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We develop relativistic short-range exchange energy functionals for four-component relativistic range-
separated density-functional theory using a Dirac-Coulomb Hamiltonian. We show how to improve the short-
range local-density approximation exchange functional for large range-separation parameters by using the on-
top exchange pair density as a new variable. We also develop a relativistic short-range generalized-gradient

approximation exchange functional which further increases the accuracy for small range-separation parameters.
Tests on the helium, beryllium, neon, and argon isoelectronic series up to high nuclear charges show that this lat-
ter functional gives exchange energies with a maximal relative percentage error of 3%. The development of this
exchange functional represents a step forward for the application of four-component relativistic range-separated
density-functional theory to chemical compounds with heavy elements.

I. INTRODUCTION

Range-separated density-functional theory (RS-DFT) (see,
e.g., Refs. 1 and 2) is an extension of Kohn-Sham density-
functional theory (DFT) [3] which rigorously combines a
wave-function method accounting for the long-range part of
the electron-electron interaction with a complementary short-
range density functional. RS-DFT has a faster basis conver-
gence than standard wave-function methods [4] and can im-
prove over usual Kohn-Sham density-functional approxima-
tions (DFAs) for the description of strong-correlation effects
(see, e.g., Refs. 5 and 6) or weak intermolecular interactions
(see, e.g., Refs. 7 and 8).

For the description of compounds with heavy elements,
RS-DFT can be extended to a four-component relativistic
framework [9–11]. In particular, in Refs. 9 and 10, second-
order Møller-Plesset perturbation theory and coupled-cluster
theory based on a Dirac-Coulomb Hamiltonian with long-
range electron-electron interaction were combined with short-
range non-relativistic exchange-correlation DFAs and applied
to heavy rare-gas dimers. One limitation, at least in principle,
in these works is the neglect of relativity in the short-range
density functionals. It is thus desirable to develop appropriate
short-range relativistic exchange-correlation DFAs for four-
component RS-DFT in order to quantify the error due to the
neglect of relativity in the short-range density functionals and
possibly increase the accuracy of these approaches. As a first
step toward this, in Ref. 11 some of the present authors de-
veloped a short-range relativistic local density-functional ap-
proximation (srRLDA) exchange functional based on calcu-
lations on the relativistic homogeneous electron gas (RHEG)
with the Coulomb and Coulomb-Breit electron-electron inter-
actions.

In the present work we test this srRLDA exchange func-
tional on atomic systems, namely the helium, beryllium, neon,
and argon isoelectronic series up to high nuclear charges Z,
using a four-component Dirac-Coulomb Hamiltonian. We re-
veal that, for these relativistic ions with large Z, the srRLDA
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exchange functional is quite inaccurate even for large values
of the range-separation parameter µ. We show how this func-
tional can be improved by using the on-top exchange pair
density as a new variable. Finally, we further improve the
short-range relativistic exchange functional by constructing a
generalized-gradient approximation (GGA), achieving a 3%
maximal relative energy error.

The paper is organized as follows. In Section II we lay out
the formalism of RS-DFT for a four-component relativistic
Dirac-Coulomb Hamiltonian in the no-pair approximation. In
Section III we give the computational details for our calcula-
tions. In Section IV we test the srRLDA exchange functional
and discuss its limitations. In Section V we improve the sr-
RLDA exchange functional by using the on-top exchange pair
density. In Section VI, we construct and test short-range rel-
ativistic exchange GGAs. Finally, Section VII contains our
conclusions. In the Appendices, we derive the uniform coor-
dinate scaling relation for the relativistic short-range exchange
density functional and the expression of the on-top exchange
pair-density in a four-component relativistic framework.

II. RELATIVISTIC RANGE-SEPARATED

DENSITY-FUNCTIONAL THEORY

In this work, we consider the Dirac-Coulomb electronic
Hamiltonian (see, e.g., Refs. 12 and 13)

Ĥ = T̂D + V̂ne + Ŵee, (1)

where T̂D is the kinetic + rest mass Dirac operator, V̂ne is the
nuclei-electron interaction operator, and Ŵee is the Coulomb
electron-electron interaction operator. Using four-component
creation and annihilation field operators ψ̂†(r) and ψ̂(r) we can
write T̂D as

T̂D =

∫

ψ̂†(r)
[

c (α · p) + β mc2
]

ψ̂(r) dr, (2)

where p = −i∇r is the momentum operator, c = 137.036 a.u.
is the speed of light, m = 1 a.u. is the electron mass, and α
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and β are the 4 × 4 Dirac matrices

α =

(

02 σ

σ 02

)

and β =

(

I2 02

02 −I2

)

, (3)

where σ = (σx,σy,σz) is the 3-dimensional vector of the 2×2
Pauli matrices, and 02 and I2 are the 2 × 2 zero and identity
matrices, respectively. Similarly, V̂ne and Ŵee have the expres-
sions

V̂ne =

∫

vne(r) n̂(r) dr, (4)

where vne(r) is the nuclei-electron potential, and

Ŵee =
1

2

"
wee(r12) n̂2(r1, r2) dr1dr2, (5)

where wee(r12) = 1/r12 is the Coulomb electron-electron
potential, and n̂(r) = ψ̂†(r)ψ̂(r) and n̂2(r1, r2) =

ψ̂†(r1)ψ̂†(r2)ψ̂(r2)ψ̂(r1) are the density and pair density op-
erators, respectively.

