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Abstract
In quantum optics, the second-order correlation function g(2)(τ) characterizes the photon statistics
of a state of light and can be used to distinguish between its classical or quantum nature. In this
article, we study a simple setup which offers the possibility to generate quantum states of light with
very small g(2)(0), a signature of strong anti-bunched light. This can be achieved by mixing on a
beamsplitter a coherent state with a nonclassical state, such as a squeezed state, and even with a
bunched state (g(2)(0)>1) such as a Schrödinger cat state. We elucidate the interference
mechanism generating such strong anti-bunching and relate it to the unconventional photon
blockade. We also detail how this effect can be applied to detect weakly squeezed states of light.

Keywords: quantum optics, anti-bunching, photon blockade, squeezing detection

(Some figures may appear in colour only in the online journal)

Nonclassical photon sources play a crucial role in emerging
quantum technologies. Given the robustness of quantum
states of light, photons are the best candidates for applications
in the field of quantum communication and quantum cryp-
tography [1, 2]. One common way of characterizing the
nonclassical nature of light sources is by measuring the sec-
ond-order correlation function of the field intensity, g(2)(τ).
The value of this function at τ=0 for classical light is larger
than 1 and is equal to 1 for a coherent state. Therefore,
g(2)(0)<1 is seen as a signature of the nonclassical nature of
light [3]. It reveals that the temporal statistics of photons is
sub-Poissonian (more ordered in time than a coherent source),
often referred to as anti-bunched light. Anti-bunched states of
light also have applications beyond quantum technologies in
fields such as super-resolution microscopy. It is possible to go

beyond the diffraction limit by taking advantage of ordered
photon emission of strongly anti-bunched sources [4, 5].

Such states of light are typically obtained using nanoe-
mitters such as semiconductor quantum dots [6, 7], nitrogen
vacancy centers in diamonds [8], and many other solid-state
sources. These sources are considered to be the most efficient
single-photon sources [9]. The anti-bunching of the light emitted
by these devices derives directly from the extreme confinement
of matter excitations. Another way to produce anti-bunched
states of light is to directly modify a coherent light beam using a
non-linear medium in a cavity. A strong non-linear medium is
usually required to allow only one photon at a time through the
medium, a phenomena referred to as photon blockade [10, 11].
However, it has been recently proposed that anti-bunching can
also be achieved by combining weak photon–photon interac-
tions and optical path interference [12–14]. This configuration,
known as unconventional photon blockade, has been realized
experimentally and validated in a quantum dot system [15] and a
superconducting circuit [16], paving the way for efficient sour-
ces of anti-bunched light.

In this manuscript, we focus on a quantum interference
effect which allows for unconventional photon blockade, and
we show how it can be exploited to create anti-bunching. We
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show that mixing even weak bunched states of light (g(2)>1)
with coherent states of light (g(2)=1), can lead to strong anti-
bunched states of light (g(2);0). This observation, initially
pointed out four decades ago [3, 17], is analyzed in this paper
to elucidate how interference at the level of Fock state com-
ponents of the states leads to such strong anti-bunching.

The implementation of the setup only requires a beams-
plitter to mix both coherent and weak nonclassical states. A
single-sided cavity filled with a non-linear medium can also
be used, causing the reflected part of a coherent field to
interfere with the one escaping from the cavity (weak non-
classical field). However, it can be shown using the approach
detailed in [18] that such a non-linear medium in a cavity can
lead to g(2)(0) below 1, but requires a strict control on the
parameters of a complex experiment.

The setup we consider here is illustrated in figure 1 and is
based on two input beams labeled â and b̂ mixed on a
beamsplitter. The relative phase between both inputs f can be
tuned via a delay line and the beamsplitter, of reflectance R, is
considered lossless. This setup is similar to the one studied in
[17]. The two outputs of the beamsplitter, respectively labeled
Â and B̂, can be written as

( )= - +
= - + -

fp

fp

A R a R be

B R a R be

1 ,

1 ,
1

i

i

^ ^ ^

^ ^ ^

where fä[0, 2] (note that f is normalized to π). In what
follows, one of the two input states, namely b̂, will always be
a coherent state.

We focus on the statistics of one of the two outputs using
a standard coincidence measurement scheme [19] corresp-
onding to the second beamsplitter on the right in figure 1.
More complex methods can also be used to quantify more
accurately second- or higher-order correlations, but it comes
at the cost of increased complexity of the setup [20, 21].

