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ABSTRACT

Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more
interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond
level.
Aims. We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of
the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is
fundamental from an observational point of view.
Methods. We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation
motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of
canonical equations in Hamiltonian formalism.
Results. In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy
compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In
a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure
axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the
corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are
of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly
different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a
numerical integration, which revealed the indirect planetary effects.

Key words. planets and satellites: individual: Venus – celestial mechanics

1. Introduction

Venus, which can be considered as the twin sister of the Earth
with regard to its global characteristics (size, mass, density),
has been the subject of a good amount of investigations on
very long time scales to understand its slow retrograde rotation
(243 d) and its rather small obliquity (2.◦63) (Goldstein 1964;
Carpenter 1964; Goldreich & Peale 1970; Lago & Cazenave
1979; Dobrovoskis 1980; Yoder 1995; Correia & Laskar 2001,
2003). Habibullin (1995) made an analytical study on the ro-
tation of a rigid Venus. In Cottereau & Souchay (2009) we pre-
sented an alternative study, from a theoretical framework already
used by Kinoshita (1977) for the rigid Earth. We made an accu-
rate description of the motion of rotation of Venus at short time
scale. We calculated the ecliptic coordinates of the Venus orbital
pole and the reference point γ0V , which is the equivalent of the
vernal equinox for Venus. Our value for the precession in lon-
gitude was Ψ̇ = 4474.′′35 t/cy ± 66.5. We performed a full cal-
culation of the nutation coefficients of Venus and presented the
complete tables of nutation in longitude ΔΨ and obliquity Δε for
the angular momentum axis due to both the dynamical flattening
and triaxiality of the planet.

In this paper, the study begun in Cottereau & Souchay (2009)
is completed. First we consider in Sect. 2 the torque-free rota-
tional motion of a rigid Venus. We recall the parametrization
of Kinoshita (1977) and the important equations of Kinoshita
(1972), which are used to solve this torque-free motion. The im-
portant characteristics (amplitude, period, trajectory) of the free
motion are given. Cottereau & Souchay (2009) assumed that the
relative angular distances between the three poles (of angular

momentum, figure and rotation) are very small as is the case
for the Earth. In this paper we want to accurately determine the
motion of the third Venus figure axis, which is the fundamental
one from an observational point of view. To do that we reject
the hypothesis of coincidence of the poles. Thus we determine
the Oppolzer terms depending on the dynamical flattening and
the trixiality of Venus. Then we compare these terms with the
corresponding nutations terms for the angular momentum axis,
as determined by Cottereau & Souchay (2009) and the Oppolzer
terms determined by Kinoshita (1977) for the Earth in Sect. 3.
We give the complete tables of the nutation coefficients of the
third figure axis of Venus. We compare them with the nutation
coefficients of the angular momentum axis taken from Cottereau
& Souchay (2009) (Sect. 4). Finally in Sect. 5 we determine the
nutation of the angular momentum axis by numerical integration
using the ephemeris DE405. We validate the analytical results of
Cottereau & Souchay (2009) down to a precision of the order of
a relative 10−5. We show that the discrepancies between the nu-
merical integration and analytical results (Cottereau & Souchay
2009) are caused by the indirect planetary effect, i.e. by the small
contribution to the nutation, which is due to the periodic oscilla-
tions of the orbital motion of Venus. In this paper as in Cottereau
& Souchay (2009) our domain of validity is roughly 3000 years.

2. Torque-free motion for rigid Venus

2.1. Equation of torque-free motion

We consider the problem of the rotational motion of the rigid
Venus in absence of any external force. We note (0, X, Y, Z) the
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Fig. 1. Relation between the Euler angles and the Andoyer variables.

inertial frame and (0, x, y, z) the cartesian coordinates fixed to the
rigid body of the planet (see Fig. 1). The orientation of Venus
with respect to the inertial axes is determined through the Euler
angles (hf , If , φ). The parameter φ gives the position of the prime
meridian (0, x) with respect to γ0V (Kinoshita 1977). The angular
momentum axis (hereafter denoted AMA) of Venus is the axis
directed along G. The components of the angular momentum
referred to the body-fixed axes are:

Lx = Aωx = A(ḣf sin If sinφ + İf cosφ)

Ly = Bωy = B(ḣf sin If cosφ − İf sin φ)

Lz = Cωz = C(ḣf cos If + φ̇), (1)

where A, B, C are the principal inertia moments of Venus.
Moreover the kinetic energy is

T =
1
2

(ωxLx + ωyLy + ωzLz). (2)

To describe the torque-free rotational motion we use the
Andoyer variables (Andoyer 1923; Kinoshita 1972) (see Fig. 1):

– L the angular momentum component along the 0z axis;
– H the angular momentum component along the 0Z axis;
– G the angular momentum amplitude of Venus;
– l the angle between the origin meridian Ox and the node P;
– h the longitude of the node of the AMA with respect to γ0V ;
– g the longitude of the plane node (0, X, Y) with respect to Q

and to the equatorial plane.

This parametrization is described in detail in Kinoshita (1972,
1977) and in Cottereau & Souchay (2009). From these defini-
tions we have

L = G cos J, H = G cos I, (3)

where I, J are the angle between the AMA and the inertial
axis (O, Z) and the angle between the AMA and the third fig-
ure axis (hereafter denoted TFA) respectively. Using spherical
trigonometry, we determine the following relation between the
variables:

φ = l + g. (4)

The components of the angular momentum vector with the
Andoyer variables are

Lx =
√

G2 − L2 sin l

Ly =
√

G2 − L2 cos l

Lz = L. (5)

Fig. 2. Isoenergetic curves of Venus in the (J, l) phase space of the
torque-free motion. Two motions are showen: “the libration motion”
and the “circulation motion”.

The Hamiltonien for the torque-free motion of Venus corre-
sponding to the kinetic energy is

H =
1
2

(
sin2 l

A
+

cos2 l
B

)
(G2 − L2) +

L2

2C
· (6)

The Hamiltonian H does not depend on time and is free from g
and h. Thus the number of degrees of freedom of the torque-free
motion is one. Deprit (1967) has characterized this motion by
studying the isoenergetic curves in the phase plane L− l. But we
prefer to study the isoenergetic curves in the (J, l) phase space
using Eq. (3). This allows a good description of the position of
the AMA with respect to the TFA. Figure 2 shows the two pos-
sible motions: one is the libration motion and the other one the
circulation motion. Using the values of the relative differences
of the moments of inertia of Williams (private communication)

C − A
MR2

= 5.519 × 10−6,
C − B
MR2

= 3.290 × 10−6,

B − A
MR2

= 2.228 × 10−6 (7)

and addopting C
MR2 = 0.3360 (Yoder 1995), we get C

A =

1.000016, C
B = 1.000010. We introduce here j, which corre-

sponds to the minimum value of J when l = π2 . We denote by jl,
the value reached by j on the separatrix. The libration motion
is not possible if J < jl or J > (π − jl). The numerical values
of jl can be determined with the equations of Kinoshita (1972).
We have

jl = arccos

√
2e

1 + e
, (8)

with

e =
1
2

(
1
B
− 1

A

)
D (9)

and

1
D
=

1
C
− 1

2

(
1
B
+

1
A

)
, (10)

where e measures the triaxiality of the rigid body (Andoyer
1923). Applying these formulas to Venus we get jl = 52.◦23.
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2.2. Canonical transformations

To determine the torque-free motion of Venus, we use the
method described in full detail by Kinoshita (1972). We give
here only the important results and equations which are needed
to apply this study to Venus. The Hamiltonian for the torque-
free motion is given by Eq. (6). To solve the equations of mo-
tion, we perform a canonical transformation which replaces
the angular momentum by its action variable (Goldstein 1964).
First we make two intermediate transformations to simplify
the computation.

