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We investigate the impact of buoyancy on the solute mass transport in an evaporating liquid mixture (non-
volatile solute + solvent) confined in a slit perpendicular to the gravity. Solvent evaporation at one end of the slit
induces a solute concentration gradient which in turn drives free convection due to the difference between the
densities of the solutes and the solvent. From the complete model coupling mass transport and hydrodynamics,
we first use a standard Taylor-like approach to derive a one dimensional non-linear advection-dispersion equa-
tion describing the solute concentration process for a dilute mixture. We then perform a complete analysis of
the expected regimes using both scaling analysis and asymptotic solutions of this equation. The validity of this
approach is confirmed using a thorough comparison with the numerical resolution of both the complete model
and the 1D advection-dispersion equation. Our results show that buoyancy-driven free convection always im-
pacts solute mass transport at long time scales, dispersing solutes in a steadily increasing length scale along the
slit. Beyond this confined drying configuration, our work also provides an easy way for evaluating the relevance
of buoyancy on mass transport in any other microfluidic configuration involving concentration gradients.

I. INTRODUCTION

Drying of liquid mixtures often leads to concentration gra-
dients, and therefore density gradients. When these gradients
are orthogonal to gravity, they inevitably generate buoyancy-
driven flows, that then alters the drying process when coupled
to the overall mass transport. Solutal buoyancy-driven free
convection is generally relevant at relatively large scales, but
many recent experiments reported such flows in confined mi-
crofluidic geometries (10–100 µm): drying of confined [1–4]
and sessile droplets [5–7], or any other microfluidic configura-
tion generating concentration gradients [8, 9]. At small scales,
buoyancy-driven flows are expected to play a minor role on
mass transport, owing to the high viscous dissipation and fast
solute diffusion [10]. Nevertheless, these flows always exist
as soon as density gradients are perpendicular to gravity, and
they can have an impact on less mobile species dispersed in
the liquid mixture [8, 9].

The purpose of this work is to theoretically address such
issues, and more precisely to quantitatively predict the range
of parameters for which buoyancy-driven flows impact mass
transport in a confined drying experiment. To do this, we con-
sider the model experiment described in Fig. 1(a). A horizon-
tal slit of height h, initially filled with a liquid binary mixture,
is connected at one end to a tank containing the same mixture,
and opened to the ambient atmosphere at the other end. This
geometry is not only prone to a simple modeling, but also
commonly used to probe mass transport and uni-directional
drying in complex fluids ranging from colloidal dispersions
to surfactant mixtures, see e.g. [11–16]. In the following,
we consider for simplicity a dilute binary mixture, solvent +
non-volatile solute at concentration Φ, for which both inter-
diffusion coefficient D and kinematic viscosity ν are constant.
Thereafter, we will also consider that the height of the slit is
small enough to neglect any inertial effect. Solvent evapora-
tion, occurring at the outlet (X = 0) at a rate Ė > 0 (m/s), leads
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FIG. 1. (a) Schematic view of the confined drying experiment. The
slit is connected at X → −∞ to a tank containing the dilute mix-
ture at concentration Φi. (b) Solvent evaporation at a rate Ė > 0
drives a flow concentrating continuously the non-volatile solute at
the tip of the slit, see also the colored gradient in (a). The den-
sity gradient in turn generates a buoyancy-driven flow, superim-
posed on the evaporation-induced Poiseuille flow. (c) Without buoy-
ancy, δ initially grows as

√
DT before reaching a steady value

δ ∼D/Ė, whereas the diffusive layer invades the channel as δ ∝ T 2/5

when buoyancy-driven free convection dominates at long time scales.
These two curves are slightly shifted for the sake of clarity.

to a flow field U within the slit. Owing to mass conservation,
the horizontal component of the fluid velocity verifies

<UX >=
1
h

∫ h

0
UX dZ = Ė, (1)

where h is the height of the slit. This flow continuously con-
centrates the non-volatile solutes at the tip of the slit, in a
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layer whose typical size δ depends on the competition be-
tween evaporation-induced advection and solute diffusion, see
Fig. 1(b).

Assuming first that diffusion homogenizes the concentra-
tion of solutes over h, the solute concentration profile Φ(X ,T )
obeys the following 1D advection-diffusion equation:

∂Φ

∂T
+ Ė

∂Φ

∂X
= D

∂ 2Φ

∂X2 , (2)

along with a solute no-flux boundary condition at X = 0 as
we consider non-volatile solutes. Fedorchenko and Chernov
investigated theoretically this equation in the context of gas
segregation induced by a moving solidification front [17] (see
also Ref. [18] who used the same equation to describe stratifi-
cation in drying films of colloidal dispersions). According to
Ref. [17], solutes accumulate at the tip of the slit in a diffuse
layer which first grows as δ ∼

√
DT , and reaches the steady

value δ ∼ D/Ė after a transient time ∼ D/Ė2, see Fig. 1(c).
In this asymptotic regime, the amount of solutes at the tip in-
creases linearly with time, as well as the concentration gradi-
ent.

When the solute and solvent do not have the same density,
such concentration gradients inevitably generate buoyancy-
driven free convection, see schematically Fig. 1(a). Free con-
vection is intrinsically a multi-dimensional (2D or 3D) prob-
lem. In the present work, we will show that free convection
due to buoyancy and its consequence on solute transport in
the slit sketched in Fig. 1 can be described by a 1D advection-
dispersion equation. More precisely, we will use a standard
Taylor-like approach to show that the transverse-averaged so-
lute concentration profile defined by:

Φ0(X ,T ) =
1
h

∫ h

0
Φ(X ,Z,T )dZ, (3)

is well approximated, for a wide range of parameters, by the
solution of

∂Φ0

∂T
+ Ė

∂Φ0

∂X
=

∂

∂X

(
Deff

∂Φ0

∂X

)
, (4)

where

Deff = D

[
1+

1
α

(
gβsh4

νD
∂Φ0

∂X

)2
]
, (5)

is a dispersion coefficient that takes into account both thermal
diffusion and buoyancy on the solute mass transport. In the
above equation, g is the acceleration due to gravity, βs the
solutal expansion coefficient of the fluid mixture, and α =
362880 (D is the interdiffusion coefficient and ν the kinematic
viscosity). Chatwin and Erdogan were the first to derive this
term when studying the effect of buoyancy on the dispersion
of solutes in a pressure-driven flow [19]. They also reported
that Taylor made the same calculation in 1953, but did not
publish it, see also the review of Young and Jones on shear
dispersions [20].