The statistics of a stationary field in a given electro-
magnetic mode can be quantified using the second-order

correlation function [22]
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where Â is the annihilation operator in the mode in which we
would like to measure g(2)(τ).

For a pure quantum state which can be expressed in the
Fock state basis using ∣ ∣ ∣ ∣ ∣yñ = ñ + ñ + ñ + ñc c c c0 1 2 3 ...0 1 2 3

[23], where the coefficients ci can be time-dependent, the
second-order correlation function corresponds to
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Notice that the numerator summation starts at n=2, whereas
the denominator starts from n=1. Sub-Poissonian statistics
imply that the numerator of equation (3) is smaller than its
denominator. For a weak-amplitude state where ∣ ∣cn

2 vanishes
quickly with n, anti-bunching can be achieved either by
increasing ∣ ∣c1

2 or minimizing ∣ ∣c2
2. Both the single- and two-

photon components are in general strongly related. The aim is
to specifically cancel ∣ ∣c2

2 using the interference effect. In
what follows, if any truncation is applied to equation (3), the
convergence with respect to the truncation is always verified.

We evaluate the second-order correlation function of an
output field of a beamsplitter for known input fields. By
adjusting the relative phase and the reflectance of the
beamsplitter, we will show how strong anti-bunching can be
reached even with a weak nonclassical states. In section 1,
we will focus on phase-modified coherent states to illustrate
the interference effect at play between the photon number
components of the input states leading to strong anti-bunch-
ing. In section 2, we will consider states that only include
even photon number components. In these two first sections,
we will consider two types of input states: a simplistic
example to analyze the underlying physics, and a practical
example to demonstrate the experimental feasibility of our
setup. Finally, in the last section, we will discuss how the
present proposal compares with the unconventional photon
blockade (section 3).

1. Phase-modified coherent states

In this section, we consider a phase-modified coherent state,
i.e. a normal coherent state to which we apply different
dephasing to different Fock number states, in the Fock state
basis. By considering such an input state in mode â plus a
coherent state in mode b̂, we observe clear and strong anti-
bunching in Â for certain optimal parameters.

Let’s consider, for pedagogical purposes, a coherent state
with the two-photon Fock component dephased with respect
to the other Fock components and interfering with a coherent
state. This state can then be written in the form

∣
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Figure 1. Schematic setup for the creation of anti-bunched states.
The two input operators are indicated by â and b̂, and the
corresponding output operators are denoted by Â and B̂. The input
mode b̂ consists of a coherent state with a tunable phase f relative to
â. Several input states Â are studied in this paper. The correlation
function is computed on the output mode Â in the same way as is
done experimentally, i.e. using a beamsplitter and two photodetec-
tors as represented.
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where δn,2 is the Kronecker delta function and α is the
amplitude of the state.

In figure 2, the g(2)(0) function is plotted as a function of
the relative dephasing f and the reflectance R. One can
observe that mixing this phase-modified state, as defined in
equation (4), with a coherent state allows us to generate
perfect anti-bunched states in the output mode Â. For exam-
ple, a pure anti-bunched state can be generated by considering
a beamsplitter with ≈22.5% reflectance and a relative phase f
of approximately 1.6π, for a state amplitude of 0.3. However,
we found that the minimum of the correlation function
increases exponentially as a function of the number of pho-
tons in the input coherent state, ∣ ∣a 2. This example clearly
shows the strong dependence of the output correlation func-
tion on the relative phase difference between the different
Fock components of the incoming state.

States defined in equation (4) are nonphysical. In the
following, we consider another type of state that can be rea-
lized experimentally, such as the one obtained after letting a
coherent state propagate through a purely real χ(3) non-linear
medium. This state can be written in the following form [24]:
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with Ĥnl being the non-linear Hamiltonian and χ(3) being the
third-order non-linear susceptibility of the medium.

One can observe that in this case, the non-linearity
implies that the phase of each Fock component evolves at a
different rate, accumulating a different phase while propa-
gating. Interfering such a state with a coherent state on a
beamsplitter with an adequate relative phase between both

beams and a proper reflection coefficient leads to strong anti-
bunching, as shown in figure 3.

We show in the panel (a) of figure 3 the numerical
evaluation of the corresponding second-order correlation of
the output field Â as a function of the relative phase f
between the two input beams and the beamsplitter reflectance
R. Even though the anti-bunched region is smaller than in the
previous example, we can clearly observe two dips in the
correlation function map.