2.2.1. First transformation

We change (L,G, l, g) to (α1, α2, u1, u2) using the Hamilton
Jacobi method (Chazy 1953). We note S (L,G, α1, α2) the char-
acteristic function. We have the Hamilton-Jacobi equation

F0 =
1
2

(
sin2 l

A
+

cos2 l
B

) ⎛⎜⎜⎜⎜⎜⎝
(
∂S
∂g

)2

−
(
∂S
∂l

)2⎞⎟⎟⎟⎟⎟⎠ + 1
2C

(
∂S
∂l

)2

, (11)

where

α1 = Fo, α2 =
∂S
∂g
= G. (12)

This equation can be solved as

S =
∫ √

γ2 − eα2
2 cos 2l

1 − e cos 2l
dl + α2g, (13)

where

γ2 =

[
2α1 − 1

2

(
1
A
+

1
B

)
α2

2

]
D. (14)

The constants e and D are given by Eqs. (9) and (10). Because
the new Hamiltonian depends on only one of the momenta α1,
we have

u1 = t + β1 =
∂S
∂α1
=
∂S
∂γ

D
γ

u2 = β2 =
∂S
∂α2
· (15)

2.2.2. Second transformation

Then we make another transformation, which changes (α1, α2,
u1, u2) to (L̄, Ḡ, l̄, ḡ). The two momenta are defined as follows:

L̄ = γ

Ḡ = α2 = G. (16)

With these new coordinates the Hamiltonian F0 becomes

F0 =
1

2D
L̄1

2
+

1
4

(
1
A
+

1
B

)
Ḡ1

2
. (17)

Thanks to the Hamilton equations the conjugate variables are

l̄ =
∂F0

∂L̄
=

L̄
D

(t + β1) (18)

ḡ =
∂F0

∂Ḡ
=

1
2

(
1
A
+

1
B

)
Ḡ(t + β1) + β2. (19)

Using (16) we get J̄ from

L̄ = Ḡ cos J̄ (20)

and

cos J̄ =
√

1 − (1 + e) sin2 j = cos j
√

1 − e tan2 j, (21)

where j is defined in Sect. 2.1. Now we can introduce the canon-
ical transformation, which replaces the angular momentum by
its action variable.

2.2.3. Action variables

The action variables are given by:

L̃ =
1

2π

∮ √
L̄2 − eḠ2 cos 2l

1 − e cos 2l
dl

G̃ = Ḡ = G = α2, (22)

where l̃ and g̃ are canonically conjugate variables to L̃ and G̃
respectively. We make the following transformation to simplify
the calculation:

cos 2δ =
cos 2l − e

1 − e cos 2l
or cos 2l =

cos 2δ + e
1 + e cos 2δ

· (23)

We obtain

L̃ =
Ḡ
2π

√
1 − e2

√
b̄

∮ √
1 − k̄2 cos2 δ

1 + e cos 2δ
dδ = Ḡ∧0, (24)

where

k̄2 =
2e

1 − e
(b̄ − 1) b̄ = (cos2 j)−1 (25)

and

∧0 =
2
π

[
E(k)F(χ, k′) + K(k)E(χ, k′) − K(k)F(χ, k′)

]
, (26)

with

χ = sin−1

√
1

b̄
k′ =

√
1 − k̄2. (27)

In Eq. (26) K(k) is the complete elliptic integral of the first kind
with modulus k̄2, E(k) that of the second kind. F(χ, k′) is an in-
complete elliptic integral of the first kind, E(χ, k′) that of the sec-
ond kind, ∧0 is a Heumann lambda function (Byrd & Friedman
1954). Because the complete solution of Eq. (24) is of no inter-
est here, we only give the mean motion of the angular variables l̃
and g̃ that will be used bellow (Kinoshita 1972, 1992). With the
canonical transformations the time variation of l̃ and g̃ can be
determined. We have

g̃ = ñgt + β2 = ñgt + g̃0 (28)

l̃ = ñlt, (29)

where

ñl =
πḠ

2KD

√
1 − e2 cos j (30)

ñg =
G
C
− ñl ∧0 −G

(
1
C
− 1

A

)
sin2 j. (31)

Here the epoch of time t is defined so that l̃ = π2 at t = 0. Now we
can give the development of the variables g and l, which describe
the torque-free motion.
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Table 1. Important values of the free motion of Venus.

Constant Numerical values
C
A 1.000016
C
B 1.000010
e 0.230769
C
D –0.000013
nl 0.0119495 rd/cy
Tl 525.81 cy
ng 0.0258549 rd/d
Tg –243.02 d

2.3. Venus free rotation

As a result we can use a development of our variables g, l and J
with respect to j and e. The results of these technical develop-
ments (Kinoshita 1972) are summarized in the Appendix. As is
the case for the Earth we assume that the angle j of Venus is
very small. Table 1 gives the numerical values of the important
constants used in the theory of the free motion of Venus. To cal-
culate these values we take C

MR2 (Yoder 1995) and the values of
the moment of inertia given in Eq. (7). The value of D and b̃ are
unknown. Finally we find

l = l∗ − 0.0576923 j2
sin 2l̃

1 + e cos 2l̃
+ O( j4)

g = g̃ +
G

Dnl̃

⎡⎢⎢⎢⎢⎢⎣−0.973009(l∗ − l̃)

+ 0.307692× j2
[
0.230769

sin 2l̃

1+ e cos 2l̃

+ 2.05548(l∗ − l̃)

]⎤⎥⎥⎥⎥⎥⎦+O( j4)

J = j
√

1.28713 + 0.287129 cos2l̃ + O(e3, j2)

tan l∗ = 0.797007 tan l̃.

Using the developments for a small e, we get

l = l̃ − 0.111538 sin 2l̃ + 0.006221 sin 4l̃ + O(e3, j2)

g = g̃ + 0.111538 sin 2l̃ − 0.006221 sin 4l̃ + O(e3, j2)

J = J̃[1.00933+ 0.11154 cos 2l̃] + O(e3, j2)

J̃ = j + 0.115385 tan j

+ 0.05325 tan j

(
1
8
+

3
16

tan2 j

)
+ O(e3). (32)

Because the main limitation of our calculation is the uncertainty
on the ratio C

MR2 of Venus (Yoder 1995), our polynomial expan-
sions must be done accordingly. Fourth order terms are too small
compared to our level of accuracy and have been discarded.
Projecting the pole of Venus on the (X, Y) plane with a value
of j = 0.01 rd for the developments above, we can plot the free
motion of Venus (Fig. 2).