Introducing a set of orthonormal 4-component-spinor or-
bitals {ψp(r)}which are eigenfunctions of a one-particle Dirac
Hamiltonian with some potential, and assuming that this set of
orbitals can be partitioned into a set of positive-energy (elec-
tronic) orbitals and a set of negative-energy (positronic) or-
bitals, {ψp(r)} = {ψp(r)}εp>0 ∪ {ψp(r)}εp<0, the no-pair [14, 15]
relativistic ground-state energy of a N-electron system can be
defined using a minmax principle [16–21], that we will for-
mally write as,

E0 = minmax
Ψ+

〈Ψ+|T̂D + V̂ne + Ŵee|Ψ+〉. (6)

In this equation, we search over normalized wave func-
tions of the form |Ψ+〉 = P̂+|Ψ〉, where P̂+ is the pro-
jector on the N-electron-state space generated by the set
of positive-energy orbitals {ψp(r)}εp>0 and |Ψ〉 is a general
N-electron antisymmetric wave function, and the notation
minmaxΨ+ = minΨmaxP̂+

= maxP̂+
minΨ means a minimiza-

tion with respect to Ψ and a maximization with respect to
P̂+. This maximization must be done by rotations of the
positive-energy orbitals {ψp(r)}εp>0 with its complement set
of negative-energy orbitals {ψp(r)}εp<0. Here, we have as-
sumed that the optimum of the minmax is a saddle point in
the wave-function parameter space (which can be calculated
with a multiconfiguration self-consistent-field (MCSCF) al-
gorithm [21–23]), so that the same energy is obtained what-
ever the order of minΨ and maxP̂+

. Note that, in the non-
relativistic limit (c → ∞), the energy gap between positive-
and negative-energy orbitals of order 2mc2 goes to infinity
and the maximization over P̂+ becomes useless, and thus the
minmax principle properly reduces to the non-relativistic min-
imization principle.

Relativistic DFT has been formulated based on quantum
electrodynamics (QED) [24–26], where one can assume a
minimization principle similar to the non-relativistic case.
The no-pair approximation is then introduced at a later stage
for practical calculations. Here, we attempt instead to formu-
late a relativistic DFT within the no-pair approximation from

the start. Following the spirit of the constrained-search formu-
lation of non-relativistic DFT [27, 28], we propose to define
the no-pair relativistic universal density functional as

F[n] = minmax
Ψ+→n

〈Ψ+ |T̂D + Ŵee|Ψ+〉

= 〈Ψ+[n]|T̂D + Ŵee|Ψ+[n]〉, (7)

where the minmax procedure is identical to that in Eq. (6) ex-
cept for the additional constraint that Ψ+ yields the density
n, i.e. 〈Ψ+|n̂(r)|Ψ+〉 = n(r). In Eq. (7), Ψ+[n] is the optimal
wave function for the density n. We will again assume that
the optimum of the minmax is a saddle point in the density-
constrained wave-function parameter subspace. Of course,
this functional is only defined for densities which come from
a wave function of the form of Ψ+, which we will refer to as
Ψ+-represensable densities. Note that, consistently with ne-
glecting the Breit electron-electron interaction, we will only
consider functionals of the density and not of the density cur-
rent. The no-pair relativistic ground-state energy of Eq. (6)
can be in principle obtained from F[n] as a stationary point
with respect to variations over Ψ+-represensable densities

E0 ∈ stat
n

{

F[n] +

∫

vne(r) n(r) dr

}

, (8)

where we have introduced the notation statn to designates the
set of stationary energies with respect to variations of n. Due
to the minmax principle in Eqs. (6) and (7), we can only as-
sume a stationary principle in Eq. (8), instead of the usual
non-relativistic minimization principle over densities. This
situation is in fact similar to the problem of formulating a
pure-state time-independent variational extension of DFT for
excited-state energies [29, 30].

We now define a no-pair relativistic long-range universal
density functional, similarly to Eq. (7), as

F lr, µ[n] = minmax
Ψ+→n

〈Ψ+|T̂D + Ŵ
lr, µ
ee |Ψ+〉

= 〈Ψµ+[n]|T̂D + Ŵ
lr, µ
ee |Ψ

µ
+[n]〉, (9)

with the long-range electron-electron interaction opera-

tor Ŵ
lr, µ
ee = (1/2)

!
w

lr, µ
ee (r12) n̂2(r1, r2) dr1dr2 where

w
lr, µ
ee (r12) = erf(µr12)/r12 is the long-range electron-electron

potential and µ is the range-separation parameter. In Eq. (9)
Ψ
µ
+[n] is the optimal wave function for the density n and

range-separation parameter µ. We can thus decompose the
density functional F[n] as

F[n] = F lr, µ[n] + Ē
sr, µ

Hxc
[n], (10)

which defines the complement relativistic short-range
Hartree-exchange-correlation density functional Ē

sr, µ

Hxc
[n].

Plugging Eq. (10) into Eq. (8), we conclude that the no-pair
relativistic ground-state energy of Eq. (6) corresponds to a sta-
tionary point of the following range-separated energy expres-
sion over Ψ+ wave functions

E0 ∈ stat
Ψ+

{

〈Ψ+|T̂D + V̂ne + Ŵ
lr, µ
ee |Ψ+〉 + Ē

sr, µ

Hxc
[nΨ+]

}

, (11)



3

where nΨ+ is the density of Ψ+. For practical calculations, we
will assume that the no-pair relativistic ground-state energy
corresponds in fact to the minmax search over Ψ+

E0 = minmax
Ψ+

{

〈Ψ+ |T̂D + V̂ne + Ŵ
lr, µ
ee |Ψ+〉 + Ē

sr, µ

Hxc
[nΨ+]

}

.(12)

Even though we do not see any guarantee that this is always
true, it seems a reasonable working assumption for practical
calculations. In fact, it corresponds to what is done in prac-
tice in no-pair Kohn-Sham DFT calculations [31–40], which
corresponds to Eq. (12) in the special case of µ = 0, i.e.

E0 = minmax
Φ+

{

〈Φ+|T̂D + V̂ne|Φ+〉 + EHxc[nΦ+]
}

, (13)

where the wave function can be restricted to a single deter-
minantΦ+ and EHxc[n] is the relativistic Kohn-Sham Hartree-
exchange-correlation density functional. Another special case
of Eq. (12) is for µ → ∞ for which we correctly recover the
wave-function theory of Eq. (6).

