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Abstract (200 words) 

Age-related macular degeneration as well as some forms of Retinitis Pigmentosa (RP) are characterized 

by a retinal degeneration involving the retinal pigment epithelium (RPE). Various strategies were 

proposed to cure these disorders including the replacement of RPE cells using human pluripotent stem 

cells (hPSCs), an unlimited source material to generate in vitro RPE cells. The formulation strategy of the 

cell therapy (either a reconstructed sheet or a cell suspension) is crucial to achieve an efficient and long 

lasting therapeutic effect. We previously developed a hPSC-RPE sheet disposed on human amniotic 

membrane that sustained the vision of rodents with retinal degeneration compared to the same cells 

injected as a suspension. However, the transplantation strategy was difficult to implement in large 

animals. Herein we developed two medical devices for the preparation, conservation and implantation 

of the hPSC-RPE sheet in nonhuman primates. The surgery was safe and well tolerated during the 7-week 

follow up. The graft integrity was preserved in primates. Moreover, the hPSC-RPE sheet did not induce 

teratoma or grafted cell dispersion to other organs in rodent models. This work clears the way for the 

first cell therapy for RP patients carrying RPE gene mutations (LRAT, RPE65 and MERTK). 

 

25 words brief summary:  

Specifically developed medical devices ensure the preparation and delivery of bio-engineered hESC-RPE 

sheets into rodent and nonhuman primate eyes, without safety issues.  

Keywords: cell therapy, human pluripotent stem cells, Retinitis Pigmentosa, age-related macular 

degeneration.  
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Introduction 

The retinal pigment epithelium (RPE), a supportive tissue for photoreceptor (PR) homeostasis and 

survival, could be affected in various disease conditions including some forms of Retinitis Pigmentosa 

(RP) and age-related macular degeneration (AMD) (1). The dysfunction or death of RPE cells triggers the 

secondary death of PRs and ultimately leads to vision loss. RP is a group of inherited disorders with more 

than 80 genes identified, which could affect specifically RPE cells, PRs or both (2-4). The mutations 

leading to RPE cell dysfunctions account for 5% of all RP patients (3, 5). There is no cure for RP, despite 

the recent approval of a gene therapy that could only target a minority of patients carrying a mutation in 

the RPE65 gene (6). AMD is a complex disease caused by the combination of genetic and environmental 

factors (7-10). This disease could evolve to a dry form or geographic atrophy with the death of RPE cells 

or to a wet form characterized by a choroidal neovascularization (CNV)(8, 11). The CNV could alter the 

RPE and its basement membrane (the Bruch’s membrane)(8, 11). Therapeutic options are available to 

treat the wet form, such as the delivery of anti-angiogenic agents, while there is no treatment for the dry 

form which account for 80-90% of patients (5, 12). Stem cell-based therapy using RPE derived from 

human pluripotent stem cells (hPSCs) is one of the most promising strategies with a number of 

preliminary safety reports from clinical trials already published (13-18). 

The strategy for the preparation and eye delivery of the cell therapy product, namely hPSC-derived RPE, 

is crucial for both the survival of the graft and its functionality (5, 19, 20). The cell survival was 

significantly improved in Nude rats when RPE cells were grafted as a sheet compared to a cell suspension 

(21). In addition, we have demonstrated that a sheet of RPE derived from human embryonic stem cells 

(hESCs) improved significantly photoreceptor preservation and consequently the visual restoration of 

rats with a retinal degeneration caused by a RPE defect, when compared to the same cells injected as a 

cell suspension (22). This hESC-RPE sheet was grown on a biological scaffold, the amniotic membrane, 
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which is relatively difficult to manipulate and requires a complex preparation process prior to 

transplantation. This preliminary preparation restricts its implementation in clinical trials. However, this 

biological scaffold contains a basement membrane more close to the one of endogenous RPE cells and 

therefore is attractive compared to already developed synthetic polymers (13, 16, 23). In addition, 

amniotic membranes are widely used in clinical practices with banking strategies that make it ready to 

use (24). Besides, these membranes hold other characteristics like a low immunogenicity, anti-

inflammatory and anti-microbial properties (24-26). 

Herein, we developed an original approach to prepare and store the hESC-RPE sheet (grown on amniotic 

membranes) as well as tools to implant the graft into the subretinal space of larger animals. For this 

purpose, two different medical devices were designed and validated for use in clinics. We then evaluated 

the feasibility and safety of the tissue-engineered product following transplantation in nonhuman 

primates. We also ruled out risks of teratoma formation and cell dispersion to other organs in Nude 

rodents. This preclinical development clears the way for a phase I/II clinical trial targeting RP patients 

with mutations affecting RPE cells.  
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Results 

Embedding hESC-RPE sheets into gelatin using a dedicated Medical device 

The hESC-RPE sheet has previously been described and characterized for its in vitro functionality and its 

ability to rescue the visual phenotype of the royal college of surgeons (RCS) rat model of RP (22, 27). 