We note here that the value of j has been chosen arbitrar-
ily, for it does not significantly affect the polhody, except the
amplitude. We see that the torque-free motion of Venus is an
elliptic motion, as is the case for the Earth. The rotational free
motion of Venus, with a period Tl = 525 centuries (Table 1) is

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6

�0.6

�0.4

�0.2
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0.2

0.4

0.6
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le

Fig. 3. (X, Y) free motion of Venus in space for five hundred century
time space (red and blue curves). The green curve represents a circle
with the radius r = j̄. We take j = 0.01 rd.

much slower than that of Earth (303 d). If we consider the elas-
tic Earth (ocean and atmosphere), the torque-free motion has a
period of 432 d, significantly larger than in the rigid case. The
atmosphere of Venus is much denser than that of the Earth. So it
would be interesting to study the torque-free motion of the elas-
tic Venus in a next paper.

3. Rigid Venus forced rotational motion

In Cottereau & Souchay (2009) we assumed that the relative an-
gular distances between the three poles of Venus (pole of angu-
lar momentum, of figure and of rotation) are very small, as is the
case for the Earth. In this section we determine the motion of the
TFA, which is the fundamental one from an observational point
of view. To do so we reject the hypothesis of coincidence of the
poles. Using the spherical trigonometry in the triangle (P,Q,R)
(see Fig. 1) we determine the relations between the TFA and the
AMA. Supposing that the angle J between the AMA and the
TFA is small we obtain

hf = h +
J

sin I
sin g + O(J2) (33)

If = I + J cos g + O(J2), (34)

where I characterizes the obliquity and h the motion of
precession-nutation in longitude of the AMA of Venus. hf and
If correspond to the same definitions as h and I, but for the TFA
instead of the AMA. This yields (Kinoshita 1977)

Δhf = Δh + Δ

(
J sin g
sin I

)
+ O(J2) (35)

ΔIf = ΔI + Δ(J cos g) + O(J2), (36)

where Δh and ΔI represent the variation of the nutation of Venus
in longitude and obliquity respectively. The second term on the
right hand side of Eqs. (35) and (36) are the so-called Oppolzer
terms. They represent the difference between the TFA nutation
and the AMA nutation (in longitude and in obliquity). These
terms represent the differential effects of solid body tides on both
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axes. Developing Eqs. (35) and (36) we obtain

Δ

(
J sin g
sin I

)
=

1
sin I

(
ΔJ sin g + JΔg cos g − J sin gΔI cos I

sin2 I

)
(37)

Δ(J cos g) = ΔJ cos g − J sin gΔg. (38)

We see that Eqs. (37) and (38) are functions of Δg and ΔJ. We
recall here that g and J caracterize the motion of the AMA with
respect to the TFA. As the Earth has a fast rotation, the TFA and
the AMA can be considered to be identical. Venus has a slow
rotation, so it is interesting to see what the difference will be
with respect to the TFA motion. To determine Δg and ΔJ we
must solve the equations of motion.

3.1. Equations of motion

The Hamiltonian related to the rotational motion of Venus is
(Cottereau & Souchay 2009)

K” = Fo + E + E′ + U, (39)

where Fo is the Hamiltonian for the free motion, E + E′ is a
component related to the motion of the orbit of Venus, which
is caused by planetary perturbations. The expression of Fo has
been set in the previous section. The expression of E+E′ is given
in detail in Cottereau & Souchay (2009). U is the disturbing po-
tential due to the external disturbing body considered. Here the
sole external disturbing body is the Sun (the perturbation due
to the planets can be neglected in first order), and its disturbing
potential is given by

U=
GM′

r3

[
2C − A − B

2
P2(sin δ) +

A − B
4

P2
2(sin δ) cos 2α

]
, (40)

where G is the gravitationnal constant, M′ is the mass of the
Sun, r is the distance between the barycenters of the Sun and
Venus. α and δ are the planetocentric longitude and latitude of
the Sun respectively, with respect to the mean equator of Venus
and with respect to a meridian of origin (therefore α must not be
confused with the usual right ascension). The Pm

n are the classical
Legendre functions given by

Pm
n (x) =

(−1)m(1 − x2)
m
2

2nn!
dn+m(x2 − 1)n

dn+mx
· (41)

In Eq.(40) we only consider the potential in first order. The
method for solving the equation of motion is described in
Kinoshita (1977). Only the final results are given. We have

Δg =
1
G

(
cot J

∂W1

∂J
+ cot I

∂W1

∂I

)
(42)

ΔJ =
1
G

(
1

sin J
∂W1

∂l
− cot J

∂W1

∂g

)
(43)

where

W1 =

∫
GM′

r3

⎡⎢⎢⎢⎢⎢⎣2C − A − B
2

P2(sin δ)

+
A − B

4
P2

2 sin δ cos 2α

⎤⎥⎥⎥⎥⎥⎦dt. (44)

We use a transformation described by Kinoshita (1977) and
based on the Jacobi polynomials. It expresses α and δ as func-
tions of λ and β, respectively the longitude and the latitude of the

Sun with respect to the Venus mean orbital plane

P2(sin δ) =
1
2

(3 cos2 J − 1)

⎡⎢⎢⎢⎢⎢⎣1
2

(3 cos2 I − 1)P2(sin β)

− 1
2

sin 2IP1
2(sin β) cos 2(λ − h)

⎤⎥⎥⎥⎥⎥⎦
+ sin 2J

⎡⎢⎢⎢⎢⎢⎣ − 3
4

sin 2IP2(sin β) cos g

−
∑
ε=±1

1
4

(1 + ε cos I)(−1 + 2ε cos I)

× P1
2(sin β) sin(λ − h − εg)

−
∑
ε=±1

1
8
ε sin I(1 + ε cos I)

× P2
2(sin β) cos(2λ − 2h − εg)

⎤⎥⎥⎥⎥⎥⎦ + sin2 J

×
⎡⎢⎢⎢⎢⎢⎣3
4

sin2 IP2(sin β) cos 2g +
1
4

∑
ε=±1

ε sin I

× (1 + ε cos I)P1
2(sin β) sin(λ − h − 2εg) − 1

16

×
∑
ε=±1

(1 + ε cos I)2P2
2(sin β) cos 2(λ − h − εg)

⎤⎥⎥⎥⎥⎥⎦. (45)

and

P2
2(sin δ) cos 2α = 3 sin2 J

⎡⎢⎢⎢⎢⎢⎣ − 1
2

(3 cos2 I − 1)P2(sin β)

× cos 2l +
1
4

∑
ε=±1

sin 2IP1
2(sin β) sin(λ − h − 2εl)