As usual, we can decompose the complement relativistic
short-range Hartree-exchange-correlation density functional
into separate components

Ē
sr, µ

Hxc
[n] = E

sr, µ

H
[n] + E

sr, µ
x [n] + Ē

sr, µ
c [n]. (14)

In this expression, E
sr,µ

H
[n] is the short-range Hartree den-

sity functional (which has the same expression as in the non-
relativistic case)

E
sr,µ

H
[n] =

1

2

"
w

sr, µ
ee (r12) n(r1)n(r2) dr1dr2, (15)

where w
sr, µ
ee (r12) = wee(r12) − w

lr, µ
ee (r12) is the short-range

electron-electron potential, E
sr, µ
x [n] is the relativistic short-

range exchange density functional

E
sr,µ
x [n] = 〈Φ+[n]| Ŵsr,µ

ee |Φ+[n]〉 − E
sr,µ

H
[n], (16)

where Φ+[n] = Ψ
µ=0
+ [n] is the relativistic Kohn-

Sham single-determinant wave function and Ŵ
sr, µ
ee =

(1/2)
!

w
sr, µ
ee (r12) n̂2(r1, r2) dr1dr2 is the short-range

electron-electron interaction operator, and Ē
sr, µ
c [n] is the com-

plement relativistic short-range correlation density functional.
In Appendix A, we show that the relativistic short-range ex-
change density functional E

sr,µ
x [n] satisfies a uniform coordi-

nate scaling relation [Eq. (A6)] which represents an important
constraint to impose in approximations.

Even though the present formulation of relativistic range-
separated DFT seems reasonable for practical chemical ap-
plications, it obviously calls for a closer mathematical ex-
amination of its domain of validity. In particular, it is clear
that the minmax principle of the no-pair approximation breaks
down in the strong relativistic regime (i.e., for nuclear charges
Z & c).

III. COMPUTATIONAL SETUP

We consider the helium, beryllium, neon, and argon iso-
electronic series, up to the uranium nuclear charge Z = 92.
The electronic density n(r) naturally increases at the nucleus
with Z and can be conveniently measured with kFmax

, i.e. the
maximal value taken at the nucleus by the local Fermi wave
vector kF(r) = (3π2n(r))1/3. The strength of the relativistic ef-
fects can be measured by comparing the local Fermi wave vec-
tor kF(r) to the speed of light c ≃ 137.036 a.u. (with ~ = me =

1 a.u.): very little relativistic effects are expected in regions
where kF(r) ≪ c, while strong relativistic effects are expected
in regions where kF(r) & c.

To test the different functionals, we have first per-
formed four-component Dirac Hartree-Fock (DHF) calcula-
tions based on the relativistic Dirac-Coulomb Hamiltonian
with point-charge nucleus, using our own program imple-
mented as a plugin of the software Quantum package 2.0 [41].
For the helium series, we use the dyall 1s2.3z basis set of
Ref. 21 except for Yb68+ and U90+ for which the basis set
was not available. For these systems, as well as for the beryl-
lium, neon, and argon series, we construct uncontracted even-
tempered Gaussian-type orbital basis sets [42], following the
primitive structure of the dyall-cvdz basis sets for He, Be, Ne,
and Ar [43]. For each system and angular momentum, the ex-
ponents of the large-component basis functions are taken as
the geometric series

ζν = ζ1 qν−1, (17)

where ζ1 is chosen among the largest exponents from the
dyall-cvdz basis set for the given element and angular mo-
mentum [43, 44], and the parameter q is optimized by min-
imizing the DHF total energy. The small-component basis
functions are generated from the unrestricted kinetic-balance
scheme [45]. The basis-set parameters are given in the Sup-
plementary Material.

Using the previously obtained DHF orbitals, we then esti-
mate the short-range exact exchange energy

E
sr,µ
x =

1

2

"
w

sr,µ
ee (r12) n2,x(r1, r2)dr1dr2, (18)

where n2,x(r1, r2) is the exchange pair density

n2,x(r1, r2) = −Tr[γ(r1, r2)γ(r2, r1)], (19)

and γ(r1, r2) =
∑N

i=1 ψi(r1)ψ†
i
(r2) is the 4 × 4 one-electron

density matrix written with the four-component spinor occu-
pied orbitals {ψi(r)}. This short-range DHF exchange energy
is used as the reference for testing the different exchange en-
ergy functionals, which are evaluated with the DHF density
n(r) = Tr[γ(r, r)] (and the DHF exchange on-top pair density
for some of them, see below) using a SG-2-type quadrature
grid [46] with the radial grid of Ref. 47.
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IV. SHORT-RANGE EXCHANGE LOCAL-DENSITY

APPROXIMATIONS

The non-relativistic short-range local-density approxima-
tion (srLDA) for the exchange functional has the expression

E
sr,LDA, µ
x [n] =

∫

n(r) ǫ
sr,HEG, µ
x (n(r)) dr, (20)

where the non-relativistic short-range homogeneous electron

gas (HEG) exchange energy per particle ǫ
sr,HEG, µ
x (n) can be

found in Refs. 1, 48, and 49. The relativistic generalization of
this functional, referred to as srRLDA, is

E
sr,RLDA, µ
x [n] =

∫

n(r) ǫ
sr,RHEG, µ
x (n(r)) dr, (21)

where the short-range RHEG exchange energy per particle

ǫ
sr,RHEG, µ
x (n) is given in Ref. 11 with arbitrary accuracy as sys-

tematic Padé approximants with respect to the dimensionless
variable c̃ = c/kF = c/(3π2n)1/3 (we employ here the Padé ap-
proximant of order 6) with coefficients written as functions of
the dimensionless range-separation parameter µ/kF. The de-

pendence of ǫ
sr,RHEG, µ
x (n) on the dimensionless parameters c̃

and µ/kF is a consequence of the uniform coordinate scaling
relation of Eq. (A6) which is valid of the RHEG.