The physics of Eqs. (4-5) can be explained as follows. In
the framework of the lubrication approximation, the density
gradient induces a flow UB whose scale comes from a balance

between buoyancy (gβsh
∂ϕ0
∂X ) and viscous forces (νUB/h2),

leading to [20]:

UB ∼
gβsh3

ν

∂Φ0

∂X
. (6)

This flow, and more precisely its axial velocity distribution
along X , see Fig. 1(a), increases solutes dispersion leading
to the term in Eq. (5). This term scales as ∼ (UBh/D)2 thus
comparing the solute diffusive transport (D/h) and its trans-
port by buoyancy-driven convection (UB). The prefactor α , as
well as the power 2, comes from a standard Taylor-like per-
turbation approach, as first derived by Chatwin and Erdogan
but in a circular tube [19]. The non-linearity of this dispersive
term, compared to the Taylor-Aris dispersion in a Poiseuille
flow, comes from the coupling between the buoyancy-driven
flow and the density gradient: strong gradients increase the
magnitude of free convection, which in turn increases solute
dispersion, see Eq. (6).

Similar equations were also derived in various convection
problems driven by temperature differences in a fluid layer,
but also for describing the dynamics of well-mixed estuar-
ies [21, 22], for quantifying the impact of buoyancy on the
measurement of diffusivities in liquid metals [23], or even to
study gravity currents of miscible fluids in porous media [24].
Despite an in-depth literature review on this classical Taylor-
like approach, we are not aware of any work discussing such
an equation in the context of confined drying, and more gener-
ally of microfluidic experiments generating solute gradients.

In a second step, we thus report a complete investigation of
the solute concentration process described by the advection-
dispersion equation Eq. (4). We first predict all the expected
regimes of solute concentration using a detailed scaling anal-
ysis, and we then provide asymptotic analytical solutions of
the concentration profiles when mass transport is dominated
by diffusion or else by buoyancy-driven dispersion.

In particular, we show that solutes dispersion caused by
buoyancy leads at long time scales to a diffusive layer thick-
ness δ which continuously invades the channel following
δ ∝ T 2/5, see Fig. 1(c). This theoretical approach also helps
us to provide a simple diagram highlighting the range of pa-
rameters corresponding to mass transport dominated by dif-
fusion (i.e. negligible dispersion). Finally, the validity of the
1D advection-dispersion model is thoroughly investigated by
means of scaling analysis, and the results confirmed by com-
parisons with direct numerical simulations of the 2D model.

The present paper is organized as follows. In Section II, we
first present the equations modeling the experiments shown in
Fig. 1, as well as the underlying assumptions. We then derive
from this model the advection-dispersion equation Eq. (4).
Section III then reports a complete discussion of the differ-
ent regimes expected, as well as the corresponding analytical
asymptotic solutions. The validity of the 1D approach is then
investigated. In Section IV, we finally conclude our work by
discussing its possible implications, particularly for microflu-
idic experiments generating concentration gradients.
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II. FROM THE 2D MODEL TO A 1D
ADVECTION-DISPERSION EQUATION

A. 2D model

As stated in the introduction, we first consider a binary mix-
ture, solvent + non-volatile solute with concentration Φ. We
also assume that its density evolves as:

ρ = ρi[1+βs(Φ−Φi)] , (7)

where ρi is the density at the solute concentration Φi, and βs
the solutal expansion coefficient of the fluid mixture at the
reference concentration Φi. The configuration under study is
depicted in Fig. 1, and we consider that both the height of
the slit and the evaporation-induced flow are small enough
to neglect inertia. The slit is initially filled homogeneously
by the solution at concentration Φi. Solvent evaporation in-
duces the concentration of the non-volatile solutes at the tip
of the slit. Thereafter, we limit our study to dilute solutions,
for which the evaporation rate Ė and the various transport co-
efficients (viscosity ν , mutual diffusion coefficient D) remain
constant. The following model, coupling Stokes, continuity,
and solute conservation equations, is expected to describe the
overall concentration process:

ρiν∆U−∇P+(ρ(Φ)−ρi)g = 0, (8)
∇.U = 0, (9)
∂T Φ+U.∇Φ = D∆Φ, (10)

where U is the velocity field of the mixture, and P the pressure
deviation from the initial hydrostatic pressure field.

We also assume the following standard boundary condi-
tions at the solid walls:

U = 0 (no slip), (11)
∇Φ.n = 0 (no flux), (12)

and the following standard ones at the evaporating free sur-
face:

UX (X = 0,Z,T ) = Ė, (13)(
∂UZ

∂X

)
(X = 0,Z,T ) = 0, (14)(

UX Φ−D
∂Φ

∂X

)
(X = 0,Z,T ) = 0. (15)

Eq. (15) ensures the non-volatility of the solute. At X →−∞,
we impose:

Φ(X →−∞,Z,T ) = Φi. (16)

B. Numerical resolution on a given experimental case

To illustrate the impact of buoyancy, we first consider the
following realistic case: water evaporation from an aqueous
dispersion of silica nanoparticles at ambient conditions in a
slit of height h = 150 µm. Similar conditions were recently

explored experimentally either to probe mass transport in such
charged dispersions [14, 16, 25], or to investigate the dynam-
ics of fractures, delamination and shear bands in the concen-
trated regime, see e.g. [11–13]. We will assume an initial
concentration Φi = 0.001 and radius a = 5 nm for the silica
nanoparticles, leading to a diffusivity D ' 4.37×10−11 m2/s
according to the Stokes-Einstein relation for a temperature of
25◦C (we do not consider here enhanced values due to col-
loidal interactions occurring for such systems at high con-
centrations [4, 16]). For such a very dilute silica dispersion,
the solutal expansion coefficient at the reference concentra-
tion Φi is well approximated by βs ' ρs/ρw−1 ' 1.2 where
ρs ' 2200 kg/m3 is the density of silica, and ρw ' 1000 kg/m3

that of water. We assume an evaporation rate Ė = 0.1 µm/s.
The latter remains constant as the volume of the colloids is
much larger than the water molecular volume [26]. We will
finally assume that the kinematic viscosity ν = 10−6 m2/s re-
mains also constant during concentration.

