Supplementary Material for "Relativistic short-range exchange energy functionals beyond the local-density approximation"

Julien Paquier¹,* Emmanuel Giner¹, and Julien Toulouse^{1,2†}

¹Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France and ²Institut Universitaire de France, F-75005 Paris, France

(Dated: February 14, 2020)

I. EVEN-TEMPERED BASIS SETS CONSTRUCTED IN THIS WORK

TABLE I. Parameters ζ_1 and q for generating all the exponents $\zeta_{\nu} = \zeta_1 q^{\nu-1}$ of our uncontracted even-tempered large-component basis functions for the Yb⁶⁸⁺ and U⁹⁰⁺ systems of the helium isoelectronic series. We use ten s basis functions, two sets of p basis functions, and one set of d basis functions. The small-component basis functions are generated from the unrestricted kinetic-balance scheme.

	Ten s basis functions		Two p basis functions		One d basis function	
	ζ_1	q	ζ_1	q	ζ_1	
Yb ⁶⁸⁺	1.39601904E+07	0.30	3.39128349E+06	0.25	4.75587491E+03	
U ⁹⁰⁺	5.58567332E+07	0.295	2.64721605E+07	0.25	3.34172062E+04	

TABLE II. Parameters ζ_1 and q for generating all the exponents $\zeta_{\nu} = \zeta_1 q^{\nu-1}$ of our uncontracted even-tempered large-component basis functions for the beryllium isoelectronic series. We use ten s basis functions, six sets of p basis functions, and one set of d basis functions. The small-component basis functions are generated from the unrestricted kinetic-balance scheme.

	Ten s basis functions		Six p basis functions		One d basis function	
	ζ1	\overline{q}	ζ1	\overline{q}	ζ1	
Be	6.40943779E+03	0.25	1.31800101E+01	0.25	2.71217265E-01	
Ne ⁶⁺	2.63937466E+04	0.30	1.01356529E+02	0.25	2.16640868E+00	
Ar^{14+}	2.16279421E+05	0.26	4.94782136E+02	0.25	1.13941141E+01	
Kr ³²⁺	4.14098736E+06	0.23	9.01590791E+03	0.25	2.25939509E+02	
Xe^{50+}	9.04292743E+06	0.23	2.81773747E+05	0.25	1.95959651E+03	
Yb^{66+}	1.39601904E+07	0.236	3.39128349E+06	0.25	4.75587491E+03	
Rn^{82+}	1.46794059E+07	0.25	1.72824122E+07	0.25	1.25385658E+03	
U ⁸⁸⁺	1.46346866E+07	0.26	2.64721605E+07	0.25	3.34172062E+04	

^{*} julien.paquier@lct.jussieu.fr

TABLE III. Parameters ζ_1 and q for generating all the exponents $\zeta_{\nu} = \zeta_1 q^{\nu-1}$ of our uncontracted even-tempered large-component basis functions for the neon isoelectronic series. We use ten s basis functions, six sets of p basis functions, and one set of d basis functions. The small-component basis functions are generated from the unrestricted kinetic-balance scheme.

	Ten s basis functions		Six p basis functions		One d basis function	
	ζ_1	q	ζ_1	q	ζ_1	
Ne	2.63937466E+04	0.30	1.01356529E+02 (0.30	2.16640868E+00	
Ar ⁸⁺	2.16279421E+05	0.29	4.94782136E+02 (0.32	1.13941141E+01	
Kr ²⁶⁺	4.14098736E+06	0.25	9.01590791E+03 (0.25	2.25939509E+02	
Xe ⁴⁴⁺	9.04292743E+06	0.255	9.36856349E+03 (0.31	1.95959651E+03	
$\mathrm{Yb}^{\mathrm{60+}}$	1.39601904E+07	0.235	2.61264417E+04 (0.32	4.75587491E+03	
Rn^{76+}	1.46794059E+07	0.25	5.70898829E+04 (0.30	1.25385658E+03	
U ⁸²⁺	1.46346866E+07	0.26	1.22880210E+05 (0.28	3.34172062E+04	

TABLE IV. Parameters ζ_1 and q for generating all the exponents $\zeta_{\nu} = \zeta_1 q^{\nu-1}$ of our uncontracted even-tempered large-component basis functions for the argon isoelectronic series. We use twelve s basis functions, eight sets of p basis functions, and three set of d basis functions. The small-component basis functions are generated from the unrestricted kinetic-balance scheme.

	Twelve s basis functions		Eight p basis functions		Three d basis functions	
	ζ1	q	ζ1	q	ζ_1	q
Ar	2.16279421E+05	0.30	4.94782136E+02	0.325	1.13941141E+01	0.25
Kr^{18+}	4.14098736E+06	0.25	9.01590791E+03	0.30	2.25939509E+02	0.25
Xe ³⁶⁺	9.04292743E+06	0.25	9.36856349E+03	0.36	1.95959651E+03	0.25
Yb ⁵²⁺	1.39601904E+07	0.26	2.61264417E+04	0.33	4.75587491E+03	0.25
Rn^{68+}	1.46794059E+07	0.30	1.92412503E+05	0.30	1.25385658E+03	0.25
U^{74+}	1.46346866E+07	0.29	1.22880210E+05	0.29	4.95593590E+02	0.25