Here, for simplicity, we consider both input states with
the same amplitude α=0.3. We took χ(3)t=0.05 for the
non-linearity required to produce the non-coherent state,
which corresponds to a relatively small non-linearity easily
achievable experimentally [25]. One could observe the same
effect in the other output mode (B̂) for a symmetric set of
parameters ( ¢ = -R R1 and f f¢ = -1 ). An important
thing to note is that the observed strong anti-bunching cor-
responds to a non-vanishing output intensity.

Indeed, the prospect of finding the smallest g(2)(0) is only
relevant if the output state is not vacuum.

In the present case, we find that g(2)(0)=0.03 while
ˆá ñ »n 0.006 for α=0.3. To that purpose, we show in the
panel (b) of figure 3 how the second-order correlation func-
tion and the photon number in the output arm vary with the
amplitude α at the optimal condition. Here, we assume that
both input states have the same amplitude. We clearly see that
g(2) increases when increasing the input field amplitude α, and
that it increases faster than the mean number of photons of the
output field ˆá ñnA . However, until α=0.5, we have strong
anti-bunching (g(2)<0.5), and for α<0.2 the output state
exhibits very strong anti-bunching (g(2)<0.01) with non-
zero output amplitude (up to ˆá ñ »n 0.003A ) (inset of the panel
(b) of figure 3).

The setup described can be realized experimentally using
a Mach–Zehnder interferometer with a non-linear medium in
one of the arms. The phase f is modified by tuning one arm of
the interferometer.

Other nonclassical states can also be employed using the
same scheme. In the following, we will focus on states only
composed of even Fock components.

2. Even Fock states

In the preceding section, we have shown that when we
modify the relative phase between the Fock components of a
coherent state, one can produce strongly anti-bunched states.
In this section, an alternative route is explored to demonstrate
that this phenomenon can also be observed when the ampli-
tudes of the Fock components are modified. We consider
examples in which the odd photon components are reduced
compared to the coherent states, similar to the case of
even Schrödinger cat states. In these cases, mixing even a
slightly nonclassical state with a coherent state will lead to
the observation of strongly anti-bunched statistics. Despite
the difference in the approach proposed here with respect to
the previous cases, the underlying idea is identical: interfering

Figure 2. The correlation function of the output state, as a function of
the reflectance and f, for a given amplitude α=0.3 of the coherent
state and the phase-modified state defined in equation (4). One can
observe how the correlation function goes below 0.5 for low
reflectance and around f=1.6. The white region in the plot
corresponds to g(2)(0) > 1.5.
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the two-photon Fock component of the squeezed states with
that of the coherent state can generate strong anti-bunching.

2.1. Superposition of vacuum and two-photon state

We begin with a simple example: a normalized weak two-photon
pure state in superposition with the vacuum defined by ∣yñ =

∣ ∣ñ + ñc c0 20 2 . In this case, we have ( ) ( ∣ ∣ )( ) = g c0 1 22
2

2

0.5. If we consider this state in one of the input modes of the
beamsplitter (â) and a coherent state in the other input mode, i.e.
both the input states with ( )( ) g 0 0.52 , then the output state in

the mode Â can exhibit strong sub-Poissonian statistics such as
g(2)(0)=0.5. In figure 4, we show how the correlation function
(solid blue line) changes as a function of the amplitude of the
two-photon state component c2 of the mode â for a 50:50
beamsplitter. The g(2)(0) is minimized for each value of c2 by
tuning α, the amplitude of the input coherent state in the mode b̂.
The corresponding α is represented in figure 4 in the dashed blue
line. The red line represents the mean photon number in the
output mode Â. One can clearly observe that g(2)(0)�0.5 for
c2�0.1, even though the input state â has g(2)(0)>50 for
c2<0.1.

This counterintuitive example shows that mixing on a
beamsplitter a state with only vacuum component and a two-
photon component with a coherent state may lead to strong
sub-Poissonian statistics, which is a signature of single-pho-
ton states.