The relative percentage errors of the srLDA and srRLDA
exchange functionals with respect to the short-range DHF

exchange energy, i.e. 100 × (E
sr,DFA, µ
x − E

sr, µ
x )/|Esr, µ

x |, are
plotted in Fig. 1 as a function of the dimensionless range-
separation parameter µ/kFmax

for three representative members
of the neon isoelectronic series (Ne, Xe44+ and Rn76+). The
relativistic effects go from very small for Ne to very large for
Rn76+.

For µ = 0, the short-range interaction reduces to the full-
range Coulomb interaction, and we observe that both the non-
relativistic and relativistic LDA exchange functionals under-
estimate (in absolute value) the DHF exchange energy by 5%
to 10 %. As previously noted [50], the non-relativistic LDA
exchange functional (evaluated with a relativistic density) for-
tuitously gives exchange energies with lower errors than the
relativistic LDA exchange functional for systems with signif-
icant relativistic effets (Xe44+, and Rn76+). When µ increases,
the srLDA and srRLDA exchange functionals show quite dif-
ferent behaviors for these relativistic systems. The relative
error of the srLDA exchange energy changes sign with µ and
eventually goes to a negative constant for µ→ ∞, correspond-
ing to an overestimation in absolute value. By contrast, the
relative error of the srRLDA exchange energy always remains
positive and goes to a positive constant for µ → ∞, corre-
sponding to an underestimation in absolute value. The more
relativistic the system is, the largest this overestimation or un-
derestimation is. While for Ne at large µ both the srLDA and
srRLDA exchange functionals have almost vanishing relative
errors, for Rn76+ at large µ the srLDA exchange energy is too
negative by a little more than 5% and the srRLDA exchange
energy is too positive by almost 20%. Clearly, both the srLDA
and srRLDA exchange functionals are not accurate for rela-
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FIG. 1. Relative percentage error on the short-range exchange energy
calculated with the srLDA, srRLDA, srLDAot, srRLDAot function-

als for three representative members of the neon isoelectronic series
(Ne, Xe44+, and Rn76+).

tivistic systems.

In non-relativistic theory, it is known that the srLDA ex-
change functional becomes exact for large µ [2], which is one
of the key advantages of RS-DFT. As apparent from Figure 1,
for relativistic systems, this nice property does not hold any-
more for both the srLDA and srRLDA exchange functionals.
This observation can be understood by using the distributional
asymptotic expansion of the short-range interaction for large
µ [2]

w
sr, µ
ee (r12) =

π

µ2
δ(r12) + O

(

1

µ3

)

, (22)

which directly leads to the asymptotic expansion of the short-
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range exact exchange energy

E
sr,µ
x =

π

2 µ2

∫

n2,x(r, r) dr + O

(

1

µ4

)

, (23)

where n2,x(r, r) is the on-top exchange pair density. In the
non-relativistic theory, considering the case of closed-shell
systems for the sake of simplicity, the on-top exchange pair
density is simply given in terms of the density as [51]

nNR
2,x (r, r) = −n(r)2

2
, (24)

and the srLDA exchange functional becomes indeed exact for
large µ

E
sr,LDA,µ
x [n] =

π

2 µ2

∫

n
HEG,0
2,x

(n(r)) dr + O

(

1

µ4

)

, (25)

with the on-top exchange pair density of the non-relativistic
HEG

n
HEG,0
2,x

(n) = −n2

2
. (26)

In the relativistic theory, the on-top exchange pair density is
no longer a simple function of the density

n2,x(r, r) = −Tr[γ(r, r)2], (27)

which is not equal to −n(r)2/2, except in the special case of
two electrons in a unique Kramers pair (see Appendix B).
Therefore, for relativistic systems with more than two elec-
trons, we see that the srLDA exchange functional is not exact
for large µ [Eq. (25)]. The srRLDA exchange functional is
also not exact for large µ. It takes the form

E
sr,RLDA,µ
x [n] =

π

2 µ2

∫

nRHEG,0
2,x

(n(r)) dr + O

(

1

µ4

)

, (28)

with the on-top exchange pair density of the RHEG

n
RHEG,0
2,x

(n) = −n2

4
(1 + h(c̃)), (29)

and the function [11]

h(c̃) =
9

4

[

c̃2 + c̃4

−c̃4arcsinh

(

1

c̃

) (

2
√

1 + c̃2 − c̃2 arcsinh

(

1

c̃

) )]

.(30)

For an alternative but equivalent expression for n
RHEG,0
2,x

(n), see
Eq. (A1) of Ref. 33. The srRLDA exchange functional is in
fact not even exact at large µ for two electrons in a unique
Kramers pair. In Section V, we show how to impose the large-
µ behavior on the srLDA and srRLDA exchange functionals.

V. SHORT-RANGE EXCHANGE LOCAL-DENSITY

APPROXIMATIONS WITH ON-TOP EXCHANGE PAIR

DENSITY

In order to impose the correct large-µ behavior of the
srLDA and srRLDA exchange functionals for relativistic sys-
tems, we need to introduce a new ingredient in these func-
tionals, namely the exact (relativistic) on-top exchange pair
density n2,x(r, r), or equivalently the on-top exchange hole

nx(r, r) =
n2,x(r, r)

n(r)
. (31)

A simple way to use nx(r, r) to correct the srLDA ex-
change functional is to find, at each position r, the effec-
tive density neff(r) at which the on-top exchange hole of the
HEG, nHEG,0

x (n) = nHEG,0
2,x

(n)/n = −n/2, is equal to the on-
top exchange hole of the inhomogeneous system considered,
nx(r, r), i.e.

nHEG,0
x (neff(r)) = nx(r, r), (32)

which simply gives neff(r) = −2nx(r, r). We then define the
srLDA exchange functional with the on-top exchange pair
density (srLDAot) using this effective density as

E
sr,LDAot, µ
x [n] =

∫

n(r) ǫ
sr,HEG, µ
x (neff(r)) dr. (33)

This approximation could be considered either as an implicit
functional of the density alone since nx(r, r) is an implicit
functional of the density through the orbitals, or as an ex-
plicit functional of both the density and the on-top exchange
hole nx(r, r). This approximation corresponds to changing the
transferability criterion in the LDA: at a given point r, instead
of taking the exchange energy per particle of the HEG having
the same density than the inhomogeneous system at that point,
we now take the exchange energy per particle of the HEG hav-
ing the same on-top exchange hole than the inhomogeneous
system at that point. Interestingly, this approximation can be
thought of as a particular application of the recently formal-
ized connector theory [52, 53].