The numerical resolution of Eqs. (8–10) with boundary
conditions Eqs. (11–15) has been performed with the commer-
cial software Comsol Multiphysics (finite elements, Galerkin
method). The boundary condition Eq. (16) at X → −∞ has
been moved to X = −L, where L = 10 mm is a finite dis-
tance large enough to not affect the results significantly (in
addition, the pressure P has been arbitrarily set to P = 0 at
X = −L). Time discretization is based on implicit backward
differentiation formulas. Spatial discretization was achieved
by a structured mesh of quadratic Lagrangian elements. The
mesh convergence has been thoroughly tested by successive
refinements.

Figure 2 shows the results of the numerical simulation.
More precisely, Fig. 2(a) shows several snapshots at T = 10,
102, 103, 104, and 105 s of both the horizontal component UX
of the velocity field (colormap) and the concentration profile
Φ(X ,T ) (contour). Figures 2(b) and (c) display the height-
averaged concentration profiles Φ0 and UX at X = −300 µm
at the same times. For the conditions investigated, the veloc-
ity profile UX (Z,T ) at X = −300 µm and T = 10 s mainly
corresponds to the evaporation-driven Poiseuille flow UP =
6ĖZ(h−Z)/h2. However the profiles are more and more dis-
torted at longer times by the free convection induced by the
solute concentration gradient. The maximal velocity at X =
−300 µm due to buoyancy only, i.e. UB =U −UP, increases
from ' 0.24 µm/s at T = 103 s to ' 2 µm/s at T = 105 s. As
clearly evidenced by the contour plot in Fig. 2(a), buoyancy
also distorts the isoconcentration lines, and therefore clearly
impacts the solute mass transfer. Note that this 2D model
predicts that the concentration at the interface increases con-
tinuously, and the assumption of constant kinematic viscosity
and mutual diffusion coefficient may not hold anymore above
T > 105 s for which the concentration at the interface reaches
' 0.012.
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FIG. 2. (a) Snapshots of UX (colors) and Φ(X ,T ) (contours) at T =
10, 102, 103, 104, and 105 s, from top to bottom. The range of the
colormap is scaled by the maximal velocity in each plot (b) Height-
averaged concentration profiles Φ0(X ,T ) and (c) velocity profiles
UX (Z,T ) at X = −300 µm, at the same times T as in (a). The thin
dark line is the evaporation-driven Poiseuille profile UP = 6ĖZ(h−
Z)/h2.

C. Advection-dispersion equation in the framework of the
lubrication approximation

As discussed in the introduction, our aim is to predict
the range of parameters for which buoyancy impacts solute’s
transport in such confined drying configuration using a 1D
advection-dispersion equation derived from the above model.
As shown by Fedorchenko and Chernov [17], D/Ė is a length
scale that naturally emerges along X from the conservation
equation Eq. (10), and we therefore define the following di-
mensionsless variables:

z = Z/h, x = (Ė/D)X , t = (Ė2/D)T,
uX =UX/Ė, uz =UZ/(ĖPe),

ϕ = (Φ−Φi)/Φi, p = h2/(ρiνD)P, (17)

where Pe is the Péclet number given by:

Pe =
Ėh
D

. (18)

Note that we have chosen two different scales to obtain the
dimensionless coordinates x and z. As shown later, this partic-
ular choice makes it easy to highlight the different regimes of
solute concentration, while keeping a compact writing of the
equations. However, it should be remembered that the scale
D/Ė is implicitly contained in the dimensionless abscissa x
but not in z.

Using this set of dimensionless variables, one can demon-
strate that the dimensionless counterpart of Eqs. (8-10) depend
only on two parameters, Pe and the solutal Rayleigh number
defined as:

Ra =
βsΦigh3

νD
, (19)

see Appendix A. Volume integration of the continuity relation
Eq. (9) yields the dimensionless counterpart of the solution
global mass balance Eq. (1):

< ux >=
∫ 1

0
uxdz = 1. (20)

Similarly, integration of Eq. (10) yields the dimensionless so-
lute global mass balance:∫ 0

x→−∞

∫ 1

z=0
ϕdzdx = t. (21)

We now assume that the typical scale δ of both the concen-
tration gradient and the buoyancy-driven velocity field, see
Fig. 1, is much larger than the channel height, i.e. δ � Pe
with our dimensionless variables, Eqs. (17). We therefore as-
sume quasi-parallel flows and we use the standard lubrication
approximation [27] to derive a 1D solute conservation equa-
tion from the above model. More precisely, we use a standard
Taylor-like perturbation method, as reviewed for instance in
Young and Jones’ work on shear dispersion [20], and expand
the concentration field as:

ϕ(x,z, t) = ϕ0(x, t)+Pe2
ϕ1(x,z, t), (22)

where ϕ0(x, t) is the transverse-averaged concentration pro-
file, i.e. ϕ0(x, t) =< ϕ(x,z, t) > with the same averaging as
in Eq. (20), and Pe2

ϕ1 � ϕ0. Appendix A presents the de-
tailed derivation leading ultimately to the following transport
equation for the mean concentration field ϕ0:

∂ϕ0

∂ t
+

∂ϕ0

∂x
=

∂

∂x

(
Deff

∂ϕ0

∂x

)
, (23)

assuming t� Pe2, δ � Pe, and Pe2
ϕ1� ϕ0 [20]. The range

of validity of these conditions will be discussed later on in
Sec. III D.