Aiming at delivering the hESC-RPE sheet into the subretinal space of rats, we previously developed a 

strategy based on a gelatin embedding at 4°C for a few hours before the surgery. The gelatin-layer 

thickness was then adjusted using vibratome equipment (22, 27). This strategy allowed us to protect the 

hESC-RPE cells during implantation and provides elasticity and rigidity to the patch, which is rolled into 

the injector during the implantation procedure. Implementing this strategy in a clinical setting appears 

difficult due to the number of steps required and the variability that could be associated with these 

manipulations. To overcome these challenges, we simplified the production process of the hESC-RPE 

sheet by designing a medical device (MD1) allowing the addition of the gelatin layers without the use of 

a vibratome (Figure 1A). The hESC-RPE sheet was fixed on an insert during the four weeks of cell culture 

prior to gelatin embedding and controlled for its identity (RPE markers detection), purity (residual 

undifferentiated cells), potency (functional release of trophic factor), sterility and viability (supplemental 

Figure S1). The MD1 is composed of a central body (Figure 1B) containing a well allowing the positioning 

of a cell culture insert. A space of 150 µm is created between the hESC-RPE sheet and the surface of the 

device, by making a notch at the borders of the well, where the culture insert is placed (Figure 1A). A 

first cap (cap 1) is disposed on top of the central body of the device (Figure 1C, 1D) that creates another 

space of 150 µm on top of the hESC-RPE sheet (Figure 1A, 1D, supplemental Movie 1). A warmed gelatin 

solution could be delivered on both sides thanks to holes that are included into the cap 1 and the central 

body of the device using a simple culture pipette (Figure 1E, 1F, supplemental Figure S2). Once the 

gelatin becomes rigid at 4°C, a transport culture medium is added inside the well of the body and the 
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container is closed with another cap (cap 2) to prevent fluid leakage. The system is stored at 4°C until 

use, in order to maintain gelatin rigidity. 

hESC-RPE sheets embedded into gelatin are viable and functional for 48 hours at 4°C 

We then evaluated both cell density and viability of the hESC-RPE sheet included in gelatin in order to 

test the stability of the sheet in the medical device MD1 (stored at 4°C). The cell density remained stable 

up to 48 hours, but decreased significantly at 72 hours compared to the time point before gelatin 

embedding (ANOVA F(4,19)=5.408; **p=0.0044) (Figure 2A, 2B). The cell viability remained stable for all 

the time points (ANOVA F(4,19)=1.662; p=0.2002) with a more variable cell viability at 72 hours (Figure 

2C).  We thus measured further the functionality of the hESC-RPE sheet embedded in gelatin within this 

48 hour-period at 4°C. Cell potency was assessed, up to 48 hours at 4°C, through the quantification of 

the amount of VEGF released in the medium following subsequent culture. The amount of VEGF released 

in the medium did not change significantly before gelatin embedding (2008.5 pg/ml +/-188.5) and after 

48h at 4°C with gelatin into MD1 (1804.6 pg/ml +/-796.9; Mann Whitney test: U=4; p=0.9). This 48-hour 

stability period was sufficient for the production of hESC-RPE sheets in gelatin at the good manufacturing 

practice (GMP) site and the transfer at 4°C by car to the distant site of nonhuman primate 

transplantation (374 km).   

Method for hESC-RPE sheet sizing and implantation in enucleated pig eye 

To facilitate the final size adjustment of the hESC-RPE sheet before final transplantation, we developed 

another medical device (MD2) composed of a punch and a cap (cap 3) that could be adapted to the first 

device (Figure 3A, supplemental Movie 2). The cap 3 was designed to guide the punch in order to cut 

the hESC-RPE sheet in a reproducible manner at the same position (Figure 3B, supplemental Figure S3). 

The punch is composed of a metal blade shaping a 14.5 mm2 sim-card (Figure 3C-D). This shape ensures 

the assessment of the right hESC-RPE sheet polarity below the retina following transplantation. Once the 
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sheet is cut with the punch, it is loaded and rolled into a lens injector as previously described for 

injection (22). The rolled sheet is pushed into a longer injection cannula in order to transplant into large 

eyes (Figure 3E-F, supplemental Movie 3). To validate the different medical devices used to manufacture 

and manipulate the hESC-RPE sheet as well as the modified injection strategy, the graft was first 

implanted in enucleated pig eyes (Figure 3G-J). A saline solution is introduced under the retina to create 

a retinal detachment, followed by a retinotomy. Then the injector is introduced in the subretinal space 

to deliver the hESC-RPE sheet (Figure 3J). Once injected, the transplant colored with a blue dye became 

planar under the retina (Figure 3K) and the sim-card shape ensured the monitoring of correct transplant 

orientation with hESC-RPE cells contacting photoreceptors.  