Similarly, we can correct the srRLDA exchange func-
tional by finding, at each position r, the effective density
nR

eff
(r) at which the on-top exchange hole of the RHEG,

nRHEG,0
x (n) = nRHEG,0

2,x
(n)/n = −(n/4)(1 + h(c̃)), is equal to

the on-top exchange hole of the inhomogeneous system con-
sidered, nx(r, r), i.e.

nRHEG,0
x (nR

eff(r)) = nx(r, r). (34)

This equation is less trivial to solve than Eq. (32) since
nRHEG,0

x (n) is a complicated nonlinear function of n (through
c̃). However, at each point r, a unique solution nR

eff
(r) exists

since the function n 7→ nRHEG,0
x (n) is monotonically decreas-

ing and spans the domain ]−∞, 0] in which nx(r, r) necessarily
belongs. In practice, we easily find nR

eff
(r) by a numerical it-

erative method, and we use it to define the srRLDA exchange
functional with the on-top exchange pair density (srRLDAot)
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as

E
sr,RLDAot, µ
x [n] =

∫

n(r) ǫ
sr,RHEG, µ
x (nR

eff(r)) dr. (35)

Both the srLDAot and srRLDAot exchange functionals now
fulfil the exact asymptotic expansion for large µ [Eq. (23)]. In
fact, restoring the correct on-top value of the exchange hole
could be beneficial for any value of µ, given the fact that the
accuracy of non-relativistic Kohn-Sham exchange DFAs has
been justified by the exactness of the underlying LDA on-top
exchange hole (in addition to fulfilling the correct sum rule
of the exchange hole) [54]. Finally, we note that, in the non-
relativistic limit (c → ∞), we have neff(r) = nR

eff
(r) = n(r)

and all these short-range exchange functionals reduce to the
non-relativistic srLDA exchange functional (i.e., srLDAot =
srRLDAot = srRLDA = srLDA).

The relative percentage errors of the srLDAot and srRL-
DAot exchange functionals for Ne, Xe44+, and Rn76+ are re-
ported in Figure 1. The most prominent feature is of course
the correct recovery of the large-µ asymptotic behavior for
both the srLDAot and srRLDAot exchange functionals. It
turns out the srLDAot and srRLDAot exchange functionals
give very similar exchange energies for all values of µ. This
comes from the fact that when going from srLDA to srLDAot
Eq. (32) tends to make the LDA exchange hole shallower
and when going from srRLDA to srRLDAot Eq. (34) tends
to make the relativistic LDA exchange hole deeper, mak-
ing finally for very close descriptions. The absolute relative
percentage errors of the srLDAot and srRLDAot exchange
functionals are always below 10%, and below about 2% for
µ/kFmax

≥ 0.5.

VI. SHORT-RANGE EXCHANGE

GENERALIZED-GRADIENT APPROXIMATIONS

In order to improve over the short-range LDA exchange
functionals at small values of the range-separation parameter
µ, we now consider short-range GGA exchange functionals.
We start with the non-relativistic short-range extension of the
Perdew-Burke-Ernzerhof (PBE) [55] of Refs. 56 and 57, re-
ferred to as srPBE,

E
sr,PBE, µ
x [n] =

∫

n(r) ǫ
sr,HEG, µ
x (n(r))

[

1 + f
µ
x (n(r),∇n(r))

]

dr,

(36)

with the function

f
µ
x (n,∇n) = κ − κ

1 + b(µ̃)s2/κ
, (37)

where s = |∇n|/(2kFn) is the reduced density gradient and
µ̃ = µ/(2kF) is a dimensionless range-separation parame-
ter. In this expression, κ = 0.840 is a constant fixed by
imposing the Lieb-Oxford bound (for µ = 0) and b(µ̃) =

bPBE[bT(µ̃)/bT(0)]e−αxµ̃
2

where bPBE = 0.21951 is the second-
order gradient-expansion coefficient of the standard PBE
exchange functional, bT(µ̃) is a function coming from the
second-order gradient-expansion approximation (GEA) of the
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FIG. 2. Relative percentage error on the short-range exchange energy
calculated with the srPBE, srRLDA/PBE, srPBEot, srRLDA/PBEot

functionals for three representative members of the neon isoelec-
tronic series (Ne, Xe44+, and Rn76+).

short-range exchange energy and given in Refs. 58 and 59,
and αx = 19.0 is a damping parameter optimized on the He
atom. For µ = 0, this srPBE exchange functional reduces to
the standard PBE exchange functional [55], and for large µ it
reduces to the srLDA exchange functional.

A simple relativistic extension of this srPBE exchange
functional can be obtained by replacing the srLDA part by the
srRLDA one while using the same density-gradient correction
f
µ
x (n,∇n), to which will refer as srRLDA/PBE,

E
sr,RLDA/PBE, µ
x [n] =

∫

n(r) ǫ
sr,RHEG, µ
x (n(r))

[

1 + f
µ
x (n(r),∇n(r))

]

dr, (38)

which reduces to the srRLDA exchange functional for large µ.
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The srPBE and srRLDA/PBE exchange functionals have
the same (incorrect) asymptotic expansions as the srLDA and
srRLDA exchange functionals [Eqs. (25) and (28)], and we
can thus use the same effective densities in Eqs. (32) and (34)
to restore their large-µ behaviors, which defines the srPBEot
and srRLDA/PBEot exchange functionals

E
sr,PBEot, µ
x [n] =

∫

n(r) ǫ
sr,HEG, µ
x (neff(r))

[

1 + f
µ
x (neff(r),∇neff(r))

]

dr, (39)

where ∇neff(r) = −2∇nx(r, r), and

E
sr,RLDA/PBEot, µ
x [n] =
∫

n(r) ǫ
sr,RHEG, µ
x (nR

eff(r))
[

1 + f
µ
x (nR

eff(r),∇nR
eff(r))

]

dr, (40)

where ∇nR
eff

(r) = [dn
RHEG,0
x (nR

eff
(r))/dnR

eff
]−1∇nx(r, r).

