). Rouen and Y. Chen,

O. Colliot, (. Icm, ). Paris, and P. Couratier,

(. Delmaire, . Salengro, ). Lille, and E. Gerardin, Claude Hossein-Foucher

(. Hannequin and . Nicolle, Géraldine Lautrette

(. Lebouvier and . Salengro,

P. Salpêtrière, Stéphane Lehéricy (Hôpital Pitié-Salpêtrière Salpêtrière

T. Benjamin-le, Grégory Petyt

(. Pouliquen and . Chu-rouen, Assi-Hervé Oya (Hôpital Pitié-Salpêtrière

, Funding This study was funded by grant ANR/DGOS PRTS 2015-2019 PREV-DEMALS from the

, Dr Le Ber) and by grant ANR-10-IAIHU-06 from the Agence Nationale de la Recherche. The study was conducted with the support of the Centre d'Investigation Clinique and the Centre pour l'Acquisition

, Maxime Montembeault is supported by Canadian Institute of Health Research (CIHR) and Fonds de recherche du Québec en Santé (FRQS) postdoctoral fellowships

R. A. Odhuba, M. D. Van-den-broek, and L. C. Johns, Ecological validity of measures of executive functioning, Br J Clin Psychol, vol.44, issue.2, pp.269-78, 2005.

P. W. Burgess, N. Alderman, and C. Forbes, The case for the development and use of "ecologically valid" measures of executive function in experimental and clinical neuropsychology, J Int Neuropsychol Soc, vol.12, issue.2, pp.194-209, 2006.

M. Haldane, G. Cunningham, and C. Androutsos, Structural brain correlates of response inhibition in Bipolar Disorder I, Journal of psychopharmacology, vol.22, issue.2, pp.138-181, 2008.

A. Martyr, E. Boycheva, and A. Kudlicka, Assessing inhibitory control in early-stage Alzheimer's and Parkinson's disease using the Hayling Sentence Completion Test, Journal of neuropsychology, 2017.

L. Cipolotti, B. Spano, and C. Healy, Inhibition processes are dissociable and lateralized in human prefrontal cortex, Neuropsychologia, vol.93, pp.1-12, 2016.

G. A. Robinson, L. Cipolotti, and D. G. Walker, Verbal suppression and strategy use: a role for the right lateral prefrontal cortex?, Brain, vol.138, pp.1084-96, 2015.

E. Volle, L. Costello, A. Coates, and L. M. , Dissociation between verbal response initiation and suppression after prefrontal lesions, Cereb Cortex, vol.22, issue.10, pp.2428-2468, 2012.

M. Hornberger, J. Geng, and J. R. Hodges, Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia, Brain, vol.134, pp.2502-2514, 2011.

J. A. Matias-guiu, M. N. Cabrera-martin, and M. Valles-salgado, Inhibition impairment in frontotemporal dementia, amyotrophic lateral sclerosis, and Alzheimer's disease: clinical assessment and metabolic correlates, Brain Imaging Behav, vol.13, issue.3, pp.651-59, 2019.

C. O'callaghan, S. L. Naismith, and J. R. Hodges, Fronto-striatal atrophy correlates of inhibitory dysfunction in Parkinson's disease versus behavioural variant frontotemporal dementia, Cortex, vol.49, issue.7, pp.1833-1876, 2013.

A. F. Santillo, K. Lundblad, and M. Nilsson, Grey and White Matter Clinico-Anatomical Correlates of Disinhibition in Neurodegenerative Disease, PloS one, vol.11, issue.10, p.164122, 2016.

M. Hornberger, S. Savage, and S. Hsieh, Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer's disease, Dement Geriatr Cogn Disord, vol.30, issue.6, pp.547-52, 2010.

M. Dejesus-hernandez, I. R. Mackenzie, and B. F. Boeve, Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron, vol.72, issue.2, pp.245-56, 2011.

A. E. Renton, E. Majounie, and A. Waite, A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD, Neuron, vol.72, issue.2, pp.257-68, 2011.

J. L. Panman, L. C. Jiskoot, and M. Bouts, Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study, Neurobiol Aging, vol.76, pp.115-139, 2019.

K. Popuri, E. Dowds, and M. F. Beg, Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers, NeuroImage Clinical, vol.18, pp.591-98, 2018.

R. Walhout, R. Schmidt, and H. J. Westeneng, Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers, Neurology, vol.85, pp.1780-1788, 1920.

A. Bertrand, J. Wen, and D. Rinaldi, Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years, JAMA neurology, vol.75, issue.2, pp.236-281, 2018.

S. E. Lee, A. C. Sias, and M. L. Mandelli, Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers, NeuroImage Clinical, vol.14, pp.286-97, 2017.

J. M. Papma, L. C. Jiskoot, and J. L. Panman, Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion, Neurology, vol.89, issue.12, pp.1256-64, 2017.

J. D. Rohrer, J. M. Nicholas, and D. M. Cash, Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis, The Lancet Neurology, vol.14, issue.3, pp.253-62, 2015.

D. M. Cash, M. Bocchetta, and D. L. Thomas, Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study, Neurobiol Aging, vol.62, pp.191-96, 2018.

F. Agosta, P. M. Ferraro, and N. Riva, Structural and functional brain signatures of C9orf72 in motor neuron disease, Neurobiol Aging, vol.57, pp.206-225, 2017.