hESC-RPE sheets grafted in nonhuman primates keep their initial position during the experimental 

period (OCT) 

The surgical strategy as well as the tolerance of the hESC-RPE sheet were performed in 

immunosuppressed nonhuman primates, which were implanted in one eye through a 3-port pars plana 

vitrectomy with cold vitreous cavity irrigation. The major steps of the surgery were the same as for 

enucleated pig eyes with the creation of a retinal detachment followed by a retinotomy and the graft 

injection (supplemental Movie 4). The hESC-RPE sheet was correctly implanted at the target location 

(macular area) without any major surgical complications such as significant retinal or choroidal bleeding, 

unplanned iatrogenic retinal detachment or retinal tears (Figure 4A-B). Once implanted, the position of 

the patch remained stable during the 7-week follow-up without signs of degradation, as visualized by 

ocular fundus microscopy and optical coherence tomography (Figure 4A-C), demonstrating that our 

transplantation tool safely delivered the patch.  

Transitory inflammatory response without alteration of the retinal function following implantation in 

nonhuman primates 
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One-day post-surgery, a moderate inflammatory reaction of the anterior segment was observed by slit-

lamp biomicroscopy in the treated eye of all animals (Figure 5A-C). Evaluation at two weeks 

demonstrated that inflammation was resolved in all transplanted animals, excepted in one monkey, 

where a marked level of vitreous opacification (vitreous haze) was noted during the first three weeks 

(supplemental Figure S4). This transitory inflammation might be caused by the surgical procedure rather 

than by the presence of hESC-RPE sheet in the subretinal space. The functionality of transplanted eyes 

was evaluated by electroretinography comparing eyes before implantation (baseline) to same eyes after 

implantation (post-surgery). Photopic electroretinography indicated that a-waves and b-waves were not 

significantly altered at 6 weeks post-surgery (Figure 5D-E). In addition, multifocal electroretinography 

performed at the level of hESC-RPE sheet location or outside the grafting area (non-detached area) 

showed that P1 amplitudes and implicit times remained comparable to the baseline (Figure 5F-G). This 

suggests that the functionality of the retina evaluated by electroretinography was not affected by the 

transplant. 

hESC-RPE sheets grafted in nonhuman primates survive in close contact with photoreceptors and are 

functional.  

We then evaluated the survival and integration of the hESC-RPE sheet, by immunofluorescence, in 

histological sections. Grafted cells, detected using the human specific STEM121 antibody, covered 

uniformly the human amniotic membrane, identified by Collagen IV staining, in the subretinal space 

(Figure 6A-B). Immunostaining with MERTK and Ezrin RPE markers confirmed their expression at the 

apical side of the hESC-RPE cells (Figure 6A, 6D-E), demonstrating that the hESC-RPE layer of the graft 

remained well polarized at 7-week post-transplantation. Importantly, the hESC-RPE sheet identified 

either by Ezrin or STEM121 staining was in contact with outer segments (OS) of photoreceptors, labeled 

with different antibodies against Recoverin (rods and cones), Red/Green opsin (red/green cones) , Blue 
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opsin (blue cones) and Rhodopsin (rods) (Figure 6B-G). The presence of Recoverin or Red /Green opsin 

staining in STEM121-positive or Ezrin-positive human cells indicates the ability of transplanted hESC-RPE 

cells to phagocytose photoreceptor OS (Figure 6C-E). Interestingly, Recoverin and R/G opsin staining 

(Figure 6C and 6D) showed a slight reduction in OS length/size in the patch area compared to the area 

outside the patch. Taken together, these results indicate that the hESC-RPE sheet correctly faced the 

primate photoreceptors. 

The immunosuppression of nonhuman primates was suboptimal during the course of the study. Despite 

regular adjustments for the majority of animals, the targeted range (cyclosporine blood levels between 

250 to 400 ng/ml) was difficult to maintain during the course of the study (supplemental Figure S5). 