In Figure 2, we report the relative percentage errors of
the srPBE, srRLDA/PBE, srPBEot, and srRLDA/PBEot ex-
change energies for Ne, Xe44+, and Rn76+. For Ne, where the
relativistic effects are very small, all these functionals give al-
most the same exchange energy, as expected. For Xe44+ and
Rn76+, even though the srPBE and srRLDA/PBE exchange
functionals are more accurate than the srLDA and srRLDA
exchange functionals at µ = 0 (see Figure 1), they eventually
suffer from the same large inaccuracy as srLDA and srRLDA
as µ increases. This problem is solved by using the effective
densities from the on-top exchange pair density, the srPBEot
and srRLDA/PBEot exchange functionals giving vanishing er-
rors at large µ. Similarly to what was observed for srLDAot
and srRLDAot, the srPBEot and srRLDA/PBEot functionals
give very close exchange energies for all values of µ. In-
terestingly, we see that using the effective densities also re-
duces the errors of srPBE and srRLDA/PBE at µ = 0, making
srPBEot and srRLDA/PBEot quite accurate in this full-range
limit. Thus, the srPBEot and srRLDA/PBEot exchange func-
tionals are definitely an improvement over srLDAot and sr-
RLDAot. We observe a maximal absolute percentage error of
about 3% for Rn76+ for µ/kFmax

≈ 0.2.

In order to further reduce the errors, in particular for inter-
mediate values of µ, we now consider a relativistic correction
to the density-gradient term in the srRLDA/PBEot exchange
functional. We define a short-range relativistic PBE exchange
functional using the on-top exchange pair density, referred to
as srRPBEot,

E
sr,RPBEot, µ
x [n] =

∫

n(r) ǫ
sr,RHEG, µ
x (nR

eff(r))

×
[

1 + f
µ
x (nR

eff(r),∇nR
eff(r)) φµ(nR

eff(r))
]

dr, (41)

where, in the spirit of the work of Engel et al. [50], we have
introduced a multiplicative relativistic correction φµ(n) to the
term f

µ
x (n,∇n) of the form

φµ(n) =
1 +

a1(µ/c)

c̃2 +
a2(µ/c)

c̃4

1 +
b1(µ/c)

c̃2 +
b2(µ/c)

c̃4

. (42)

Since φµ(n) only depends on the dimensionless parameters

 0
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µ = 0
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µ = 150

FIG. 3. Relativistic correction factor φµ(n) to the density-gradient

term [Eq. (42)] as a function of kF for several values of µ.

c̃ and µ/c, it does not change the uniform coordinate scal-
ing of the functional which still fulfils the scaling relation of
Eq. (A6).

After some tests, we chose to impose a1(µ/c) = b1(µ/c) to
avoid overcorrections in low-density regions which have very
small relativistic effects. We started to determine the coef-
ficients for µ = 0 by minimizing the mean squared relative
percentage error of the exchange energy with respect to the
reference DHF exchange energy for 7 systems of the neon
isoelectronic series (Ne, Ar8+, Kr26+, Xe44+, Yb60+, Rn76+,
U82+), giving a1(0) = b1(0) = 1.3824, a2(0) = 0.3753,
and b2 = 0.4096. The resulting relativistic correction fac-
tor φµ=0(n) can be seen in Figure 3. It correctly tends to 1 in
the low-density (kF → 0) or non-relativistic (c → ∞) limit,
and remains very close to 1 for kF ≪ c. In regions with
very high densities, the relativistic correction factor φµ=0(n)
induces a slight reduction of the effective density-gradient cor-
rection term in the functional, reducing a bit the relative error
on the exchange energy for the heaviest systems.

For µ , 0, we have searched for coefficients in Eq. (42)
which reduce the largest errors of the srRLDA/PBEot ex-
change energy observed at intermediate values of µ (see Fig-
ure 2). We chose coefficients depending on µ/c of the form

a1(µ/c) = b1(µ/c) = a1(0)[1 − erf(µ/c)], (43)

a2(µ/c) = a2(0)[1 − erf(µ/c)], (44)

b2(µ/c) = b2(0)[1 − β erf(µ/c)], (45)

with β = −4.235 which has been found by minimizing the
mean squared relative percentage error of the short-range
exchange energy for the same 7 systems of the neon iso-
electronic series and for 4 intermediate values of the range-
separation parameter (µ/kFmax

= 0.05; 0.1; 0.2; 0.4). The re-
sulting relativistic correction factor φµ(n) is reported in Fig-
ure 3. It still tends to 1 in the low-density limit, but goes down
to 0 when µ ≫ c in the high-density limit. The higher the
value of µ the faster it decreases as a function of kF.