The dispersion coefficient Deff is given by:

Deff = 1+
(PeRa)2

α

(
∂ϕ0

∂x

)2

+βPe2

' 1+
(PeRa)2

α

(
∂ϕ0

∂x

)2

(24)
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where β = 1/210 and α = 362880. The first term corresponds
to the dispersion of the solutes due to the axial velocity dis-
tribution caused by the density gradient, as discussed in Intro-
duction, whereas the second is the traditional Taylor-Aris term
induced by the Poiseuille flow. There are no coupling terms in
the geometry under study, between buoyancy and Taylor-Aris
dispersion, owing to the symmetry along the plane z = 1/2, as
already noted in [20]. Eqs. (23-24) finally lead to Eqs. (4-5)
with real units as we will assume that the Taylor-Aris term is
negligible in our configuration, i.e. βPe2� 1, see Sec. III D
regarding the range of validity of our model. Note importantly
that despite the fact that the dispersion term due to buoyancy
in Eq. (24) depends explicitly on the Péclet number Pe in our
dimensionless model, the latter actually does not depend on
the evaporation rate Ė due to the scale D/Ė used to define x,
see Eqs. (17).

It should also be noted that many groups recently inves-
tigated the drying of droplets confined between two circular
parallel plates, see e.g. [1–4, 9]. Most of these works clearly
reported buoyancy-driven flows generated by the radial den-
sity gradients induced by solvent evaporation. Interestingly,
the same above calculations applied to this cylindrical geom-
etry and for a binary mixture, lead also to Eqs. (23-24) with
α = 362880 but without the Taylor-Aris and advection terms
and with cylindrical coordinates. Our theoretical derivation
does therefore not only apply to the case of a slit, but also to
this specific 2D configuration.

III. DYNAMICS OF THE SOLUTE CONCENTRATION

In the following, we now turn to a thorough analysis of
the solute concentration process in the confined drying exper-
iment described in Fig. 1. More precisely, we will use the
1D advection-dispersion equation derived above, Eq. (23), to
unveil both the expected regimes of solute concentration and
the relevant parameters impacting the solute mass transport.
Eq. (23) is supplemented with the following initial and bound-
ary conditions:

ϕ0(x, t = 0) = 0, (25)
lim

x→−∞
ϕ0(x, t) = 0, (26)(

1+ϕ0−Deff
∂ϕ0

∂x

)
(x = 0, t), (27)

where Eq. (27) ensures the condition of zero solute flux
through the free surface (non volatility of the solute).

In the framework of this 1D model, the global solute mass
balance Eq. (21) reads:∫ 0

x→−∞

ϕ0(x, t)dx = t. (28)

Finally, an important feature of the concentration field is its
spatial extent δ as illustrated in Fig. 1, and we define the latter
according to:

δ (t) =−
∫ 0
−∞

xϕ0(x, t)dx∫ 0
−∞

ϕ0(x, t)dx
=−1

t

∫ 0

−∞

xϕ0(x, t)dx. (29)

A. Scaling analysis

We first use a standard method [28] to derive the scaling
laws of the model defined by the governing equation Eq. (23),
along with the initial and boundary conditions Eq. (25–27).
The global mass balance Eq. (28), which implicitly contains
the governing equation and its boundary and initial conditions,
provides a first scaling law:

ϕ0δ ∼ t. (30)

A second scaling law is provided by Eq. (23), which can be
written as a relation between 4 positive terms:

∂ϕ0

∂ t
+

∂ϕ0

∂x
=

∂ 2ϕ0

∂x2 +
(PeRa)2

α

∂

∂x

(
∂ϕ0

∂x

)3

. (31)

Owing to the boundary condition Eq. (26), the order of mag-
nitude of these four terms is:

ϕ0

t
;

ϕ0

δ
;

ϕ0

δ 2 ;
(PeRa)2

α

ϕ3
0

δ 4 . (32)

As time goes by, different regimes are encountered depending
on what couple of terms dominates in Eq. (31). As all the
terms of this equation are positive, the balance of the different
orders of magnitude reads:

max
(

ϕ0

t
,

ϕ0

δ

)
∼max

(
ϕ0

δ 2 ,
(PeRa)2

α

ϕ3
0

δ 4

)
, (33)

and one therefore expects four different regimes, systemati-
cally reviewed in the following.

a. Diffusive regime D1 — We define this regime as the
one corresponding to ϕ0

t ∼
ϕ0
δ 2 in Eq. (33). Combining this

relation with Eq. (30) yields:

δ ∼
√

t and ϕ0 ∼
√

t, (34)

t� 1 and
PeRa√

α
� 1, (35)

b. Diffusive regime D2 — This regime corresponds to
ϕ0
δ
∼ ϕ0

δ 2 and thus to

δ ∼ 1 and ϕ0 ∼ t, (36)

t� 1 and t�
(

PeRa√
α

)−1

, (37)

and D2 can thus only be observed when PeRa�
√

α

c. Dispersive regime C1 — This regime corresponds to
ϕ0
t ∼

(PeRa)2

α

ϕ3
0

δ 4 , and after calculation to

δ ∼
(

PeRa√
α

)1/3√
t and ϕ0 ∼

(
PeRa√

α

)−1/3√
t, (38)

t�
(

PeRa√
α

)2/3

and
(

PeRa√
α

)
� 1. (39)
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d. Dispersive regime C2 — This last regime corre-

sponds to ϕ0
δ
∼ (PeRa)2

α

ϕ3
0

δ 4 , leading after calculation to

δ ∼
(

PeRa√
α

)2/5

t2/5 and ϕ0 ∼
(

PeRa√
α

)−2/5

t3/5, (40)

t�
(

PeRa√
α

)2/3

and t�
(

PeRa√
α

)−1

. (41)

The above scaling analysis reveals the importance of the
dimensionless parameter PeRa. When PeRa�

√
α , the se-

quence of regimes is D1→D2→C2 with two transition times
tD1→D2 ∼ 1 and

tD2→C2 ∼
(

PeRa√
α

)−1

. (42)

For this range of PeRa, we found at small time scales the
classical scenario of Fedorchenko and Chernov [17] expected
without buoyancy and displayed in Fig. 1(c): the square-root
growth δ ∼

√
t (δ ∼

√
DT with real units) of a diffusive layer

reaching after a transient t ∼ 1 (T ∼ D/Ė2), a constant value
δ ∼ 1 (δ ∼ D/Ė) owing to the competition between solute
diffusion and evaporation-driven advection. On longer time
scales, however, the solute concentration gradient steadily in-
creases, and buoyancy can no longer be ignored (transition D2
→ C2).