Indeed, only the primate 3 had a constant immunosuppression with cyclosporine blood levels precisely 

within the target values (from the day of the surgery to end of the follow up). However, the hESC-RPE 

sheets remained viable in all primates except in one case, where the epithelial layer contained less 

human cells and for which the blood level of cyclosporine was below the expected range of efficacy. 

hESC-RPE cells or sheets are safe in rodent eyes 

Two main safety concerns are associated with cell therapies based on the use of hPSC derivatives: 

teratoma formation due to residual contaminating stem cells and migration of cells out of the grafting 

site. To address the risk of teratoma formation that consists of benign tumors of normal karyotype 

containing cells derived from the three germ layers, a good laboratory practice (GLP) study was 

conducted. Since the subretinal space, which corresponds to the targeted site in humans, is less 

permissive to teratoma formation compared to the subcutaneous route (28, 29), hESC-RPE cells or hESCs 

were injected subcutaneously, corresponding to the worst-case scenario (escape of hESC-RPE cells from 

the eye). Nude mice (n=13) were injected with 1.106 hESC-RPE cells or with 1.106 hESCs (n=10) and 

followed up for 6 months. A histopathological evaluation was then conducted at the end of the study. 
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The control hESC treatment engendered teratomas containing two or three germ layers in 50% of cases 

(Figure 7A-B). By contrast, the injected hESC-RPE cells remained as a dark pigmented cluster of cells (11 

out of 13 mice), without teratoma formation or associated mortality/toxicity until the end of the study 

(Figure 7A). There were also no metastasized cells in the other analyzed organs. 

To address the second risk of hPSC-based therapy, we conducted a GLP study to evaluate the 

biodistribution and acute and chronic toxicity of the hESC-RPE sheet. Nude rats were implanted in the 

subretinal space with a hESC-RPE cell suspension, a hESC-RPE sheet or a control saline solution and 

animals were sacrificed at week 2 and 13 and at a last time point at week 26 only for the hESC-RPE sheet 

group. The presence of human cells was detected by qPCR for the presence of human specific ALU 

sequences in rat treated eye and organ extracts. As expected, no human cells were detected in animals 

injected with a saline solution (supplemental Table S1). Animals transplanted with the hESC-RPE sheet 

contained human cells only in the treated eye at all analyzed time points (supplemental Table S2).  

When a suspension of hESC-RPE cells was delivered into Nude rats, the human cells were only detected 

into the treated eye and associated optic nerves, but not in other organs (supplemental Table S3). It 

indicates that human cells from hESC-RPE sheets or in cell suspension do not migrate at distance from 

the injection site in all analyzed time points. Interestingly, cell suspension persistence is significantly 

reduced compared to hESC-RPE sheets as indicated by the lower number of treated eyes where human 

cells could be detected (Figure 7C). No signs of toxicity were associated with any of these treatments 

(mortality, histopathology). Taken together, these data support the safety of the hESC-RPE sheet as 

transplanted cells do not induce teratomas or migrate outside of the grafting site and are not toxic in 

rodents.  
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Discussion 

In this study, we developed a simplified method to produce and store a hESC-RPE sheet suitable for 

transplantation using two separate medical devices. This hESC-RPE sheet could be safely delivered in the 

eye of nonhuman primates without adverse events or functional alterations. In addition, this hESC-RPE 

sheet neither induced teratoma nor biodistribution issues in Nude rodents. The grafted cells also 

survived without phenotypic alterations in the eye of nonhuman primates and rodents during the follow 

up period. 

The formulation strategy of the RPE cell therapy has dramatic consequences on both survival and 

functionality. Indeed, early studies were conducted using cell suspensions in rodent and have 

demonstrated the functionality of such strategy (30-33). However, the sheet formulation improved the 

survival in the subretinal space and increased the functionality compared to simple cell suspensions (21, 

22). Herein the biodistribution study conducted in Nude rats confirmed previous results regarding the 

lower survival potential of RPE cells injected as a cell suspension. Indeed, the endogenous RPE layer in 

rat models is still present and may limit the correct integration of isolated grafted RPE cells. Regarding 

AMD patients, the Bruch’s membrane in which endogenous RPE cells adhere may also be damaged as in 

the case of a wet form (34). In addition, a diseased eye environment could also affect the potency of 

isolated RPE cells to assemble as a tight epithelium. A limited epithelial reformation may have dramatic 

consequences regarding functionality (19, 35-37). Thus, despite the easy implementation of such cell 

suspension formulation in clinic, efforts are directed now to formulate RPE cell therapies with an 

organized sheet as the one described in this study (38). First clinical trials have demonstrated the safety 

of the hPSC-RPE cell therapy (as cell suspension or as a sheet) with some early signs of efficacy reported 

(13, 15-17). However, It is very difficult to compare the effectiveness between the two types of 

approaches as the cohort size is limited in these clinical trials, patients are legally blind or with low vision, 

and are not necessarily affected by the same disease.  
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Different strategies were proposed to generate RPE sheets including the use or not of scaffolds to 

reconstruct the RPE epithelium in vitro (19, 38, 39). The group of M. Takahashi developed a RPE sheet 

without scaffold by growing the RPE cells in a collagen matrix and used a collagenase to detach the sheet 