In Figure 4, we report the relative percentage errors of
the srRPBEot exchange functional for systems of the helium,



8

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

He series

srRPBEot

(E
x

s
r,

D
F

A
-E

x
s

r )/
|E

x
s

r | 
(%

)

 µ/kFmax

He     (kFmax
=4.7)

Ne
8+

  (kFmax
=26)

Ar
16+

 (kFmax
=48)

Kr
34+

 (kFmax
=107)

Xe
52+

 (kFmax
=189)

Yb
68+

 (kFmax
=288)

Rn
84+

 (kFmax
=469)

U
90+

   (kFmax
=580)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

Be series

srRPBEot

(E
x

s
r,

D
F

A
-E

x
s

r )/
|E

x
s

r | 
(%

)

 µ/kFmax

Be     (kFmax
=10)

Ne
6+

  (kFmax
=26)

Ar
14+

 (kFmax
=49)

Kr
32+

 (kFmax
=110)

Xe
50+

 (kFmax
=193)

Yb
66+

 (kFmax
=301)

Rn
82+

 (kFmax
=463)

U
88+

   (kFmax
=544)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Ne series

srRPBEot

(E
x

s
r,

D
F

A
-E

x
s

r )/
|E

x
s

r | 
(%

)

 µ/kFmax

Ne     (kFmax
=26)

Ar
8+

   (kFmax
=49)

Kr
26+

 (kFmax
=109)

Xe
44+

 (kFmax
=192)

Yb
60+

 (kFmax
=301)

Rn
76+

 (kFmax
=462)

U
82+

   (kFmax
=543)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Ar series

srRPBEot

(E
x

s
r,

D
F

A
-E

x
s

r )/
|E

x
s

r | 
(%

)

 µ/kFmax

Ar      (kFmax
=49)

Kr
18+

 (kFmax
=110)

Xe
36+

 (kFmax
=193)

Yb
52+

 (kFmax
=303)

Rn
68+

 (kFmax
=467)

U
74+

   (kFmax
=550)

FIG. 4. Relative percentage error on the short-range exchange energy calculated with the srRPBEot functional for systems of helium, beryllium,
neon, and argon isoelectronic series.

beryllium, neon, and argon series. For µ = 0, this functional
achieves an error of at most about 1% for all systems, and it
has the correct large-µ limit. The maximum absolute percent-
age errors, which are found for intermediate values of µ, tend
to grow with Z but remain at most about 3% for the heavier
systems. The srRPBEot exchange functional represents a sig-
nificant improvement over the srPBEot and srRLDA/PBEot
exchange functionals for the heavier systems.

VII. CONCLUSIONS

In this work, we have tested the srRLDA exchange func-
tional developed in Ref. 11 on three systems of the neon iso-
electronic series (Ne, Xe44+, and Rn76+) and compared it to
the usual non-relativistic srLDA exchange functional. Both
functionals are quite inaccurate for relativistic systems and
do not have the correct asymptotic behavior for large range-
separation parameter µ. In order to fix this large-µ behavior,
we have then defined the srLDAot and srRLDAot exchange
functionals by introducing the exact on-top exchange pair den-
sity as a new variable. These functionals recover the cor-
rect asymptotic behavior for large µ but remain inaccurate for
small values of µ. To improve the accuracy for small values of
µ, we have then developed a relativistic short-range GGA ex-
change functional also using the on-top exchange pair density
as an extension of the non-relativistic srPBE exchange func-
tional. Tests on the systems of the isoelectronic series of He,
Be, Ne, and Ar up to Z = 92 show that this srRPBEot ex-

change functional gives a maximal relative percentage error
of 3% for intermediate values of µ and less than 1% relative
error for µ = 0.

Possible continuations of this work includes further tests on
atoms and molecules, extension to the Gaunt or Breit electron-
electron interactions, development of the short-range relativis-
tic correlation functionals, and use of a local range-separation
parameter.

SUPPLEMENTARY MATERIAL

See Supplementary Material for the parameters of the even-
tempered basis sets constructed in this work.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Appendix A: Uniform coordinate scaling relation for the

relativistic short-range exchange density functional

Here, we generalize the uniform coordinate scaling rela-
tion of the non-relativistic exchange density functional [60]
and of the non-relativistic short-range exchange density func-
tional [61] to the case of the relativistic short-range exchange
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density functional of Eq. (16). Since the scaling relation in-
volves scaling the speed of light c, we will explicitly indicate
in this section the dependence on c.

First, we introduce the non-interacting Dirac kinetic + rest
mass energy density functional T c

s [n] defined by Eq. (9) in the
special case of a vanishing range-separation parameter, µ = 0,

T c
s [n] = minmax

Φ+→n
〈Φ+|T̂ c

D|Φ+〉 = 〈Φ
c
+[n]|T̂ c

D|Φ
c
+[n]〉, (A1)

whereΦc
+[n] is the relativistic Kohn-Sham single-determinant

wave function. Let us now consider the scaled wave function
Φc
+,γ[n] defined by, for N electrons,

Φc
+,γ[n](r1, ..., rN) = γ3N/2Φc

+[n](γr1, ..., γrN), (A2)

where γ > 0 is a scaling factor. The wave function Φc
+,γ[n]

yields the scaled density nγ(r) = γ3n(γr) and is the minmax

optimal wave function of 〈Φ+|T̂ cγ

D
|Φ+〉 since it can be checked

that

〈Φc
+,γ[n]|T̂ cγ

D
|Φc
+,γ[n]〉 = γ2〈Φc

+[n]|T̂ c
D|Φ

c
+[n]〉, (A3)

and the right-hand side is minmax optimal by definition of
Φc
+[n]. Therefore, we conclude that

Φc
+,γ[n] = Φ

cγ
+ [nγ]. (A4)

From the definition of the relativistic short-range exchange en-
ergy density functional E

sr,µ,c
x [n] = 〈Φc

+[n]| Ŵ
sr,µ
ee |Φc

+[n]〉 −
E

sr,µ

H
[n], we then arrive at the scaling relation

E
sr,µγ,cγ
x [nγ] = γE

sr,µ,c
x [n], (A5)

or, equivalently,

E
sr,µ,c
x [nγ] = γE

sr,µ/γ,c/γ
x [n]. (A6)

This scaling relation is an important constraint to impose to
approximate density functionals. Besides, it shows that the
low-density limit (γ → 0) corresponds to the non-relativistic
limit (c → ∞), while the high-density limit (γ → ∞) corre-
sponds to the ultra-relativistic limit (c → 0). It also shows
that, for a fixed value of the range-separation parameter µ,
low-density regions explore the functional in the short-range
limit (µ→ ∞) and high-density regions explore the functional
in the full-range limit (µ = 0).

