A. Cambon-thomsen, G. A. Thorisson, and L. Mabile, The role of a bioresource research impact factor as an incentive to share human bioresources, Nat. Genet, vol.43, pp.503-504, 2011.

R. G. Curty, K. Crowston, and A. Specht, Attitudes and norms affecting scientists' data reuse, PLOS ONE, vol.12, 2017.

R. De-miranda-azevedo and M. Dumontier, Considerations for the Conduction and Interpretation of FAIRness Evaluations. Data Intelligence 285-292, 2019.

P. Doorn and . Science-europe, Science Europe Guidance. Presenting a Framework for Discipline-specific Research Data Management, 2018.

P. Doorn and M. Timmermann, Towards Domain Protocols for Research Data Management (IG Domain Repositories RDA 9th Plenary meeting Community-driven Research Data Management). Paper presented at the 9. Plenary meeting Community-driven Research Data Management, 2018.

C. Erdmann, N. Simons, and R. Otsuji, Top 10 FAIR Data & Software Things, 2019.

L. M. Federer, C. W. Belter, and D. J. Joubert, Data sharing in PLOS ONE: An analysis of Data Availability Statements, PLOS ONE, vol.13, 2018.

T. Gomez-diaz and G. Romier, Research Software Management Plan template V3.2, PRESOFT project, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01802565

K. K. Hansen, M. Buss, and L. Sztuk-haahr, A FAIRy tale. Zenodo, 2018.

M. Herschel, R. Diestelkämper, and H. Ben-lahmar, A survey on provenance: What for? What form? What from?, The VLDB Journal, vol.26, pp.881-906, 2017.

A. Jacobsen, R. De-miranda-azevedo, and N. Juty, FAIR Principles: Interpretations and Implementation Considerations. Data Intelligence 10-29, 2019.

S. Jones, R. Pergl, and R. Hooft, Data Management Planning: How Requirements and Solutions are Beginning to Converge. Data Intelligence 208-219, 2019.

A. Landi, M. Thompson, and V. Giannuzzi, The "A" of FAIR -As Open as Possible, as Closed as Necessary. Data Intelligence 47-55, 2019.

L. Lannom, D. Koureas, and A. R. Hardisty, FAIR Data and Services in Biodiversity Science and Geoscience. Data Intelligence 122-130, 2019.

L. Mabile, P. De-castro, and E. Bravo, Towards new tools for bioresource use and sharing, Information Services & Use, vol.36, pp.133-146, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01807865

P. Mcquilton, D. Batista, and O. Beyan, Helping the Consumers and Producers of Standards, Repositories and Policies to Enable FAIR Data. Data Intelligence 151-157, 2019.

B. Mons, C. Neylon, and J. Velterop, Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud, Information Services & Use, vol.37, pp.49-56, 2017.

N. Reymonet, M. Moysan, and A. Cartier, Réaliser un plan de gestion de données « FAIR » : modèle, 2018.

S. Sansone, P. Mcquilton, and P. Rocca-serra, FAIRsharing as a community approach to standards, repositories and policies, Nat Biotechnol, vol.37, pp.358-367, 2019.

S. Stall, P. Cruse, and H. Cousijn, Data Sharing and Citations: New Author Guidelines Promoting Open and FAIR Data in the Earth, Space, and Environmental Sciences, Science Editor, vol.41, pp.83-87, 2018.

H. P. Sustkova, K. M. Hettne, and P. Wittenburg, FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources, Data Intelligence, pp.158-170, 2019.


M. Thompson, K. Burger, and R. Kaliyaperumal, Making FAIR Easy with FAIR Tools: From Creolization to Convergence. Data Intelligence 87-95, 2019.

, Turning FAIR into reality : final report and action plan from the European Commission expert group on FAIR data, 2018.

, Evaluation of Research Careers fully acknowledging Open Science Practices; Rewards, incentives and/or recognition for researchers practicing Open Science. Luxembourg: Publications Office of the EU, 2017.

E. U. , H2020 Programme Guidelines on FAIR Data Management in Horizon 2020, Version 3.0. Luxembourg: Publications Office of the EU, 2016.

M. D. Wilkinson, M. Dumontier, . Aalbersberg, and .. J. Ij, The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, vol.3, 2016.

M. D. Wilkinson, M. Dumontier, and S. Sansone, Evaluating FAIR maturity through a scalable, automated, community-governed framework, Scientific Data, vol.6, pp.1-12, 2019.

M. D. Wilkinson, S. Sansone, and . Schultes, A design framework and exemplar metrics for FAIRness, 2018.

M. D. Wilkinson, R. Verborgh, L. O. Santos, and S. Da, Interoperability and FAIRness through a novel combination of Web technologies (No. e2522v2), PeerJ Inc, 2017.

P. Wittenburg, H. P. Sustkova, and A. Montesanti, The FAIR Funder pilot programme to make it easy for funders to require and for grantees to produce FAIR Data, 2019.