(17, 30). However, the RPE sheet remains complex to manipulate and needs particular handling skills to 

be correctly transplanted in patients. Other alternatives are based on scaffolds made of synthetic 

polymers. These scaffolds are rigid and easier to manipulate but specific injection systems are still 

required (13, 16, 23). We chose herein a biological scaffold that is closer to the RPE native environment, 

the human amniotic membrane. This scaffold contains a basement membrane and allows the formation 

of an epithelium without prior coating with proteins. Beside its role in RPE cell culture, the amniotic 

membrane by itself provides an additional transitory effect on photoreceptor survival when transplanted 

alone in RCS rats, increasing thus the interest on this specific scaffold (22). The complexity of the 

preparation was however difficult to implement for clinical trials (27). Therefore, we simplified the 

preparation of the hESC-RPE sheet at the manufacturing site and in the surgery facility by the 

development and validation of two medical devices. Moreover, we extended the stability of the hESC-

RPE sheet from few hours to 48 hours, facilitating its storage and transport to the hospital without 

requirement of cell culture incubators. This method is susceptible to enhance the ability to deliver the 

cell therapy to multiple distant hospitals compared to current methods (13, 16, 17, 23).  

The hESC-RPE sheet correctly facing and contacting primate photoreceptors and detection of events of 

OS phagocytosis by immunofluorescence suggest that hESC-RPE cells are functional. The slight reduction 

in OS length/size observed in the patch area could be due to the implantation method of the hESC-RPE 

sheet, or the space occupied by the hESC-RPE sheet (including amniotic membrane) and do not affect 

retinal function, at least during the 7-week study period. Future studies with longer follow up will 

determine if this phenomenon is transitory. Indeed, the absence of contact between RPE and 

photoreceptors, as observed in the case of electronic implants grafting between RPE and photoreceptors 
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in rats (40, 41) can lead photoreceptors to quickly degenerate. In our previous experiments in the Royal 

College of Surgeons rat presenting a specific defect in the phagocytosis function of endogenous RPE that 

engenders the accumulation of OS debris and photoreceptor cell death, we observed that the hESC-RPE 

sheet sustained the photoreceptor survival during the 3-month follow up which indicates that grafted 

cells were able to eliminate photoreceptor OS debris and prevent their death (22). This observation 

confirmed that true integration of the hESC-RPE sheet rather than a neurotrophic effect of the patch can 

prevent photoreceptor cell death. 

The hESC-RPE sheet was demonstrated to be safe in Nude mice and rats in the two GLP studies, clearing 

thus the way for a clinical application. These results are in accordance with previous studies based on 

human PSC derived RPE conducted both in rodents and patients (13-17, 23). There is however a concern 

regarding the immune reaction due to the mismatch of the human leukocyte antigen (HLA) of hESC-RPE 

sheets and the patient. In this study, we administered an immunosuppressive treatment to the 

nonhuman primates and despite a suboptimal treatment in a xenograft context, the hESC-RPE sheet 

remained stable for the majority of cases. For the recent published clinical trials based on hPSCs, 

immunosuppression was ranged from systemic to local treatments (13-16). Results obtained with these 

different approaches may help future clinical trials to choose adapted strategy to prevent graft rejection, 

considering that systemic immunosuppression has major side effects in patients. As an alternative to 

such treatment, the HLA between hPSC-RPE cells and the recipient could be matched by generating 

hPSCs banks of known HLA (42-44). In this context, an estimation of 150 HLA-selected donors of hPSC 

lines should cover 93% of the UK population (45). A clinical trial is currently on going in Japan based on 

HLA-matched hPSC-RPE cells (5).  

We developed a method to produce a hESC-RPE sheet on a biological scaffold that met all the regulatory 

requirements for a clinical use ranging from the GMP manufacturing (hESC-RPE banks and hESC-RPE 

sheet productions) to GLP in vivo safety studies. This cell therapy has reached regulatory agreements 
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from French health authorities for a phase I/II clinical trial to treat RP patients with RPE associated 

mutations (LRAT, RPE65, MERTK). As first RPE cell therapy for RP, results of this clinical trial will 

demonstrate the first proof of concept in human and, if a preliminary efficacy is reported, will be 

supportive for an extension to AMD patients. 
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Methods 

Animal studies 

Animal experimentations have been designed to respect the 3R (reduce, refine, replace) principle. 