When PeRa�
√

α , dispersion caused by buoyancy always
dominates diffusion in the solute mass transport, and the se-
quence of observed regimes reduces to C1→ C2 with a tran-
sition at tC1→C2 ∼ (PeRa/

√
α)2/3. Importantly, this scaling

analysis also demonstrates that solutes are always dispersed
at long time scales in a steadily increasing diffusive layer fol-
lowing δ ∝ t2/5.

B. Numerical simulation of the 1D advection-dispersion model
and asymptotic solutions

To illustrate the above scaling analysis, Fig. 3(a) displays
the temporal evolution of the thickness of the diffusive layer
δ , calculated from the numerical resolution of Eqs. (23–27)
for a wide range of PeRa ranging logarithmically from 10−2

to 104.
Except for PeRa≥

√
α , these curves display three regimes:

an initial growth of the diffusive layer following δ ∼
√

t
(regime D1), a constant plateau δ ' 1 reached at t ' 1 (regime
D2), followed again by the growth of δ at longer time scales
according to δ ∝ t2/5(regime C2). The departure from the
regime D2 to the regime C2 occurs at a critical time which
decreases for increasing PeRa. For PeRa ≥

√
α , the regime

D2 of constant diffusive layer does not exist, and the initial
regime C1 for which we observe again δ ∝

√
t, does not col-

lapse with the other curves in the regime D1. Figures 3(b-d)
illustrate the specific case PeRa= 1, for which the sequence of
the three different regimes D1→ D2→ C2 is easily revealed.

All these numerical results are obviously in line with the
scaling analysis reported in Sec. III A, but one should go be-
yond the scaling laws Eqs. (34–41) in order to predict quan-

x-1 0

'
0

0

1 (b)

x
-5 0

0

20

40

60
(c)

x
-40 -20 0

#104

0

2

4

6
(d)

t10-3 10-2 10-1 100 102 103 104 105

/

10-2

100

102

1/2

1/2

2/5(a)

FIG. 3. (a) Numerical solution δ vs. t of the 1D advection-dispersion
model Eqs (23–27) for different PeRa: 10−2, 100, 102, and 104 (from
dark to light blue). The magenta dashed line is the theoretical pre-
diction Eq. (44) in the diffusive regimes D1 and D2. The black lines
are the approximations Eq. (45) for the dispersive regime C2. (b)
to (d): ϕ(x, t) vs. x computed from Eqs (23–27) at PeRa = 1. (b)
regime D1: t < 0.5; (c) D2: 1 < t < 100; and (d) C2: t > 1000. In
(b) and (c), the analytical solutions given by Eq. (B1) (black lines)
are superimposed with the numerical resolution. In (d), black lines
correspond to the approximate solution Eq. (C5).

titatively the range of parameters for which the solute mass
transport is dominated by diffusion only.

When diffusion dominates mass transport (regimes D1 and
D2), Eq. (23) reduces to the following linear advection-
diffusion equation:

∂ϕ0

∂ t
+

∂ϕ0

∂x
=

∂ 2ϕ0

∂x2 . (43)

The analytical solution of this advection-diffusion equation
has been derived by Fedorchenko and Chernov [17] see
Eq. (B1) in Appendix B. This analytical solution superim-
poses perfectly on the profiles computed numerically from
Eq. (23) at small time scales, see Fig. 3(b) and (c). We also
computed δ vs. t from this analytical solution:

δ (t) =
−t2 +[t(4+ t)−4]erf

(√
t

2

)
4t

+
(2+ t)

√
t exp

(
− t

4

)
2
√

πt
, (44)

see the magenta dashed line in Fig. 3(a).
In the dispersive regime C2, we used the integral

method [29] to approximate the concentration profiles. The
detailed calculation and the resulting approximations are
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given in Appendix C, see in particular Eq. (C5) from which
we computed δ (t):

δ (t) =
52/533/5

7

(
PeRa√

α
t
)2/5

. (45)

Both δ vs. t and concentration profiles perfectly superim-
pose on the solutions computed numerically, see Fig. 3(a) and
Fig. 3(d) respectively.

We did not find an approximate solution of the concentra-
tion profiles in the dispersive regime C1. Nevertheless, we
computed numerically the prefactor in Eq. (38) leading to:

δ (t)' 0.55
(

PeRa√
α

)1/3√
t. (46)

C. Transition times

We define a criterion for evaluating quantitatively the crit-
ical time corresponding to the transition from a diffusive
regime, for which buoyancy-driven dispersion exists but has
a negligible impact on the solute transport, to a dispersive
regime, for which buoyancy significantly disperses solutes
along the slit. We consider that this transition occurs when
the ratio of the dispersion flux to the height-averaged diffu-
sive flux reaches a given value p. This condition reads:

< uxϕ >−ϕ0
∂ϕ0
∂x

= p, (47)

at a given abscissa x. We arbitrarily set p = 0.2 for all the
calculations in the present work. In the framework of the 1D
advection-dispersion model, Eq. (47) turns to

Deff = 1+ p. (48)

Using the expression of the dispersion coefficient Eq. (24) and
considering that the concentration gradient is maximum at x=
0, Eq. (48) reads

PeRa
(

∂ϕ0

∂x

)
x=0, t=tD2→C2

=
√

pα. (49)

The critical time tD2→C2 is computed by numerically solving
Eq. (49), where the concentration gradient at x = 0 is esti-
mated from the analytical expression Eq. (B2), valid in the
diffusive regimes D1 and D2. This results in the diagram
shown in Fig. 4, evidencing the transition from the diffusion-
dominated regimes D1 and D2 towards the dispersive regime
(C2).