2.2. Schrödinger cat states

This formalism can be extended to Schrödinger cat states.
These are formed by the superposition of two coherent states
with opposite phases. Depending on whether the coherent
states are added or subtracted, the resulting state is either
referred to as even or odd cat state, respectively. In the weak-
amplitude case, if one evaluates the correlation function of
odd cat states using equation (2), one can find that they
exhibit anti-bunching since they only contain odd Fock states.
Using such states in the present scheme and mixing them with
a coherent state will always lead to an increase of g(2)(0) in
the output arm. As the odd cat state does not encompass a
two-photon component, mixing it with a coherent state will
always lead to an output state with residual two-photon
components, and hence a higher g(2))(0) in the output than in
the input. To reduce g(2))(0), more complex schemes can be
implemented to keep the c2 at the output close to zero and

Figure 3. The correlation function, g(2)(0), and photon number, ˆá ñnA , as a function of the reflectance and phase angle f when considering one
coherent state modified by a non-linear medium, as given in equation (5) in the input mode â, and another coherent state with same amplitude
α=0.3 in the input mode b̂. We assume that the modified coherent state ∣añ has propagated through a weak non-linear medium with the
parameter χt=0.05. (a) Correlation function at zero delay for Â. (b) The minimum of the g(2)(0) and the corresponding average photon
number in mode Â as a function of the coherent state amplitude in the input mode for optimal f and R. Inset in (b): magnification of small α
and strong anti-bunching limit.

Figure 4. The second-order correlation function and the photon
number at the output arm, as a function of the amplitude of the two-
photon coefficient of the superposition state, c2. The dashed blue
curve corresponds to the amplitude of the coherent state to obtain the
minima of g(2)(0) at the output arm of a 50:50 beamsplitter, the solid
blue curve corresponds to g(2)(0), and the red curve represents the
average photon number in that arm.
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reduce the three-photon component at the same time. How-
ever, this is different with the even cat states. The even cat
states can be written as

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )a a
µ + + +cat 0

2
2

2
4 ..., 6e

sch
2

sch
4

where αsch is the cat state amplitude. Since the expressions
are not tractable analytically, we evaluate the output corre-
lations numerically using the QuTiP toolbox [26].

We assume the beamsplitter to be symmetric, i.e. 50:50.
Figure 5 shows that g(2)(0) varies as a function of α, the
amplitude of the coherent state in mode b̂, and of αsch, the
amplitude of the input cat state in mode â. We observe that
bunching occurs if a a<sch , whereas αsch>α leads to anti-
bunching.

Moreover, for /a a» 2sch , we obtain the minimum of
g(2)(0) where g(2)(0)→0 with α → 0. Interestingly, the
sensitivity of the autocorrelation function (local derivative
with respect to αsch and α) increases, while g(2)(0) decreases
for decreasing amplitudes, which can be advantageously used
to characterized even cat states.

There are several experimental techniques that can be
employed to generate Schrödinger cat states [27–30]. How-
ever, characterizing such states is a very challenging task as it
usually relies on full-state tomography with high sensitivity.
Our simple scheme can offer an interesting alternative: a cat
state of a given amplitude mixed with a coherent state can be
detected by measuring the correlation function g(2)(0) of the
output field. In addition, the variation of this value with
respect to the amplitude of the input coherent field is also
directly linked to the amplitude of the cat state. Both quan-
tities, easily accessible, can be advantageously used to wit-
ness low-amplitude Schrödinger cat states.

It is known that at low amplitudes of αsch, cat states
converge to squeezed states which we now consider
explicitly.

2.3. Squeezed coherent states

Squeezed states have been observed in many different types
of systems such as parametric down conversion [31], optical
fibers [32], semiconductor lasers [33], and four-wave-mixing
in atomic vapor [34–36], etc. In this subsection, we see how
one can use squeezed coherent states to create anti-bunching.
If one considers a vacuum squeezed state, it consists of only
even Fock states [37]. Hence, squeezed coherent states should
be similar to the case discussed previously.

For a squeezed coherent state and a coherent state
respectively in the input modes â and b̂, the total input state
can be written as

∣ ( ˆ) ( ˆ)∣ ( ˆ)∣ ( )y a x añ = ñ Ä ñD a S a D b, , 0 , 0 , 7a a a b binput

where â and b̂ are the annihilation operators acting on the two
input modes. The displacement and the squeezing parameters
in the corresponding modes are denoted by ∣ ∣a a= Fei and
x = wrei , with superscripts indicating the modes in which
they act on. In the latter, ω denotes the squeezing angle. The
squeezing operator is given by ( ˆ) ( ˆ ˆ )†x = x x-S a e, a a1

2
2 2* and the

displacement operator by ( ˆ) ( ˆ ˆ)†
a = a a-D b e, b b* [23, 38].