Animal studies comply with the European Parliament Directive 2013/063. Nude mice and Nude rats 

studies were conducted also in accordance with the Directive 2004/10/EC for good laboratory practice 

(GLP) studies. Nonhuman Primate experiments were conducted after local CEA ethical committee (CETEA 

DSV n°44) and French Ministry of Agriculture study approval (agreement number for this study APAFIS# 

10085-20170531 16318262 v3), in animal facilities licensed by the “direction départementale de la 

protection des populations” (agreement B92-032-02). All procedures regarding eye implantation and 

evaluation are in accordance with the ARVO statement for animal research in ophthalmology.  

hESC-RPE culture and sheet preparation 

Clinical grade hESCs line RC-09 derivation was previously described (22, 46). hESCs were maintained by 

daily media renewal with Stem Pro (Thermo Fisher Scientific) supplemented with FGF2 (10ng/ml) and 

manually passaged each week as small clumps. The hESC-RPE cells were obtained by spontaneous 

differentiation in a differentiation medium containing 20% Knock-out serum replacement (KSR, Thermo 

Fisher Scientific) as previously described (22). Briefly, after 6-8 weeks pigmented patches were collected 

and seeded in new culture plates with a culture medium supplemented with 4% KSR as previously 

described (22). hESC-RPE cells were banked and qualified for sterility, stability, potency, identity, purity 

and stability following guidelines for human cell banks (22). hESC-RPE sheets are obtained by seeding on 

a decellularized human amniotic membrane fixed in a custom maid culture insert for 4 weeks. After this 

initial culture period, inserts are washed with PBS and placed dry in the sterile medical device MD1, 

closed with the cap 1. The 2 compartments are filled sequentially with a gelatin solution (Nitta gelatin, 

diluted in a saline solution) on both sides and placed at 4°C few minutes for polymerization. Once 

polymerized, the cap 1 is removed and the MD1 is filled with a conservation medium (Stem Alpha1) and 
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closed with the cap 2. The MD1 is stored at 4°C (+/- 3) up to 48 hours until use. At the surgery site, the 

MD1 is opened and washed twice with BSS (Alcon) and colored with an ophthalmic blue dye (Membrane 

Blue Dual, DORC). The MD2 is used to cut the hESC-RPE sheet at the desired size (14.5mm2) and shape. 

The sheet is then placed in a first injection system to fold the graft (Viscoject, Medicel) and then 

transferred to a 16 Ga cannula (BD Insyte Autoguard, BD Vialon Material). The cannula is beveled to 

identify the position of the hESC-RPE layer. A cannula of a smaller diameter (18Ga) is placed inside the 

first one in order to push the graft when on the subretinal space. Both cannulas are placed in cold BSS 

until implantation. 

Primate transplantation 

Nonhuman Primates were anesthetized by an intramuscular injection of ketamine (10 mg/kg) and 

xylazine (5 mg/kg) and maintained with an intravenous infusion of Propofol 1ml/kg/hour, followed by a 

local ocular anesthesia (oxybuprocaine chlorhydrate, Thea). Pupillary dilatation was achieved with 0.5 % 

tropicamide eye drops (Mydriaticum) at least 20-25 minutes before intervention. The non-operated eye 

was protected with an ophthalmic gel (Lubrithal, Dechra) to prevent dehydration. Subretinal 

implantation of the hESC-RPE sheet was performed through a 3-port pars plana vitrectomy with cold 

vitreous cavity irrigation (BBS plus, Alcon at +4°C) under a stereomicroscope (Lumera 700, Zeiss). The 

vitrectomy (23 Ga ports) was realized using Alcon Constellation. A bleb for the retinal detachment was 

then created by subretinal injection of BSS with a subretinal cannula in the macular area. Prior to 

retinotomy, the appropriate area of the retina was coagulated. A retinotomy of 2mm was performed 

using microscissors. The scleral incision of 2mm was created to introduce the injection system via the 

pars plana into the vitreous cavity. The graft was then delivered through the retinotomy. After the hESC-

RPE sheet delivery the sclerotomy was then closed. The retina was attached under PFCL 

(Perfluorocarbon liquid DECA, DORC). A laser photocoagulation (VITRA LASER, QUANTEL MEDICAL) was 

then applied to the area of the retinotomy. After a fluid/air followed by an air/ 20% SF6 gas (Physiol) 
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exchange, the trocars were removed and the additional portion of the 20% SF6 gas was added if needed. 

The conjunctive was closed with a 7-0 suture and the animal was allowed to awake progressively by 

intravenous propofol withdrawal. 