The 1D advection-dispersion model predicts that for
PeRa ≥ √pα , buoyancy always dominates solute transport,
regardless of the time (regimes C1 and C2). In this range of
parameters, we estimated the transition time tC1→C2 from the
cross-over of δ vs. t in both regimes C1 and C2, see Eq. (45)
and Eq. (46), leading to:

tC1→C2 ' 0.6
(

PeRa√
α

)2/3

. (50)

PeRa
10-1 100 101 102 103

t

10-4

10-2

100

102

104

p
p,

D1

D2

C2

C1

FIG. 4. Diagram highlighting the different regimes of solute mass
transport predicted by the 1D advection-dispersion model, Eqs. (23-
27). The thick line corresponds to tD2→C2 estimated from Eqs. (49-
B2). The shaded area corresponds to the diffusive regimes D1 and
D2. The dotted line corresponds to the transition between the dis-
persive regimes C1→ C2, estimated from Eq. (50). The red bullets
represent the transition from a diffusive to a dispersive regime, es-
timated with the 2D model, Eqs. (A1-A8), for Pe ' 0.252 and Ra
varying from 4 to 2000 (critical time estimated from Eq. (47)).

Figure 4 summarizes all these results and can therefore serve
as a guide to predict the expected transport regimes in a given
experimental configuration using a single dimensionless pa-
rameter PeRa.

D. Validity and limitations of the 1D advection-dispersion
model

The 1D advection-dispersion model is based on several
simplifying assumptions, whose validity must be carefully
checked in order to validate the results in a given configu-
ration.

The assumptions required to validate Eq. (A11), on which
the estimation of the dispersion term in Eq. (A9) is based, are
the following ones (see Appendix A):

t� Pe2, (51)
δ � Pe, (52)
Pe2

ϕ1� ϕ0. (53)

The last inequality Eq. (53) demands that the transverse dis-
persion time δ 2/Deff remains longer than the diffusion time
across the channel height ∼ Pe2 [20]. In addition, βPe2� 1
is required to neglect the Taylor-Aris contribution in Eq. (24).
As β = 1/210 (1/

√
β ' 14.5), this last assumption is always

verified for Pe <∼ 1 (i.e. Pe� 1 or Pe ∼ 1). In the remain-
der of this analysis, we will show that Pe <∼ 1 results in the
validity of conditions Eqs. (51-53) from t = 0 to t→ ∞ when
PeRa �

√
α (asymptotic case 1 in the following analysis),

and from t � Pe2 to t → ∞ when PeRa�
√

α (asymptotic
case 2).
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a. Case 1: PeRa/
√

α� 1, corresponding to the succes-
sion of regimes D1, D2, C2, with a transition from the diffu-
sive regime D2 to the dispersive regime C2 at time tD2→C2
given by Eq. (42). We show in appendix D that conditions
Eqs. (51-53) are always satisfied for times t� tD2→C2. There-
fore, the model is expected to describe correctly the disper-
sive regime C2. Conditions Eqs. (51-53) might be wrong in
regimes D1 or D2 (i.e. for t� tD2→C2). But no significant loss
of accuracy is expected, since buoyancy-driven dispersion is
negligible in these diffusive regimes. Consequently, the 1D
advection-dispersion model is valid at all times, from t = 0 to
t → ∞. This is illustrated in Fig. 5, where the 1D advection-
dispersion model is compared with the output of the 2D model
defined by Eqs. (A1-A8), for Pe' 0.344 and Ra' 910, lead-
ing to PeRa/

√
α ' 0.52. The agreement is almost perfect for

both ϕ0 and δ , from short to long times. An exception is the
weak loss of accuracy of the 1D advection-dispersion model
for the estimation of ϕ0 close to the boundary at x = 0 (see
the inset in Fig. 5a), because the lubrication theory does not
fit the boundary condition Eq. (A5). As expected, the discrep-
ancy between both models is limited to a region whose extent
is of the order of Pe (the height of the slit h scaled by the
reference horizontal length D/Ė).

b. Case 2: PeRa/
√

α� 1, corresponding to the succes-
sion of the dispersive regimes C1 and C2. We show in Ap-
pendix D that Eqs. (51-53) are all verified as soon as t� Pe2.
The 1D advection-dispersion model must therefore be used
carefully in this case, because this condition is not valid at
the beginning, for short times since Pe <∼ 1. This point is
illustrated in Fig. 4, where the transition from the diffusive
to the dispersive regimes has been determined with the 1D
advection-dispersion model (thick continuous line) and with
the 2D model defined by Eqs. (A1-A8) (red bullets). In the
latter case, we set Pe ' 0.252 and Ra has been varied from 4
to 2000. The critical times estimated with the 2D model are
close to the estimates given by the 1D advection-dispersion
model, except for the two highest PeRa, corresponding to the
succession of the C1-C2 regimes in the 1D approach. The
2D model shows that a diffusive regime always exists at small
times, whereas the 1D model, which is not valid at short times
t <∼ Pe2, erroneously predicts that the dispersive regime begins
from t = 0.

IV. CONCLUSION AND DISCUSSIONS

In the present work, we investigated the role of buoyancy-
driven free convection on the solute mass transport in a model
experimental configuration: solvent evaporation from a dilute
mixture confined in a horizontal slit. To quantify the impact
of buoyancy, we derived a 1D advection-dispersion equation
as traditionally done in the context of shear dispersion. This
equation displays a dispersion coefficient Deff to account for
buoyancy-driven flows, see Eq. (5). Solute mass transport re-
mains dominated by diffusion as long as:(

gβsh4

νD
∂Φ0

∂X

)2

� α, (54)

x
-8 -6 -4 -2 0

'
0

0

2

4

6

8

10

12
(a)

-0.2 -0.1 0
0

5

10

t10-2 100 102

/

10-2

10-1

100

1/2

2/5(b)

FIG. 5. (a) Average dimensionless concentration profiles ϕ0(x, t) for
both the 2D model (same parameters as in Sec II B leading to Pe '
0.344 and Ra ' 910), and the solution of the advection-dispersion
equation Eq. (23) for PeRa ' 313 (black dotted lines), at times t '
2.29× 10−3, 2.29× 10−2, 0.229, 2.29 and 22.9. The inset shows a
zoom close to the drying interface x = 0. (b) Extent of the diffusive
layer δ defined by Eq. (29) for the 2D model and the 1D model (black
dotted line) with the same parameters as in (a).

with real units, where α = 362880. We then performed a
complete analysis of the expected regimes in the configuration
shown in Fig. 1, and we showed in particular that the solutes
transport is always dominated by buoyancy-driven dispersion
at long time scales leading to a continuously increasing dif-
fusive layer as δ ∝ T 2/5. A critical point of our model is the
assumption of constant mutual diffusion coefficient and vis-
cosity during the solute concentration, and observing the dif-
ferent regimes predicted above maybe challenging in a single
experiment (see for instance the case explored in Fig. 2 and
the associated discussion). Eq. (5) can be easily modified to
include a slowing down of the evaporation rate and a non-
constant mutual diffusion coefficient at high solute concentra-
tion, as done for instance in Ref. [30] in a similar configuration
for polymer and surfactant solutions, but without buoyancy.
Nevertheless, the different regimes predicted above, and their
associated scaling laws, could be impacted by these effects.

