17.
1. Conf 3 (D ≥ 3 and #OW = 0) →∗ Conf 3((D = 2 and #OW = 0) or Conf RW-BW
2. Conf 3(D ≥ 3 and #OW = 0)→∗ Conf 10(D = 2 and #OW = 0)
3. Conf 3(D ≥ 3 and #OW = 0)→∗ Conf 9(D = 2 and #OW = 0)

Since Conf 9(D ≥ 2 and #OW = 0)(resp. Conf 10(D ≥ 2 and #OW = 0)) becomes Conf
3((D = 2 and #OW = 0) or Conf RW-BW, or Conf 9(D = 2 and #OW = 0) (resp. Conf
9(D = 2 and #OW = 0)), the correctness proof completes if we can show that these three
configurations become gathering ones.

I Lemma 18. Conf 3(D = 2 and #OW = 0), Conf 9(D = 2 and #OW = 0), and Conf
10(D = 2 and #OW = 0) become gathering configurations.

By the above discussion, we can derive the following theorem.

I Theorem 19. Gathering is solvable in full-light of 4 colors when Minit is even and Oinit
is odd.

It is an interesting open question whether gathering is solvable or not in full-light of 3
colors when Minit is even and Oinit is odd.

4 Discussion

In this section, we discuss the gathering problem in other cases. First, we consider the case
that Minit and Oinit are even.

I Definition 20. A configuration is edge-view-symmetric if there exist at least two distinct
nodes hosting each at least one robot, and an edge (ui, ui+1) such that, for any integer k ≥ 0,
and for any robot r1 at node ui−k, there exists a robot r2 at node ui+k+1 such that V1 = V2.

I Theorem 21. Deterministic gathering is impossible from any edge-view-symmetric config-
uration.

I Corollary 22. Starting from a configuration where Minit is even and Oinit is even, and
all robots have the same color, there exist initial configurations (e.g. edge-view-symmetric
configurations) that a deterministic algorithm cannot gather.

We now study the impact of an important property our algorithms satisfy: cautiousness [1].

I Definition 23. A gathering algorithm is cautious if, in any execution, the direction to
move is only toward other occupied nodes, i.e., robots are not adventurous and do not want
to expand the covered area.

Note that, the algorithms we provide in previous sections, only border robots move, and they
only move toward occupied other nodes, hence our algorithms are cautious.

I Lemma 24. A cautious algorithm that starts from a configuration with more than two
border nodes cannot solve gathering.

I Lemma 25. A cautious algorithm that starts from a configuration with no border node
cannot solve gathering.

I Theorem 26. For Minit even and Oinit even, there exists no cautious gathering algorithm
with φ = 1, even when the initial configuration is not edge-view-symmetric.
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5 Conclusion

We presented the first gathering algorithms for myopic luminous robots in rings. One
algorithm considers the case where Minit is odd, while the other is for the case where Oinit
is odd. The hypotheses used for our algorithms closely follow the impossibility results found
for the other cases. Some interesting questions remain open:

Are there any deterministic algorithms for the case where Minit and Oinit are even (such
solutions would have to avoid starting or ending up in an edge-view-symmetric situation)?
Are there any algorithms for the case where Minit (resp. Oinit) is odd that use fewer
colors than ours? The current lower bound for odd Minit (resp. Oinit) is 2 (resp. 3), but
our solutions use 3 (resp. 4) colors.
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