+
1
8

sin2 IP2
2(sin β) cos 2(λ − h − εl)

⎤⎥⎥⎥⎥⎥⎦
+

∑
ρ=±1

ρ sin J(1 + ρ cos J)

×
⎡⎢⎢⎢⎢⎢⎣ − 3

2
sin 2IP2(sin β) cos(2ρl + g)

−
∑
ε=±1

1
2

(1 + ε cos I)(−1 + 2ε cos I)

× P1
2(sin β) sin(λ − h − 2ρεl − εg)

−
∑
ε=±1

1
4
ε sin I(1 + ε cos I)

× P2
2(sin β) cos(2λ − 2h − 2ρεl − εg)

⎤⎥⎥⎥⎥⎥⎦.
To simplify the calculations, we separately study the symmet-
ric part of Eq. (44), which depends on the dynamical flattening,
and the antisymmetric part, which depends on the triaxiality of
Venus. So the dynamical flattening coefficient of will be noted
with an “s” index and the triaxiality coefficient with an “a” in-
dex. From its definition above, we can set β ≈ 0, because the
latitude of the Sun with respect to the Venus mean orbital plane
can be considered as null.

Page 5 of 12



A&A 515, A9 (2010)

3.2. Oppolzer terms depending on the dynamical flattening

Using Eqs. (44) and (45) with β = 0, we have

Ws1 =
GM′

a3

2C − A − B
2

∫ [(a
r

)3
P2(sin δ)

]
dt

=
1
2

(3 cos2 J − 1)Ws10 − 1
2

sin 2JWs11

+
1
4

sin2 JWs12, (46)

where

Ws10 = Ks′

[
−1

6
(3 cos2 I − 1)

∫
1
2

(a
r

)3
dt

− 1
4

sin2 I
∫

cos 2(λ − h)
(a

r

)3
dt

]
(47)

Ws11 = Ks′

[
−1

2
sin 2I

∫
1
2

(a
r

)3
cos g dt

− 1
4

(1 − cos I)
∫

cos(2λ − 2h + g)
(a

r

)3
dt

+
1
4

(1 + cos I)
∫

cos(2λ − 2h − g)
(a

r

)3
dt

]
(48)

Ws12 = Ks′

[
− sin2 I

1
2

∫ (a
r

)3
cos 2g dt

− 1
4

(1 − cos I)2
∫

cos 2(λ − h + g)
(a

r

)3
dt

− 1
4

(1 + cos I)2
∫

cos 2(λ − h − g)
(a

r

)3
dt

]
, (49)

and

Ks′ =
3GM′

a3

2C − A − B
2

· (50)

According to the Hamilton equations, we obtain

Δsg =
1
G

[
−3 cos2 J Ws10 − cos 2J cos J

sin J
Ws11

+
1
2

cos2 J Ws12

]

− cos IΔh + O(J2). (51)

We assume that the angle J is small as for the Earth. This yields

Δsg =
1
G

[
−3Ws0 − 1

J
Ws11 +

1
2

Ws12

]

− cos I Δh + O(J2). (52)

We have also

Δs J =
1
G

[
cos2 J

∂Ws11

∂g
− 1

8
sin 2J

∂Ws12

∂g

]

=
1
G
∂Ws11

∂g
+ O(J). (53)

Table 2. Development of 1
2

(
a
r

)3
cos(g) of Venus. t is counted in Julian

centuries.

M LS g Period
d cos × 10−7 t cos × 10−7

0 0 1 –243.02
(

1
2 +

3
4 e2

)
= 5 000 344 –48

1 0 1 2980.71
(

3
4 e + 27

32 e3
)
= 50 792 –3582

1 0 –1 116.75
(

3
4 e + 27

32 e3
)
= 50 792 –3582

2 0 1 208.948
(

9
8 e2

)
= 516 –72

2 0 –1 76.83
(

9
8 e2

)
= 516 –72

3 0 1 108.27 53
16 e3 = 10 0

3 0 –1 57.25 53
16 e3 = 10 0

Table 3. Development of
(

a
r

)3
cos(2(λ − h) − g) of Venus. t is counted

in Julian centuries.

M LS g Period
d cos × 10−7 t cos × 10−7

0 2 –1 76.83
(
1 − 5

2 e2
)
= 9 998 853 161

–1 2 –1 116.75
(
− 1

2 e + 1
16 e3

)
= −33 859 2388

1 2 –1 57.25
(

7
2 e − 123

16 e3
)
= 236 993 –16 718

2 2 –1 45.62
(

17
2 e2

)
= 3898 –550

–3 2 –1 –2980.71 1
48 e3 = 0 0

3 2 –1 37.92 845
48 e3 = 54 –4

Table 4. Development of
(

a
r

)3
cos(2(λ − h) + g) of Venus. t is counted

in Julian centuries.

M LS g Period
d cos × 10−7 t cos × 10−7

0 2 1 208.95
(
1 − 5

2 e2
V

)
= 9 998 853 161

–1 2 1 2980.71
(
− 1

2 e + 1
16 e3

)
= −33 859 2388

1 2 1 108.27
(

7
2 e − 123

16 e3
)
= 236 993 –16 718

2 2 1 73.06
(

17
2 e2

)
= 3898 550

–3 2 1 –116.75 1
48 e3 = 0 0

3 2 1 55.14 845
48 e3 = 54 –4

Using Eqs. (52) and (53) we obtain the Oppolzer terms depend-
ing on the dynamical flattening

Δs

(
J sin g
sin I

)
=

1
G sin I

⎡⎢⎢⎢⎢⎢⎣∂Ws11

∂g
sin g −Ws11 cos g

⎤⎥⎥⎥⎥⎥⎦ + O(J) (54)

Δs(J cos g) = Δ(J) cos g − JΔg sin g

=
1
G

[
∂Ws11

∂g
cosg +Ws11 sin g

]
+ O(J). (55)

To solve Eqs. (54) and (55) through Ws11 given by Eq. (48),

it is necessary to develop 1
2

(
a
r

)3
cos g,

(
a
r

)3
cos(2λ − 2h + g)

and
(

a
r

)3
cos(2λ − 2h − g) with respect to the mean anomaly M,

the mean longitude of the Sun LS and g, the angle deter-
mined in Sect. 2. With Kepler’s law we obtain this development
(see Tables 2−4). Our value of the eccentricity was taken from
Simon et al. (1994).

The numerical value for Tg is given in Table 1. We recall here
that our domain of validity is 3000 years as it was in Cottereau
& Souchay (2009).
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Table 5. Oppolzer terms in longitude depending on dynamical flattening [ΔΨs = Δhs: nutation coefficients of the AMA].