Note also that our work focused on the case of a slit,
and we included in the above calculation the dispersion due
to the Poiseuille flow, see the Taylor-Aris term in Eq. (24).
Moreover, there are no coupling terms between buoyancy and
Taylor-Aris dispersion owing to the symmetry of the geom-
etry investigated, and we had therefore neglected the disper-
sion due to the Poiseuille flow. Interestingly, the case of a
capillary tube with a finite width (as a square or a circular
cross-section) should deserve further attention. Indeed, a cal-
culation similar to that performed above for such geometries
can be carried out, but density gradients in the transverse di-
mension lead to transverse flows that couple to the longitudi-
nal dispersion. To our knowledge, Chatwin and Erdogan [19]
were the first to mention this subtle point when studying the
dispersion of a solute flowing in a straight circular tube in the
presence of buoyancy. They even showed that these transverse
flows could decrease the buoyancy-induced longitudinal dis-
persion for a given range of parameters. For capillary tubes,
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one cannot also exclude (possibly non-negligible) coupling
terms between Taylor-Aris and buoyancy-driven dispersions
in the configuration shown in Fig. 1. We hope in a near future
to investigate these subtle issues in detail.

Beyond the specific configuration investigated in the
present work, different microfluidic tools have recently been
developed to measure accurately the mutual diffusion co-
efficient of liquid mixtures owing to the very precise con-
trol of experimental conditions and mass transport at small
scales [31–33]. In this context, Eq. (5) makes it possible
to rigorously estimate the impact of buoyancy on such mea-
surements. More specifically, experiments exploiting dry-
ing to induce concentration gradients, similarly to the exper-
iment shown in Fig. 1, were even recently reported to mea-
sure mutual diffusion coefficients of various complex fluids,
namely copolymer solutions [1] and charged colloidal dis-
persions [4, 16]. For the latter case, the rheological proper-
ties of the colloidal dispersions strongly evolve with the col-
loid (solute) concentration up to reaching the formation of
colloidal glasses at a concentration below the colloid close-
packing. Nevertheless, buoyancy-driven flows were clearly
evidenced in the liquid regime [4], and rough estimates us-
ing Eq. (54) clearly indicate that buoyancy plays an important
role for mass transport, casting some doubts on the coefficient
values reported in [4] at low colloid concentrations.

Beyond these measurements of mutual diffusion coeffi-
cients, our work may be also of interest to evaluate the im-
pact of buoyancy-driven dispersion for any other microfluidic
configuration generating concentration gradients. In particu-
lar, many recent works focused on diffusio-phoresis, i.e. the
transport of colloidal particles induced by solute concentra-
tion gradients [34–36]. The role of buoyancy in such experi-
ments was even investigated recently in detail by Gu et al. [8].
Using scaling arguments, they identified conditions for which
buoyancy negligibly impacts solute mass transport, leading to
an inequality similar to Eq. (54) but with a significantly differ-
ent numerical constant (962 = 9216 instead of α = 362880 for
a slit). Our theoretical development based on a standard per-
tubative approach [20] may therefore help to refine the range
of parameters for which buoyancy-driven dispersion does not
play any role in such experiments. Diffusio-phoretic effects
are moreover expected to play a crucial role in evaporating
liquid mixtures of colloids of different sizes, possibly lead-
ing to stratified materials [18]. We also hope that our simple
model of uni-directional drying may be relevant to evaluate
the role of buoyancy in similar configurations, in particular
when gradients are orthogonal to gravity as in evaporation-
induced propagating fronts in drying liquid films [37].
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Appendix A: Derivation of the advection-dispersion equation

Using the dimensionless variables given by Eqs. (17),
Eqs. (8-10) read:(

Pe2 ∂ 2

∂x2 +
∂ 2

∂ z2

)
ux =

∂ p
∂x

, (A1)

Pe2
(

Pe2 ∂ 2

∂x2 +
∂ 2

∂ z2

)
uz =

∂ p
∂ z

+Raϕ, (A2)

∇.u = 0, (A3)
∂ϕ

∂ t
+u.∇ϕ =

(
∂ 2

∂x2 +
1

Pe2
∂ 2

∂ z2

)
ϕ, (A4)

The dimensionless initial condition is ϕ(x,z, t = 0) = 0 and
the dimensionless boundary conditions are:

ux(x = 0,z, t) = 1, (A5)(
∂uz

∂x

)
(x = 0,z, t) = 0, (A6)(

1+ϕ− ∂ϕ

∂x

)
(x = 0,z, t) = 0, (A7)

ϕ(x→−∞,z, t) = 0, (A8)

along with the dimensionless counterpart of Eqs. (11-12) at
the solid walls.

Averaging the transport equation (A4) over the height h
leads to, with the help of Eq. (22)

∂ϕ0

∂ t
+

∂ϕ0

∂x
+Pe2 ∂ < uxϕ1 >

∂x
=

∂ 2ϕ0

∂x2 . (A9)

Subtracting this last relation to Eq. (A4) results in:

∂ϕ1

∂ t
+

(ux−1)
Pe2

∂ϕ0

∂x
+u.∇ϕ1−

∂ < uxϕ1 >

∂x
=

∂ 2ϕ1

∂x2 +
1

Pe2
∂ 2ϕ1

∂ z2 . (A10)

The continuity equation Eq. (A3) imposes the scaling uz ∼
ux/δ , and Eq. (A10) therefore leads to:

∂ 2ϕ1

∂ z2 ' (ux−1)
∂ϕ0

∂x
. (A11)

assuming t� Pe2, δ � Pe, and Pe2
ϕ1� ϕ0 [20].