Using the beamsplitter relations in equation (1), we can
write the output state of the beamsplitter as

∣ ( ˆ ˆ) ( ( ˆ ˆ))
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with = -T R1 as the beamsplitter transmittance. Since the
displacement operators always commute with each other, one
can simplify the displacement part of the equation to

( ˆ ˆ)a¢ ¢ + ¢D R A T B,b , in which

( )a
a

¢ =
¢

+R T R , 9a

b

( )a
a

¢ = -
¢

T T R , 10a

b

( )a a¢ = fe . 11b b
i

The squeezed state in the input mode is divided into two
squeezed coherent states in the two output modes. The
equation can then be simplified to

∣ ( ˆ ˆ)
( ˆ ) ( ˆ)∣ ∣ ( )

y a

x x

ñ = ¢ + ¢

ñ Ä ñ

D R A T B

S T A S R B

,

, , 0 0 . 12

b

a b A B

out

Clearly, the squeezing in both output arms of the beamsplitter
will be lower than the one in the input mode. As one can see
in equation (12), the two output arms are squeezed coherent
states.

The output state in the mode Â is written as

∣ ⟩ ( ) ( )∣ ⟩ ( )y = wD k A S Tre A, , 0 , 13A
i

Aout,
^

where ∣ ∣ a= ¢k Rb . It is noticeable that the amplitude and
squeezing of the output field can be independently adjusted via
the amplitude of the input fields, their relative phase, and the
beamsplitter reflectance. One can minimize the g(2)(0) function
[39] by applying an output state squeezed in the same direction

Figure 5. Contour plot of the second-order correlation function at the
output arm as a function of the amplitude of the coherent state (αb)
and the amplitude of the even Schrödinger cat state (αsch) in the two
input arms. We consider a 50:50 beamsplitter.
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as the displacement vector (amplitude squeezing), and by
choosing the amplitude of the output state as

∣ ∣ ( ) ( )
( )

( )=
--

k
r r

e e

sinh 2 sinh

1
. 14

r r3 2

If there is only a squeezed vacuum state in one of the input
arms (αa=0) and a coherent state in the other, the highest
anti-bunching is found for

( )f = - FTarccos 2 , 15

∣ ∣ ( ) ( )
( )

( )a =
¢ ¢

-
¢
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e

r r

e e

1 sinh sinh 2

1
, 16b

r
r r3 2

R
T

where ¢ =r r T and ∣ ∣a a= Feb b
i . The corresponding corre-

lation function at zero delay g(2)(0) is shown in figure 6, as a
function of the squeezing parameter and the amplitude of the
input coherent state with a beamsplitter of 90% transmission
and a phase difference f fixed to π. In the limit of intense
coherent states, this setup is analogous to the homodyne
detection and g(2)(0) goes to 1. However, in the limit of weak
coherent states, as visible in figure 6, homodyne analogy is not
valid anymore, and interestingly, the strongest anti-bunching is
obtained for the weakest squeezing. As for the cat state case
described previously, there is a limit to the coherent state
amplitude that allows for anti-bunching. For large squeezing of
the input field, the value of g(2)(0) doesn’t go below 1. In
analogy to what was shown in the previous section with cat
states, mixing an almost vacuum coherent state with an almost
weakly squeezed vacuum state leads to the strongest anti-
bunching (g(2)(0)→0). Moreover, as for cat states, one can
observe that the correlation function is more sensitive to fluc-
tuations of the squeezing parameter r of the input state for
lower squeezing (i.e. small r) (see inset of figure 6). This
property can be used to accurately measure weak squeezing.

Coincidence measurement as presented here can be advanta-
geously used to characterize weak squeezed states.

Detecting squeezed states and cat states of light is a
challenging task. The closer one gets to a coherent state, the
higher should be the setup’s sensitivity and the more likely
one runs into technical difficulties [40, 41]. The present setup
actually goes the opposite way, as illustrated in inset of
figure 6: getting closer to a coherent state leads to a stronger
signature on the g(2)(0) function. This setup can be advanta-
geously employed to witness weakly squeezed or weak cat
states. Furthermore, by scanning the amplitude of the input
coherent field one can quantify, with a very good accuracy via
the g(2)(0) function, how much squeezing is present in the
input state or how large the input cat states are. The advantage
of this method lies in its simplicity, as it only requires a
beamsplitter, a weak coherent beam, and a coincidence
measurement setup.

The reason for the observation of anti-bunching behavior
by using a cat state or a modified coherent state originates
from the fact that the cat states converge to squeezed states for
weak amplitudes.