Argument Period sinωt t sinωt cosωt
d arcsec arcsec/julian century arcsec

(10−7) (10−7) (10−7)
2Ls 112.35 14 962 988[–21 900 468] –242[–352] 0[0]
M 224.70 –6 134 235[889 997] 432 651[–62 765] 5416[–61]

2Ls + M 74.90 264 403 [–346 057] –18 651 [24 412] –5[–7]
2Ls − M 224.70 –76 066 [148 323] 5366 [–10 461] 2[–10]
2Ls + 2M 56.17 3466 [–4269] –489[602] 0[0]

2M 112.35 –5749[4521] 811[–640] 0[0]

Table 6. Oppolzer terms in the obliquity depending on dynamical flattening [Δεs = ΔIs: nutation coefficients of the AMA].

Argument Period cosωt t cosωt sinωt
d arcsec arcsec/Julian century arcsec

(10−7) (10−7) (10−7)
2Ls 112.35 –690 090 [100 741] –11[16] 0[0]
M 224.70 –260 831 [0] 1840[0] –248[0]

2Ls + M 74.90 –12 184 [15 919] 859[–1123] 0[0]
2Ls − M 224.70 3594[–6822] –253 [481] 0[0]
2Ls + 2M 56.17 –160[196] 22[–27] 0[0]

2M 112.35 –122[0] 17[0] 0[0]
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Fig. 4. Nutation of the AMA (red curve) and nutation of the Oppolzer
terms (blue and bolt curve) in the obliquity of Venus depending on its
dynamical flattening for a 1000 d span, from J2000.0.

Because of the the developments above we give in Tables 5
and 6 the Oppolzer terms, in longitude and in obliquity respec-
tively, depending on the dynamical flattening. For comparison
we give the corresponding nutation coefficients (in brackets) of
the AMA determined in Cottereau & Souchay (2009). They are
represented in both Figs. 4 and 5 for a 1000 d time span to see
the leading oscillations. We remark that the Oppolzer terms are
of the same order of magnitude as the nutation coefficients. The
Oppolzer terms associated with the argument M are even larger.
This is due to the low value of Ṁ+ ġ = −2Π/(−243.02/36525)+
2Π/(224.70/36525) = 76.99 rd/cy, which enters in the denomi-
nator during the integration of the equations of motion. Whereas
for the calculation of the corresponding AMA coefficient only
the numerical value Ṁ = 2Π/(224.70/36 525) = 1021.33 rd/cy
appears, which is higher than Ṁ + ġ. In Figs. 4 and 5, showing
the Oppolzer terms, the presence of the sinusoid with a period
of 224 d reflects this. Remark (Table 6) that the Oppolzer terms
associated with the argument M and 2M have a non zero ampli-
tude, whereas the nutation coefficients of the AMA associated
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Fig. 5. Nutation of the AMA (red curve) and nutation of the Oppolzer
terms (blue and bolt curve) in longitude of Venus depending on its dy-
namical flattening for a 1000 d span, from J2000.0.

with the same arguments do not exist. Indeed we remark here
that to compute the nutation coefficients in obliquity for this axis,
we performed the derivative of W1 with respect to h, which does
not appear in the terms associated with the argument M and 2M.
Notice also that for the Earth (see Kinoshita 1977), the Oppolzer
terms depending on the dynamical flattening are negligible with
respect to the nutation coefficients of the AMA. The largest
Oppolzer term in longitude in Kinoshita (1977) is 0.′′007559,
whereas for Venus it is 1.′′4962. In obliquity it is 0.′′002762,
whereas for Venus it is 0.′′6901. The rapid rotation of the Earth
compared with the slow retrograde rotation of Venus explains
this contrast: the frequencies, which depend on the rotation g and
enter in the denominator during the integration, are 104 times
higher for the Earth than for Venus.

Due to its slow rotation, the triaxiality of Venus (1.66× 10−6)
is not negligible compared to the dynamical flattening
(1.31 × 10−5). Thus the Oppolzer terms depending on the tri-
axiality must be considered and are calculated below.
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3.3. Oppolzer terms depending on the triaxiality

From Eq. (44), we have

Wa1 =
GM′

a3

A − B
4

∫ [(a
r

)3
P2

2(sin δ) cos 2α

]
dt

=
3
2

sin2 JWa10 −
∑
ρ=±1

ρ sin J(1 + ρ cos J)Wa11(ρ)

+
∑
ρ=±1

1
4

(1 + cos J)2Wa12(ρ), (56)

where

Wa10 = Ka′

[
(3 cos2 I − 1)

∫
1
2

(a
r

)3
cos 2l dt

+
1
4

sin2 I
∫ (a

r

)3
cos 2(λ − h + l)dt

+
1
4

sin2 I
∫ (a

r

)3
cos 2(λ − h − l)dt (57)

Wa11(ρ) = Ka′

⎡⎢⎢⎢⎢⎢⎣−1
2

sin 2I
∫ (

1
2

a
r

)3

cos(2ρl + g)dt

− 1
4

sin I(1 − cos I)

×
∫ (a

r

)3
cos(2λ − 2h + 2ρl + g)dt

+
1
4

sin I(1 + cos I)

×
∫ (a

r

)3
cos(2λ − 2h − 2ρl − g)dt

]
(58)

Wa12(ρ) = Ka′

⎡⎢⎢⎢⎢⎢⎣sin2 I
∫ (

1
2

a
r

)3

cos(2l + 2ρg)dt

+
1
4

(1 − cos I)2
∫ (a

r

)3
cos 2(λ − h + ρl + g)dt

+
1
4

(1 + cos I)2

×
∫ (a

r

)3
cos 2(λ − h − ρl − g)dt

]
, (59)

and

Ka′ =
3GM′

a3

A − B
4
· (60)

Using the Hamilton equations and assuming, as for the terms
depending on the dynamical flattening, that J is a small angle,
we obtain

ΔAg =
1
G

[3Wa10 −Wa12(ρ) − 2JWa11(1)]

− cos I ΔAh + O(J2), (61)

and

ΔaJ =
1

G sin J
∂Wa1

∂l
− 1

G
cot J

∂Wa1

∂g
=

3
2

sin J
∂Wa10

∂l

− 1 + cos J
G

[
∂Wa11(1)

∂l
− cos J

∂Wa11(1)

∂g

]

+
(1 + cos J)2

4G sin J

[
∂Wa12(ρ)

∂l
− cos J

∂Wa12(ρ)

∂g

]
· (62)

Table 7. Oppolzer terms in longitude depending on triaxiality.

Oppolzer A.M
Argument Period sin(ωt) LC sin(ωt)

d arcsec arcsec
10−7 10−7

2Φ –121.51 –11 967 515 5 994 459
2LS − 2Φ 58.37 –3 784 751 2 880 826
M + 2Φ –264.6 1 490 497 132 590

M − 2Φ + 2LS 46.34 –66 849 54 201
M − 2Φ 78.86 58 400 –39 519

2LS + 2Φ 1490.35 5448 –38 866
−M − 2Φ + 2LS 78.86 19 476 –13 179

2M + 2Φ 1490.35 1062 –7587
2M − 2Φ + 2LS 38.41 –876 739

2M − 2Φ 58.37 390 –297
M + 2Φ + 2LS 195.26 67 121
−M + 2Φ + 2LS –264.66 –263 –23
2M + 2Φ + 2LS 104.47 1 –1

Notes. Comparison with the corresponding nutation coefficients of the
AMA in the tables of Cottereau & Souchay (2009).