Appendix B: On-top exchange pair-density in a four-component

relativistic framework

Using four-component-spinor orbitals

ψi(r) =































ψLα
i

(r)

ψ
Lβ
i

(r)

ψSα
i

(r)

ψ
Sβ

i
(r)































, (B1)

the on-top value of the 4 × 4 one-electron density matrix has
the expression

γ(r, r) =

N
∑

i=1

ψi(r) ψ†
i
(r) =

































ψLα
i

(r)ψLα
i

(r)∗ ψLα
i

(r)ψ
Lβ
i

(r)∗ ψLα
i

(r)ψSα
i

(r)∗ ψLα
i

(r)ψ
Sβ
i

(r)∗

ψ
Lβ

i
(r)ψLα

i
(r)∗ ψ

Lβ

i
(r)ψ

Lβ

i
(r)∗ ψ

Lβ

i
(r)ψSα

i
(r)∗ ψ

Lβ

i
(r)ψ

Sβ

i
(r)∗

ψSα
i

(r)ψLα
i

(r)∗ ψSα
i

(r)ψ
Lβ

i
(r)∗ ψSα

i
(r)ψSα

i
(r)∗ ψSα

i
(r)ψ

Sβ

i
(r)∗

ψ
Sβ

i
(r)ψLα

i
(r)∗ ψ

Sβ

i
(r)ψ

Lβ

i
(r)∗ ψ

Sβ

i
(r)ψSα

i
(r)∗ ψ

Sβ

i
(r)ψ

Sβ

i
(r)∗

































, (B2)

which leads to the density

n(r) = Tr[γ(r, r)] =

N
∑

i=1

|ψLα
i (r)|2 + |ψLβ

i
(r)|2 + |ψSα

i (r)|2 + |ψSβ

i
(r)|2. (B3)

The on-top exchange pair density has the expression

n2,x(r, r) = −Tr[γ(r, r)2] = −
N

∑

i=1

N
∑

j=1

(

|ψLα
i (r)|2|ψLα

j (r)|2 + |ψLβ

i
(r)|2|ψLβ

j
(r)|2 + 2ψLα

i (r)ψ
Lβ

i
(r)∗ψ

Lβ

j
(r)ψLα

j (r)∗

+|ψSα
i (r)|2|ψSα

j (r)|2 + |ψSβ
i

(r)|2|ψSβ
j

(r)|2 + 2ψSα
i (r)ψ

Sβ
i

(r)∗ψ
Sβ
j

(r)ψSα
j (r)∗

+2ψLα
i (r)ψSα

i (r)∗ψSα
j (r)ψLα

j (r)∗ + 2ψ
Lβ

i
(r)ψ

Sβ

i
(r)∗ψ

Sβ

j
(r)ψ

Lβ

j
(r)∗ (B4)

+2ψLα
i (r)ψ

Sβ
i

(r)∗ψ
Sβ
j

(r)ψLα
j (r)∗ + 2ψ

Lβ
i

(r)ψSα
i (r)∗ψSα

j (r)ψ
Lβ
j

(r)∗
)

.

In the non-relativistic limit, each orbital has a definite spin

state, i.e. ψi(r) = (ψLα
i

(r), 0, 0, 0) or ψi(r) = (0, ψ
Lβ
i

(r), 0, 0),

and we recover the well-known expression of the on-top ex-



10

change pair density in terms of the spin densities

nNR
2,x (r, r) = −

N
∑

i=1

N
∑

j=1

(

|ψLα
i (r)|2|ψLα

j (r)|2 + |ψLβ

i
(r)|2|ψLβ

j
(r)|2

)

= −nα(r)2 − nβ(r)2, (B5)

or, for closed-shell systems, nNR
2,x

(r, r) = −n(r)2/2. However,
in the relativistic case, n2,x(r, r) can no longer be generally
expressed explicitly with the density, as seen from the pres-
ence of terms mixing different spinor components in Eq. (B5).
There are however two exceptions. The first exception is pro-
vided by one-electron systems for which it is easy to check
that n2,x(r, r) = −n(r)2, as in the non-relativistic case. The
second exception is provided by systems of two electrons in
an unique Kramers pair, for which n2,x(r, r) = −n(r)2/2, as in
the non-relativistic case. Indeed, for closed-shell systems, the
one-electron density matrix can be decomposed into Kramers
contributions

γ(r, r) = γ+(r, r) + γ−(r, r), (B6)

where γ+(r, r) =
∑N/2

i=1
ψi(r)ψ†

i
(r) and γ−(r, r) =

∑N/2
i=1

ψ̄i(r) ψ̄†
i
(r), and ψ̄i(r) is the Kramers partner of ψi(r)

ψ̄i(r) =































−ψLβ

i
(r)∗

ψLα
i

(r)∗

−ψSβ
i

(r)∗

ψSα
i

(r)∗































. (B7)

In this case, the density can then be expressed as n(r) =
2Tr[γ+(r, r)], and the on-top exchange pair density as

n2,x(r, r) = −2
(

Tr[γ+(r, r)2] + Tr[γ+(r, r)γ−(r, r)]
)

, (B8)

where we have used Tr[γ+(r, r)2] = Tr[γ−(r, r)2]. For an
unique Kramers pair (i.e. for N = 2), it is easy to check that
Tr[γ+(r, r)2] = (Tr[γ+(r, r)])2 and Tr[γ+(r, r)γ−(r, r)] = 0,
and thus

n2,x(r, r) = −2(Tr[γ+(r, r)])2 = −n(r)2

2
for N = 2. (B9)

The reason why systems with one electron or two electrons in
a single Kramers pair constitute exceptions is that in these sys-
tems exchange only represents in fact a self-interaction cor-
rection, and we have E

sr,µ
x [n] = −E

sr,µ

H
[n] for one electron and

E
sr,µ
x [n] = −(1/2)E

sr,µ

H
[n] for two electrons in a single Kramers

pair, as for the non-relativistic theory.
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