 

Teratoma GLP study 

Nude mice (SOPF - BALB/cOlaHsd-Fox1nu) were purchased from Envigo and grafted at 6 to 8 weeks of 

age. Animals were housed by groups of 5, under an artificial day/light cycle of 12 hours and fed ad 

libitum. Males and females were treated with a hESC-RPE suspension (106 cells) diluted in matrigel 

(Corning) or hESCs (106 cells) through a subcutaneous route in the middle back between the front and 

back limbs. Mortality was recorded twice daily. Injection site was evaluated every 3 days by palpation to 

follow the cell mass. An ethical size limit of the tumor was fixed at 1cm3. Animals that exceeded this limit 

were sacrificed before the end of the study (2 anticipatory sacrifices in the hESCs group).  Animals were 

followed up until week 26 and then sacrificed after an overnight fasting. The necropsy was conducted by 

an anatomopathologist and the following points were examined: the external surface, all orifices, the 

cranial cavity, the external surface of the brain and samples of the spinal cord, the thoracic and 

abdominal cavities and organs, the cervical tissues and organs, and the carcass. Cell masses from the 

injection site were fixed in 4% buffered formalin, dehydrated and embedded in a paraffin wax. Sections 

(5µm) were stained with hematoxylin / Eosin and analyzed by a pathologist for the presence of 

teratoma.  

Biodistribution/toxicity GLP study 

Nude rats (SPF (Specific Pathogen Free) Nude: Foxn1rnu) were purchased from Envigo and grafted at 7 

weeks. Animals were fed ad libitum and exposed to an artificial day/light cycle of 12 hours. Males and 

females were treated with a hESC-RPE suspension (150000 cells), a hESC-RPE sheet (3.46mm2) or a saline 

solution (3µl, Cooper) and sacrificed (after an overnight fasting) at week 2, week 13 and for the hESC-RPE 
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sheet an additional time point at week 26. Body weight and food consumption were evaluated during 

the study.  A full detailed necropsy by an anatomopathologist was carried for all animals and organs/ 

tissues were sampled for the biodistribution analysis (see supplementary table S4). Biodistribution 

analysis was performed by a GLP laboratory (Genosafe, Evry, France). Briefly, human cells were detected 

in organ/tissue samples by quantitative real-time PCR on DNA extracts using a specific human ALU 

sequence. The qPCR method was validated to detect 1 human cell in 150,000-500,000 rat cells. 

Statistical Analysis 

GraphPad Prism 5 (GraphPad Software, Inc.) was used for statistical analysis. Significant ANOVAs were 

followed up with Tukey's multiple comparisons test; *p < 0.05, **p < 0.01, and ***p < 0.001. When two 

groups unpaired were analyzed, Mann Whitney test was used. For the comparison of two groups paired, 

Wilcoxon matched-pairs signed rank test was used. When more than two groups, Krukal-Wallis non-

parametric test was used. Data are expressed as mean +/- S.E.M, except if mentioned differently. 

Complete statistical analysis, containing detailed number of replicates, can be found in supplementary 

information.  
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Figures and figure legends 

 

Figure 1: Description of the medical device MD1 used to prepare the hESC-RPE sheet embedded in 

gelatin. 

A. Scheme describing the sequential steps of hESC-RPE sheet embedded in gelatin into the medical 

device MD1. The hESC-RPE sheet (red) cultured in an insert (blue) is transferred to the MD1 body, then 

the MD1 body is closed with cap 1 and the gelatin (yellow) is added in both sides. The cap 1 is then 

removed, a transport media (grey) is added and the system is closed with a cap 2. B,C. Images of a MD1 
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central body and the cap 1. D. Transversal view of the MD1 body + cap 1. E, F. Positions of the tips to fill 

the upper and lower side of the MD1. Scale bar = 1cm. 
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Figure 2: The hESC-RPE sheet embedded in gelatin is stable at 4°C for 48h. 

A. Images of hESC-RPE sheet stained with Hoescht 33342 (total cell labelling, blue) and propidium iodide 

(dead cell labelling, red) after 24h, 48h and 72h of storage at 4°C in the MD1. B. Evaluation of the cell 

density at different time points before and after embedding in gelatin. C. Quantification of the number 

of live cells at different time points before and after embedding in gelatin. Data are expressed as mean 

+/- SEM. **p<0.01. 
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Figure 3: Description of the medical device MD2 used to prepare the hESC-RPE sheet and sheet 

implantation procedure in enucleated pig eyes.  
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A. Image showing the MD2 composed of the cap 3 (yellow) and the blade (green), fixed on the MD1 body 

(blue). Scale bar = 1cm. B. Transversal view of the MD2 mounted in the MD1. Scale bar = 1cm. C. 

Magnification showing the shape of the blade (SIM-card shape). Scale bar = 5mm. D. Size of the hESC-

RPE sheet to be implanted. E. Transplantation tools to deliver the hESC-RPE sheet into the subretinal 

space. The system is composed of lens injector (green and yellow) were the hESC-RPE sheet is loaded 

and folded (panel 1). The hESC-RPE sheet is then transferred folded into a cannula (grey head) and the 

hESC-RPE sheet is then pushed into the eye with another cannula of lower size (light green; panel 2). 