As Wa11(−1) is multiplied by (1 − cos J), with our hypothesis it
disappears from Eqs. (61) and (62). Since Wa11(1) and Wa12(ρ)
include l and g in the form of g + 2l and 2g + 2l respectively,
the last terms in Eqs. (62) are negligible. Therefore ΔaJ becomes

ΔaJ = − 2
G

∂Wa11(1)

∂g
+ O(J). (63)

The Oppolzer terms depending on the triaxiality are

Δ

(
J sin g
sin I

)
= − 2

G sin I

⎡⎢⎢⎢⎢⎢⎣∂Wa11(1)

∂g
sin g

+Wa11(1) cos g

⎤⎥⎥⎥⎥⎥⎦ + O(J) (64)

Δ(J cos g) = ΔJ cos g − JΔg sin g

= − 2
G

[
∂Wa11(1)

∂g
cosg −Wa11(1) sin g

]
. (65)

To solve Eqs. (64) and (65) it is necessary to develop
1
2 ( a

r )3 cos(2l+g), ( a
r )3 cos(2λ−2h+2l+g) and ( a

r )3 cos(2λ−2h−
2l − g) with respect to the mean anomaly M, the mean longitude
of the Sun Ls and the angles l and g determined in Sect. 2.3. The
coefficients are the same as those in Tables 3 and 4. Only the
corresponding periods are different, because their calculation in-
cludes the argument l. The period Tl is very long, as shown in
Table 1. Considering our level of accuracy, we suppose in this
section that e is constant and we take the value of Simon et al.
(1994) as e = 0.006771.

We can determine the Oppolzer terms depending on the
triaxiality.

Tables 7 and 8 give the Oppolzer terms in longitude
and in obliquity respectively, depending on Venus triaxiality.
For comparison, we give the corresponding nutation coeffi-
cients of the AMA determined in Cottereau & Souchay (2009).
They are represented in both Figs. 6 and 7 for a 4000 d
time span. We remark here also that the Oppolzer terms
are more important than the corresponding nutation coeffi-
cients of the AMA. The Oppolzer terms associated with the
argument 2Φ is even roughly twice larger than the corre-
sponding nutation coefficient. This is due to the low value
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Table 8. Oppolzer terms in obliquity depending on triaxiality.

Oppolzer A.M
Argument Period cos(ωt) CS cos(ωt)

d arcsec arcsec
10−7 10−7

2Φ –121.51 555 905 –275 453
2lS − 2Φ 58.37 –173 668 132 365
M + 2Φ –264.6 –68 544 –6093

M − 2Φ + 2LS 46.34 3074 2491
2lS + 2Φ 1490.35 –250 1786
M − 2Φ 78.86 2686 1816

−M − 2Φ + 2LS 78.86 896 –606
2M + 2Φ 1490.35 –49 348

2M − 2Φ + 2LS 38.41 –40 35
2M − 2Φ 58.37 18 14

M + 2Φ + 2LS 195.26 –3 6
−M + 2Φ + 2LS –264.6 12 1
2M + 2Φ + 2LS 104.47 0 0

Notes. Comparison with the corresponding nutation coefficients of the
AMA in the tables of Cottereau & Souchay (2009).
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Fig. 6. Nutation of the AMA (Blue and bolt curve) and nutation of the
Oppolzer terms (red curve) in obliquity of Venus depending on its tri-
axility for a 4000 d span, from J2000.0.

of 2̇l + ġ = 2Π/525.81− 2Π/(243.02/36 525) = 944.36 rd/cy,
which appears in the denominator during the integration of the
equations of motion, whereas for the calculation of the corre-
sponding coefficient of the AMA only the sidereal angle fre-
quency ˙2Φ ≈ 2̇l + 2̇g = 1888.68 rd/cy appears which, is
significantly larger. The appearance of the angle ġ during the
integration explains that the other Oppolzer terms are more im-
portant than the corresponding coefficient of the nutation of the
AMA, as justified in Sect. 3.2 for the terms depending on the
dynamical flattening.

Other than for Earth, the Oppolzer terms in triaxiality are not
negligible compared to the nominal values of the correspond-
ing nutation coefficient. The frequencies depending on the rota-
tion 2l+g, which enter in the denominator during the integration,
are very small compared those of our planet. Now we can deter-
mine the nutation of the TFA of Venus, which is fundamental
from an observational point of view.

4. Numerical results and comparison
with the motion of the AMA

From Eqs. (35) and (36) we calculate the nutation coefficients
of the TFA. We recall here that the nutation is respectively des-
ignated in longitude by Δhf and in obliquity by ΔIf . Tables 9
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Fig. 7. Nutation of the AMA (Blue and bolt curve) and nutation of the
Oppolzer terms (red curve) in longitude of Venus depending on its tri-
axility for a 4000 d span, from J2000.0.

Table 9. ΔΨfs = Δhfs: nutation coefficients of the TFA in longitude of
Venus depending on its dynamical flattening.

Argument Period sinωt t sinωt cosωt
d arcsec arcsec/julian century arcsec

(10−7) (10−7) (10−7)
2Ls 112.35 –6 937 480 –594 0
M 224.70 –5 244 238 369 886 5355

2Ls + M 74.90 –81 654 5760 –2
2Ls − M 224.70 72 257 –5095 –8
2Ls + 2M 56.17 –803 113 0[0]

2M 112.35 –1228 171 0[0]

Table 10. Δεfs = ΔIfs: nutation coefficients of the TFA in obliquity of
Venus depending on its dynamical flattening.

Argument Period cosωt t cosωt sinωt
d arcsec arcsec/Julian century arcsec

(10−7) (10−7) (10−7)
2Ls 112.35 –589 348 5 0
M 224.70 –260 831 1839 –248

2Ls + M 74.90 3735 –264 0
2Ls − M 224.70 –3228 –228 0

2Ls + 2M 56.17 37 –4 0
2M 112.35 –122 17 0

and 10 give the nutation coefficients depending on the dynami-
cal flattening in longitude and in obliquity respectively. In a sim-
ilar way, Tables 11 and 12 give the coefficients depending on
the triaxiality.

In this section we will show the difference between the nu-
tation of the TFA, calculated in this paper and that of the AMA
of Venus (δI and Δh), as calculated by Cottereau & Souchay
(2009). Figures 8 and 9 represent the nutation in longitude and
in obliquity of the two axes respectively for a 4000 d time span.

Concerning the longitude we can point out two important
specific remarks:

– The nutation of the TFA is significantly smaller than the nu-
tation of the AMA. Indeed the amplitude peak to peak of the
nutation of the TFA (an amplitude of 1.5′′) is twice as small
as that of the AMA (an amplitude of 3′′).