Similarly, the leading-order terms in the Stokes equa-
tion Eqs. (A1-A2) lead to the horizontal component of the
velocity field:

ux(x,z, t) = uP
x (z)+uB

x (x,z, t), (A12)
uP

x (z) = 6z(1− z),

uB
x (x,z, t) =−

Ra
12

∂ϕ0

∂x
z(2z−1)(z−1),

checking both the global mass balance Eq. (20) and the no-slip
boundary conditions on the solid walls. The term uP

x is simply
the Poiseuille flow induced by solvent evaporation, whereas
the second term uB

x , known as the Birikh profile [38], corre-
sponds to the flow induced by buoyancy, see Fig. 1(a). Notice
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that the velocity field Eq. (A12) does not fit the boundary con-
dition Eq. (A5). This is a usual drawback of the lubrication
theory which results in a loss of accuracy in the vicinity of the
interface at x = 0, see Sec. III D for a discussion.

ϕ1 can now be evaluated from Eq. (A11), assuming the no-
flux boundary condition at z = 0 and z = 1, and imposing <
ϕ1 >= 0. Using the linearity of Eq. (A11), we look separately
for the solutions ϕP

1 and ϕB
1 due to the Poiseuille flow and

buoyancy respectively, i.e.:

∂ 2ϕP
1

∂ z2 = (uP
x −1)

∂ϕ0

∂x
(A13)

∂ 2ϕB
1

∂ z2 = uB
x

∂ϕ0

∂x
. (A14)

After calculation, one finds:

ϕ1(x,z, t) = ϕ
P
1 (x,z, t)+ϕ

B
1 (x,z, t), (A15)

ϕ
P
1 (x,z, t) =

∂ϕ0

∂x

(
z3− z4

2
− z2

2
+

1
60

)
,

ϕ
B
1 (x,z, t) =−

Ra
1440

(
∂ϕ0

∂x

)2(
12z5−30z4 +20z3−1

)
.

This relation combined with the velocity profile given by
Eq. (A12) can now be used to calculate the dispersion term
< uxϕ1 > in Eq. (A9), leading to Eqs. (23-24).

Appendix B: Fedorchenko and Chernov analytical solution in
the diffusive regimes

Fedorchenko and Chernov [17] derived the analytic solu-
tion of Eq. (43) with the initial and boundary conditions given
by Eqs. (25-27):

ϕ0(x, t) =

√
t
π

exp
(
− (t− x)2

4t

)
+

1
2

{
exp(x)(1+ x+ t)erfc

(
−(t + x)

2
√

t

)
− erfc

(
t− x
2
√

t

)}
.

(B1)

The concentration gradient at the interface, used in Sec. III C,
simply follows from the spatial derivation of Eq. (B1) at x= 0:(

∂ϕ0

∂x

)
x=0, t

=

√
t
π

exp
(
− t

4

)
+
(

1+
t
2

)
erfc

(
−
√

t
2

)
. (B2)

From Eq. (B1), one can also calculate the extent of the diffu-
sive layer using Eq. (29), see Eq. (44).

Appendix C: Approximate solutions using the integral method
in the dispersive regime C2

At long time scales, the temporal and diffusive terms in
Eq. (31) are negligible in the regime C2, and concentration

profiles obey the following partial differential equation in the
growing diffusive layer:

∂ϕ0

∂x
' (PeRa)2

α

∂

∂x

(
∂ϕ0

∂x

)3

. (C1)

We define ψ =
(

∂ϕ0
∂x

)2
, and Eq. (C1) becomes:(

3
2
(RaPe)2

α

∂ψ

∂x
−1
)

ψ
1/2 ' 0. (C2)

As the concentration gradient steadily increases, ψ1/2 6= 0,
and one has thus:

∂ψ

∂x
' 2

3
α

(RaPe)2 , (C3)

leading after integration to

ϕ0(x, t)'
√

8α

27
1

PeRa
(x+G(t))3/2 +F(t), (C4)

where F and G are two functions to be defined. We postulate
following the integral method [29] that the relation:

ϕ0(x, t) = 0 for x <−G(t), (C5)

ϕ0(x, t) =

√
8α

27
1

PeRa
(x+G(t))3/2 +F(t) for x <−G(t),

is a good approximation of the solution providing that it veri-
fies both the boundary condition Eq. (27) and the global solute
conservation Eq. (21). which leads to F '−1, and:

G(t) =

(
5
2

√
27
8α

PeRa t

)2/5

. (C6)

As shown in Fig. 3, this relation approximates well the con-
centration profiles in the dispersive regime. From this approx-
imation, we can finally calculate δ (t) using Eq. (29) leading
to Eq. (45).

Appendix D: Validity of the 1D advection dispersion model

We consider the two cases defined in section III D.
a. Case 1: PeRa/

√
α � 1. We aim at demonstrating

that if Pe <∼ 1, then conditions Eqs. (51-53) hold for time
t � tD2→C2, where tD2→C2 is given by Eq. (42). The condi-
tion Eq. (51) is satisfied because t� tD2→C2� 1 and Pe <∼ 1.
Similarly, the condition Eq. (52) is true because t � tD2→C2
implies δ � 1 (see scalings (40-41)). Using Eq. (A15) and
assuming 1440∼

√
α , the condition Eq. (53) reads

Pe
PeRa√

α

ϕ0

δ 2 � 1 . (D1)

Using scalings (40-41), Eq. (D1) reduces to

Pe
(

PeRa√
α

t
)−1/5

� 1, (D2)

this condition being obviously true for t� tD2→C2.
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b. Case 2: PeRa/
√

α � 1. We aim at demonstrating
that if condition Eq. (51) is true, then conditions Eqs. (52-53)
are also true. δ � Pe

(
PeRa/

√
α
)1/3� Pe in the C1 regime

(from scaling (38) with t� Pe2), and δ � 1 in the C2 regime

(from scaling (40-41)), which proves the validity of condition
(52). In the C1 regime, condition (53) turns to Eq. (D1)
and then to Pe t−1/2 � 1 (using scaling (38)), which is true
for t � Pe2. In the C2 regime, condition (53) still leads to
Eqs. (D1) and (D2), the latter being true for t� Pe2.
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