Scale bar = 1cm. F. Scheme describing the loading of the hESC-RPE sheet into the injection system and 

grafting approach into large eyes. G-J. Sequential steps to transplant the hESC-RPE sheet in enucleated 

pig eyes: creation of a retinal detachment (G (Scale bar = 200µm), H (Scale bar = 1mm)); retinotomy (I 

(Scale bar = 200µm)) and delivery of the hESC-RPE sheet using the cannula (J (Scale bar = 1mm)) 

described in (E). K. Image showing the hESC-RPE sheet transplanted in an enucleated pig eye with a 

magnification of the graft on the right image. Scale bar = 5mm and 1mm for the magnification. 
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Figure 4: The hESC-RPE sheet is grafted under the macular area in nonhuman primates and keep its 

initial position during the experimental period. 

A. Optical coherence section of a nonhuman primate transplanted with the hESC-RPE sheet in an area 

distant to the graft. The position of the section is indicated on the left image with a bold green arrow. 

Scale bar = 200µm. B. Optical coherence section of a nonhuman primate transplanted with the hESC-RPE 

sheet in the foveal area. The position of the section is indicated on the left image with a bold green 

arrow. The graft is localized under the fovea (magnification of the white box on the lower right image). C. 
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Eye fundus images of the same animal at different time points before and after the surgery. The hESC-

RPE sheet remains at the same position during the follow up. Scale bar = 1mm. 
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Figure 5: No alteration of the retinal function following hESC-RPE sheet implantation in nonhuman 

primates. 
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A. Slit lamp biomicroscopy images of the same eye the day after the surgery and one week after the 

surgery. B-C. Quantification of the level of anterior chamber cells (B) and anterior chamber flare (C) at 

different time points before and after surgery. A transitory inflammation is observed just after the 

surgery that resolves at week 2. Each primate is represented individually. D-E. Full field photopic 

electroretinography of each operated eye before and after the surgery showing implicit time and 

amplitude of the a wave (D) and b wave (E). Each primate is represented individually. F. Images of eye 

fundus showing the hESC-RPE sheet (left) and illustrating the different hexagons that are quantified at 

the graft position (in red) and near the graft (in blue), by Multifocal ERG (right). Scale bar = 1mm. G. 

Quantification of the P1 implicit time (left graph) and the P1 amplitude (right graph) obtained by mfERG. 

Each primate is represented independently. 
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Figure 6: Survival of hESC-RPE sheets grafted in nonhuman primate eye in close contact with host 

photoreceptors. 

A. Immunofluorescence on nonhuman primate retinal section with antibodies against Collagen IV 

(human specific marker, red) and MERTK (green) allowed the identification of respectively amniotic 

membrane and RPE cells. Nuclei are counterstained with DAPI (blue). Scale bar =50µm. B. Maximal 

projection of a stack of images of a monkey retina transplanted with a hESC-RPE sheet. The human 

specific marker Stem121 (in red) identifies grafted human cells that are in contact with host 

photoreceptors expressing Recoverin (in green). Nuclei are counterstained with DAPI. Scale bar =50µm. 

C. Comparison of the expression of Recoverin (in green) in the graft area and outside the transplant area. 

Stem121 (in red) identifies grafted human cells. Nuclei are counterstained with DAPI. Scale bar =10µm.  

D. Immunofluorescence on retinal sections of a nonhuman primate eye in the graft area and outside the 

transplant are. Cones are detected with antibodies targeting Red/Green opsin (green) and the apical side 

of hESC-RPE is identified with Ezrin (red). Nuclei are counterstained with DAPI. Scale bar =10µm. E. 3D 

reconstruction of retinal section immunostained with antibodies against Ezrin (red) and Red/Green opsin 

(green). White arrows indicate phagocytosis events. For the 3 axes, units are in µm.  F-G. 

Immunofluorescence on nonhuman primate retinal section with antibodies against Ezrin (red) and Blue 

opsin (green) (F) and against MERTK (red) and Rhodopsin (green) (G). Nuclei are counterstained with 

DAPI. Scale bar =10µm. 
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Figure 7: hESC-RPE cells or sheets are safe in rodents. 

A. Images of Nude mice transplanted with hESC-RPE cell suspension (left image) or hESCs (middle and 

right images) through a subcutaneous route. Black arrows indicate the location of the cell mass close to 

the injection site. B.  Table recapitulating the results of the teratoma study conducted in Nude mice. 

hESC-RPE grafting resulted in no teratoma formation, mortality or metastasized cells in other organs. C. 

Table recapitulation the results of the biodistribution study (in the treated eye) in Nude rats grafted in 

the subretinal space with hESC-RPE sheets, hESC-RPE cell suspension or a control saline solution.  hESC-

RPE sheets survived better in the eye compared to cell suspensions. 
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Data availability 

The two medical devices presented in this study are available upon request. 
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