– The nutation of the TFA is dominated by three sinusoids as-
sociated with the arguments 2Ls, M and 2Φ, with respective
periods 112.35 d, 224.70 d and 121.51 d whereas the nutation
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Table 11. ΔΨfa = Δhfa nutation coefficients of the TFA in longitude of
Venus depending on its triaxiality.

Argument Period sin(ωt)
d arcsec

10−7
2Φ –121.51 –5 973 056

2LS − 2Φ 58.37 –903 925
M + 2Φ –264.6 1 623 087

M − 2Φ + 2LS 46.34 –12648
M − 2Φ 78.86 29 199

2LS + 2Φ 1490.35 –33 418
−M − 2Φ + 2LS 78.86 6297
2M − 2Φ + 2LS 38.41 –137]

2M − 2Φ 58.37 195
M + 2Φ + 2LS 195.26 188
−M + 2Φ + 2LS –264.66 –286
2M + 2Φ + 2LS 104.47 0

Table 12. Δεfa = ΔIfa: nutation coefficients of the TFA in obliquity of
Venus depending on its triaxiality.

Argument Period cos(ωt)
d arcsec

2Φ –121.51 280 452
2lS − 2Φ 58.37 –41 303
M + 2Φ –264.6 –74 637

M − 2Φ + 2LS 46.34 5565
2lS + 2Φ 1490.35 1536
M − 2Φ 78.86 4502

−M − 2Φ + 2LS 78.86 290
2M + 2Φ 1490.35 299

2M − 2Φ + 2LS 38.41 –5
2M − 2Φ 58.37 32

M + 2Φ + 2LS 195.26 3
−M + 2Φ + 2LS –264.6 13
2M + 2Φ + 2LS 104.47 0

of the AMA is dominated by two sinusoids of argument 2Ls
and 2Φ.

The same kind of remark is available in obliquity, but the dif-
ference between the nutations is less important. The amplitude
of the nutation of the TFA is varying between 0.′′10 and 0.′′08
(peak to peak), whereas the AMA amplitude is varying be-
tween −0.′′14 and 0.′′11. The nutation in obliquity is also dom-
inated by a sinusiod, with a period M which is not as large as the
corresponding AMA sinusoid.

Finally we can highlight the differences between the Earth
and Venus. For the Earth, the nutation of the two axes (angular
momentum and third figure axis) are roughly the same (Woolard
1953; Kinoshita 1977), whereas for Venus they are significantly
different. We can also remark that the leading nutation compo-
nent of the third Venus figure axis in longitude due to the gravi-
tational action of the Sun, with argument 2Ls (see Eq. (9)) has an
amplitude of 0.′′693. This is of the same order as the leading 2Ls
the nutation amplitude of the Earth due to the Sun, i.e. 0.′′998 de-
spite the fact that Venus has a very small dynamical flattening.
As explained by Cottereau & Souchay (2009) this is due to the
compensating role of the very slow rotation of Venus. Moreover,
notice that for Venus the argument Ls stands for the longitude of
the Sun as seen from the planet, so that the corresponding pe-
riod of the leading nutation term with 2Ls argument is 112.35 d,
whereas it is 182.5 d for the Earth.
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Fig. 8. Nutation of the TFA (blue curve) and nutation of the momentum
axis in longitude of Venus for 4000 d time span, from J2000.0.
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Fig. 9. Nutation of the TFA (blue curve) and nutation of the momentum
axis in obliquity of Venus for 4000 d time span, from J2000.0.

5. Determination of the indirect planetary effects
on the nutation of Venus

Using the ephemeris DE405 (Standish 1998), we computed the
nutation of Venus by numerical integration with a Runge-Kutta
12th order algorithm. Figures 10 and 11 show the differences
between the nutations in obliquity and in longitude of the AMA
as computed from the analytical tables (Cottereau & Souchay
2009) and that from the numerical integration for a 4000 d time
span. The residuals obtained clearly consist of periodic compo-
nents with small amplitudes of the order of 10−5′′ in obliquity
and 10−3′′ in longitude. This numerical integration validates the
results of Cottereau & Souchay (2009) down to a relative accu-
racy of 10−5. Moreover Kinoshita’s model used in Cottereau &
Souchay (2009) assumed a Keplerian motion of Venus around
the Sun. It is well known that the effects of planetary attraction
into Earth’s orbit (called indirect planetary effect) entails a de-
parture from the Keplerian motion and that this departure in-
duces new nutation terms as calculated by Souchay & Kinoshita
(1996). In order to infer whether the discrepancies between our
numerical integration and our analytical computation are caused
by this indirect planetary effect in Venus orbit, we performed a
spectral analysis of the residuals.

The leading oscillations of the two signals (in longitude and
in obliquity) are determined with a fast Fourier Transform (FFT).
Tables 13 and 14 give the leading amplitudes and periods of the
sinusoids characterizing the signal in Figs. 10 and 11, where
the curve at the bottom represents the residuals after subtrac-
tion of these sinusoids. The periods presented in the Tables 13
and 14 do not correspond to any period of the tables given in the
precedent section starting from the keplerian approximation. On
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Fig. 10. Difference between the obliquity nutation of the AMA and the
numerical integration for 4000 d time span, from J2000.0. The curve at
bottom represents the residual after substracting the sinusoidal terms of
Table 13.
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Fig. 11. Difference between the nutation in longitude of the AMA and
the numerical integration for 4000 d time span, from J2000.0. The curve
at bottom represents the residual after substracting the sinusoidal terms
of the Table 14.

the opposite, when comparing them with the tables of nutation
of the Earth taken from Souchay & Kinoshita (1996), similar pe-
riods appear, which correspond to the combination of planetary
longitudes. This is a clear confirmation that the differences be-
tween our analytical computation and our numerical integration
in Figs. 10 and 11, are essentially due to the indirect planetary
effects, negligible at first order and not taken previously into ac-
count by Cottereau & Souchay (2009). Tables 13 and 14 also
present, when they have been clearly identified, the combination
of the planetary longitudes corresponding to the detected sinu-
soids. We also note the corresponding amplitudes of the Earth’s
nutation due to the indirect effect of Venus where available. We
can thus point out the similitude and reciprocity of the indirect
planetary effects of Venus on the Earth rotation, and of the indi-
rect planetary effects of the Earth on the rotation of Venus.

6. Conclusion and prospects

We achieved the accurate study of the rotation of Venus for a
rigid model and on a short time scale begun by Cottereau &
Souchay (2009) by applying analytical formalisms already used
for the rigid Earth (Kinoshita 1972, 1977). The differences be-
tween the rotational characteristics of Venus and our planet, due
to the slow rotation of Venus and its small obliquity, have been
highlighted.

Firstly we precisely determined the polhody, i.e. the torque-
free rotational motion for a rigid Venus. We adopted the theory
used by Kinoshita (1972, 1992) and gave the parametrization
and the equations of motion to solve the motion. We showed

Table 13. Rigid Venus nutation coefficient from the indirect planetary
contribution in longitude.