We will now show how this setup is related to the
unconventional photon blockade.

3. Unconventional photon blockade

Here, we connect our results to the unconventional photon
blockade. This phenomenon typically takes place in a coupled
cavity system. Initially, it was studied with both cavities filled
with a χ(3) non-linear medium, resulting in a strong anti-
bunched light for a specific set of parameters [12]. After-
wards, it was understood that only one cavity is required to
be filled with a non-linear medium to reach the same sub-
Poissonian statistics, and that the strong anti-bunching results
from destructively interfering optical paths [14, 42]. This
mechanism is similar to the one described here.

In order to compare our results from the original proposal
with two coupled cavities [12, 14] (c.f. figure 7(b)), we
modify the setup proposed by adding a cavity of linewidth γ,
filled with a non-linear medium with a non-linearity of 0.01γ,
before the beamsplitter (c.f. figure 7(a)). For these parameters,
we have numerically estimated the amount of squeezing after
the cavity to about 1%. As discussed in section 1, this allows
for a very strong anti-bunching after adequate mixing with a
coherent state.

In figure 7(c), the correlation function at the output of the
setup is plotted in blue as a function of the time delay, nor-
malized to the cavity lifetime. We observe a strong anti-
bunching dip, with a linewidth of the same order as the cavity
linewidth. For comparison, we plot in red the correlation func-
tion one would expect for the same non-linearity in the coupled
cavity case. In the same way as for a single-cavity setup, the

( )( ) tg 2 function vanishes for τ→ 0 but strongly differs for finite
delays. While the single-cavity setup leads to a monotonous
increase of the g(2)(τ) to reach 1, the two-cavity setup strongly
oscillates at a frequency equal to the cavity linewidth. Moreover,

Figure 6. Contour plot of the second-order correlation function in the
output mode Â as a function of the squeezing parameter r of the
squeezed vacuum and the amplitude of the coherent state in the input
arms, αcoh. We consider a beamsplitter with 90% transmission and
f=π. It is also important to note that the squeezing direction is
aligned with the coherent state. Inset: Sensitivity of the minimum of
g(2)(0) ( [ ( )]( )¶ a gmin 0r

2
coh ) as a function of the squeezing para-

meter r.
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the amplitude of the oscillation greatly dominates the shot noise
value and vanishes for a long time delay.

Strictly speaking, anti-bunching can only be defined for a
time window in which g(2)(τ) increases monotonously with ∣ ∣t .
Therefore, g(2)(0)<1 is not a sufficient condition [43] for anti-
bunching. Consequently, as can be seen in figure 7(c)
corresponding to the coupled cavities case (red), one would
need to consider only the time window ∣ ∣t g 2 to actually
achieve sub-Poissonian statistics. Hence, in such a configura-
tion, a complex time filtering is necessary to create a strongly
anti-bunched state of light. As already pointed out by Flayac
and Savona in [42], one can overcome this important limitation
and obtain strong anti-bunching with a single cavity by mixing
its output with the output of another cavity on a beamsplitter.

The advantage of this setup is that it clearly shows how
the two requirements that allow for an unconventional photon
blockade, namely weakly nonclassical state and interference,
can be met separately. This opens up great possibilities, as it
relaxes the constraints on the system parameters to reach the
unconventional photon blockade. Generating weakly non-
classical states and interfering them with a coherent state are
two phenomena that are necessary to obtain strong anti-
bunching, but these can be realized and optimized separately.

4. Conclusion

In this article, we focus on a key measurement in quantum
optics commonly used to characterize single-photon source:

the second-order correlation function, g(2)(0). We show that
using a rather simple setup, one can generate strongly anti-
bunched states of light (g(2)(0)=1). Based on a simple
beamsplitter that mixes a coherent field with g(2)(0)=1 with
another state characterized by g(2)(0)>1, this setup can
provide an output field with g(2)(0)<1. We reveal how this
mechanism is a consequence of interfering different Fock
state components of the input beams. We consider experi-
mentally feasible conditions and detail how this setup can be
advantageously applied to characterize weak squeezed states
and Schrödinger cat states. Finally, we connect our results to
the unconventional photon blockade to show that both phe-
nomena rely on the same physics. This work offers a simple
setup to generate on-demand anti-bunched states of light,
which has been found to have many promising applications in
the last decade [1]. Moreover, due to its simplicity, the pro-
posed scheme can be easily and efficiently integrated to
become a central piece of emerging quantum technologies.
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