P. W. Burgess and T. Shallice, Response suppression, initiation and strategy use following frontal lobe lesions, Neuropsychologia, vol.34, issue.4, pp.263-72, 1996.

S. Belleville, N. Rouleau, and M. Van-der-linden, Use of the Hayling task to measure inhibition of prepotent responses in normal aging and Alzheimer's disease, Brain Cogn, vol.62, issue.2, pp.113-132, 2006.

J. Ashburner, A fast diffeomorphic image registration algorithm, Neuroimage, vol.38, issue.1, pp.95-113, 2007.

J. Ashburner and K. J. Friston, Voxel-Based Morphometry-The Methods, Neuroimage, vol.11, issue.6, pp.805-826, 2000.

J. Diedrichsen, A spatially unbiased atlas template of the human cerebellum, Neuroimage, vol.33, issue.1, pp.127-165, 2006.

J. Diedrichsen, J. H. Balsters, and J. Flavell, A probabilistic MR atlas of the human cerebellum, Neuroimage, vol.46, issue.1, pp.39-46, 2009.

J. Diedrichsen, S. Maderwald, and M. Kuper, Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure, Neuroimage, vol.54, issue.3, pp.1786-94, 2011.

J. Diedrichsen and E. Zotow, Surface-Based Display of Volume-Averaged Cerebellar Imaging Data, PloS one, vol.10, issue.7, p.133402, 2015.

L. C. Jiskoot, J. L. Panman, and L. Van-asseldonk, Longitudinal cognitive biomarkers predicting symptom onset in presymptomatic frontotemporal dementia, J Neurol, vol.265, issue.6, pp.1381-92, 2018.

R. Balendra and A. M. Isaacs, C9orf72-mediated ALS and FTD: multiple pathways to disease, Nature reviews Neurology, vol.14, issue.9, pp.544-58, 2018.

Y. B. Lee, P. Baskaran, and J. Gomez-deza, C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity, Hum Mol Genet, vol.26, issue.24, pp.4765-77, 2017.

D. J. Irwin, C. T. Mcmillan, and J. Brettschneider, Cognitive decline and reduced survival in <em>C9orf72</em> expansion frontotemporal degeneration and amyotrophic lateral sclerosis, Journal of Neurology, vol.84, issue.2, pp.163-69, 2013.

J. L. Whitwell, B. F. Boeve, and S. D. Weigand, Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images, Eur J Neurol, vol.22, issue.5, pp.745-52, 2015.

J. L. Whitwell, S. D. Weigand, and B. F. Boeve, Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics, Brain, vol.135, pp.794-806, 2012.

C. J. Mahoney, J. Beck, and J. D. Rohrer, Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features, Brain, vol.135, issue.3, pp.736-50, 2012.

M. Bocchetta, M. J. Cardoso, and D. M. Cash, Patterns of regional cerebellar atrophy in genetic frontotemporal dementia, NeuroImage: Clinical, vol.11, pp.287-90, 2016.

T. E. Behrens, H. Johansen-berg, and M. W. Woolrich, Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging, Nat Neurosci, vol.6, issue.7, pp.750-757, 2003.

K. Kansal, Z. Yang, and A. M. Fishman, Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration, Brain, vol.140, issue.3, pp.707-727, 2017.

K. Reetz, I. Dogan, and A. Rolfs, Investigating function and connectivity of morphometric findings--exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17), Neuroimage, vol.62, issue.3, pp.1354-66, 2012.

G. Olivito, M. Lupo, and C. Iacobacci, Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2, J Neurol, vol.265, issue.3, pp.597-606, 2018.

M. Lupo, G. Olivito, and C. Iacobacci, The cerebellar topography of attention subcomponents in spinocerebellar ataxia type 2, Cortex, vol.108, pp.35-49, 2018.

S. C. Wynn, J. Driessen, and J. C. Glennon, Cerebellar Transcranial Direct Current Stimulation Improves Reactive Response Inhibition in Healthy Volunteers, Cerebellum, vol.18, issue.6, pp.983-88, 2019.

L. Sellami, M. Bocchetta, and M. Masellis, Distinct Neuroanatomical Correlates of Neuropsychiatric Symptoms in the Three Main Forms of Genetic Frontotemporal Dementia in the GENFI Cohort, Journal of Alzheimer's disease : JAD, vol.65, issue.1, pp.147-63, 2018.

E. M. Devenney, R. Landin-romero, and M. Irish, The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion, NeuroImage Clinical, vol.13, pp.439-484, 2016.

L. E. Downey, P. D. Fletcher, and H. L. Golden, Altered body schema processing in frontotemporal dementia with C9ORF72 mutations, Journal of Neurology, vol.85, issue.9, pp.1016-1039, 2014.

L. A. Corben, F. Klopper, and M. Stagnitti, Measuring Inhibition and Cognitive Flexibility in Friedreich Ataxia, Cerebellum, vol.16, issue.4, pp.757-63, 2017.

M. Consonni, D. Bella, E. Nigri, and A. , Cognitive Syndromes and C9orf72 Mutation Are Not Related to Cerebellar Degeneration in Amyotrophic Lateral Sclerosis, Frontiers in Neuroscience, vol.13, issue.440, 2019.