Planetary effects Period Amplitude Amplitude SK SK
sin cos sin cos

yr 0.01 mas 0.01 mas 0.01 mas 0.01 mas
2V-2E 0.80 31.5 –9.6 –9.6 0.0
2V-3M 0.60 19.3 4.0 / /
3V-3E 0.53 –2.0 13.4 0.5 –0.2

V-J 0.64 15.1 –26.2 / /
V-E 1.60 –2.6 –15.3 6.6 0.0

4.11 –13.3 –38.4 / /
2V+2M+2J 0.22 6.2 12.7 / /

9.31 –274.5 421.0 / /
0.20 –1.5 –2.3 / /
0.70 –21.0 –6.5 / /

2V-2Me 0.19 8.5 –7.1 / /
2V+J+M 0.25 4.6 –2.9 / /

Notes. Comparison with the respective value in tables of Souchay
& Kinoshita (1995) when we have the Earth as a indirect planetary
contribution.

Table 14. Rigid Venus nutation coefficient from the indirect planetary
contribution in obliquity.

Planetary effects Period Amplitude Amplitude SK SK
sin cos sin cos

yr 0.01 mas 0.01 mas 0.01 mas 0.01 mas
2V+2M+2J 0.22 0.5 –0.4 / /

2S 14.96 0.7 0.4 / /
4.06 –0.3 0.2 / /

2V-2Mer 0.19 –0.3 –0.3 / /
V-2J+M 0.50 –0.3 0.0 / /

Notes. Comparison with the respective value in tables of Souchay
& Kinoshita (1995) when we have the Earth as a indirect planetary
contribution.

that the polhody is significantly elliptic, quite different from the
Earth, where it can be considered as circular in first approxi-
mation. Moreover it is considerably slower. Indeed, the period
of the torque-free motion is 525.81 cy for Venus, whereas it is
303 d for our planet, when considered as rigid.

Then we determined the motion of the third figure axis,
which is fundamental from an observational point of view. We
calculated the Oppolzer terms due to the gravitational action of
the Sun with the equation of motion of Kinoshita (1977) as well
as the corresponding development of the disturbing functions.
We compared them with the nutation coefficients for the angu-
lar momentum axis taken in Cottereau & Souchay (2009). One
of the important results is that these Oppolzer terms depending
on the dynamical flattening are of the same order of amplitude
as the nutation coefficients themselves, whereas for the Earth
(Woolard 1953; Kinoshita 1977) these Oppolzer terms are very
small with respect to the nutation coefficients of the angular mo-
mentum axis. Moreover we computed the Oppolzer terms de-
pending on the triaxiality, which is not done in Kinoshita (1977)
for Earth, which they neglect. For Venus these Oppolzer terms
are significant even larger than the corresponding coefficients of
nutation of the angular momentum axis.

With our Oppolzer terms we were also able to give the ta-
bles of nutation of the third figure axis, from which we com-
puted the nutation for a 4000 d time span. The comparison with
the nutation of the angular momentum axis, calculated from
Cottereau & Souchay (2009), is also given. The nutation of the

Page 11 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913785&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913785&pdf_id=11


A&A 515, A9 (2010)

third figure axis is significantly smaller peak to peak than the
nutation of the angular momentum axis in longitude, and less
important in obliquity. The amplitude of the largest nutation co-
efficient in longitude of the third figure axis (1.5′′) is half that
of the angular momentum axis (3′′). The amplitude of the nu-
tation in obliquity of the third figure axis is 0.′′18 peak to peak,
whereas the amplitude of the angular momentum axis is 0.′′25.
The nutations of the third figure axis, in obliquity and in longi-
tude, are dominated by three sinusoids associated with the argu-
ments 2Ls, M and 2Φ, with respective periods 112.35 d, 224.70 d
and 121.51 d. The nutation of the angular momentum axis is
dominated by two sinusoids with the argument 2Ls and 2Φ.
Our results showed that although the axis of angular momentum
and the third figure axis can be considered identical for Earth
(Kinoshita 1977), this approximation does not hold for a slowly
rotating planet Venus.

We validated our analytical results down to a relative accu-
racy of 10−5 with a numerical integration. Moreover, we con-
firmed by using results in Souchay & Kinoshita (1996) for the
nutation of a rigid Earth that the differences between our ana-
lytical computation and our numerical integration are essentially
due to the indirect planetary effects, which was not taken into
account by Cottereau & Souchay (2009). This study is funda-
mental to understand the behaviour of Venus’ rotation in a very
accurate and exhaustive way for short time scales and will be a
starting point for another similar study including non-rigid ef-
fects (elasticity, atmospheric forcing etc.).

7. Appendix

7.1. Development for a small value of the triaxiality
(Kinoshita 1972)

We note b̃ =
√

G
L̃

.

l = l̃ −
(

1
4

(b̃ + 1)e sin 2l̃

+

(
1
64

(b̃2 + 6b̃ + 1)e2 sin 4l̃ + O(e3), (66)

g = g̃ +
√

b̃

⎡⎢⎢⎢⎢⎢⎣1
2

e sin 2l̃

− 1
16

(b̃ + 1)e2 sin 4l̃

⎤⎥⎥⎥⎥⎥⎦ + O(e3) (67)

J = J̃ +
1

16
(2b̃ + 1)e2 tan J̃

+ tan J̃

(
1
2

e cos 2l̃ − 1
16

b̃e2 cos 4l̃

)
+ O(e3), (68)

with

J̃ = j +
1
2

e tan j + e2 tan j

(
1
8
+

3
16

tan2 j

)
+ O(e3)

l̃ = ñl × t with ñl =
G
D

cos J̃

[
1 − 1

8
(b̃2 + 3)e2

]
+ O(e4)

g̃ = ñg × t with

ñg =
1
2

(
1
A
+

1
B

)
G +

G
4D

(b̃ + 1)e2 + O(e4). (69)

7.2. Development for a small value of the angle j (Kinoshita
1972)

The polar angles l and J leading to the determination of the free
rotational motion are given by

l = l∗ − 1
4

e

√
1 + e
1 − e

j2
sin 2l̃

1 + e cos 2l̃
+ O( j4)

g = g̃ +
G

Dnl̃

⎛⎜⎜⎜⎜⎜⎝ − √1 − e2(l∗ − l̃)

+
1
4

(1 + e) j2
[

e sin 2l̃

1 + e cos 2l̃
+

2√
1 − e2

(l∗ − l̃)

] ⎞⎟⎟⎟⎟⎟⎠ + O( j4)

J = j

√
1 +

2e
1 − e

cos2 l̃ + O( j3), (70)

with

tan l∗ =

√
1 − e
1 + e

tan l̃

nl̃ =
G
D

√
(1 − e2)

[
1 − 1

2(1 − e)
j2
]
+ O( j4)

ng̃ =
1
2

(
1
A
+

1
B

)
G +

G
D

(1 −
√

1 − e2)

×
⎡⎢⎢⎢⎢⎢⎣1 + 1

2

√
1 + e
1 − e

j2
⎤⎥⎥⎥⎥⎥⎦ + O( j4). (71)
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